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Abstract. Consider a complex, convoluted three dimensional object
that has been digitized and is available as a set of voxels. We describe a
fast, practical scheme for delineating a region of interest on the surface
of the object and estimating its original area. The voxel representation is
maintained and no triangulation is carried out. The methods presented
rely on a theoretical result of Mullikin and Verbeek, and bridge the gap
between their idealized setting and the harsh reality of 3D medical data.
Performance evaluation results are provided, and operation on segmented
white matter MR brain data is demonstrated.
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1 Introduction

Consider a three dimensional object that has been digitized and is given as
a set of voxels. How can one delimit a region of interest on the surface of the
object and estimate its area? Estimating the area of specific regions in the highly
convoluted cortical surface is a challenging instance of this generic problem.

The cortex is the thin outermost layer of grey matter in the brain; cortical
surface area is likely to be related to functional capacities [15]. The interesting
problem of topologically-correct brain segmentation in MR images is beyond the
scope of this paper. Given the segmented cortical voxel set, a useful surface area
measurement process should include three non-trivial steps: Tracing the bound-
ary of the region of interest on the surface, identifying the region surrounded by
the boundary, and estimating its area.

Marking a boundary contour on a convoluted surface is not straightforward,
because parts of the intended curve may not be visible. To overcome this limita-
tion, the user should be able to select a sequence of visible key points, and have
them connected automatically to form the boundary. This calls for an efficient
algorithm for geodesic path generation, i.e., for finding shortest paths between
points on a surface. As to region identification, in the continuous world Jordan’s
theorem ensures that a simple closed contour encloses a region and separates the
interior and exterior. In the discrete domain, identifying a region of interest by
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its outline is prone to paradoxes, since the discrete version of Jordan’s theorem
does not generally hold and different definitions of digital connectivity must be
used for the region and its boundary [12]. Estimating the continuous area of a
surface that is available only in digital form is fundamentally difficult. Differ-
ent continuous surfaces, with different surface areas, may have the same digital
representation. Furthermore, the voxel representation of smooth continuous sur-
faces is generally jagged, so the total area of exposed voxel faces is usually much
greater than that of the original continuous surface.

Transforming the digital object and its surface from their original voxel rep-
resentation to a triangle-based polyhedral representation has certain advantages.
An efficient algorithm for geodesic path generation on triangulated domains is
available [8], facilitating key point based boundary generation. Moreover, on the
triangulated domain the paths found are continuous, so the boundary outlines
the region of interest in a well defined way. Two difficulties however arise. First,
when using the marching cubes algorithm [13] to create the triangulated repre-
sentation, topological ambiguities may occur and holes may be generated [10].
Second, the surface area estimate produced by summing up the area of the re-
sulting triangles does not converge to the true surface area as the resolution
increases [7]; this follows from the locality of the marching cubes algorithm.
Klette and Sun [11] suggest that surface area estimators that converge to the
true surface area can be obtained by using a global polyhedrization method.
More efficient algorithms are required in order to make their method practical
for large, high resolution data sets; see also [2].

This research follows a different approach: the original voxel representation of
the object is maintained and no polyhedrization is carried out. This simplifies the
overall system design and avoids difficulties, ambiguities and distortion that may
arise due to the application of a polyhedrization process to a complex, convoluted
surface. A voxel-based surface area estimator was presented by Mullikin and
Verbeek [14]. Extending the planar perimeter estimation methodology [3,5], their
estimator is designed to be unbiased and minimize the mean square error (MSE)
for planes, and its operation is evaluated with spheres. The estimator of Mullikin
and Verbeek [14] is at the core of the method presented here. However, as will
be discussed, it cannot be directly applied to complex convoluted surfaces and
various difficulties need to be addressed. The creation of a complete voxel-based
surface area estimation method, applicable to surfaces as complex as that of the
brain, is the focus of this research. Preliminary results were presented in [16].

2 Delimiting the Region of Interest

2.1 Border vs. Boundary

Given a 3D object that is represented as a set of voxels, one can easily identify
the voxels that are 6-connected to the background and view them as the border
of the object. The border set can be represented as a graph; once the user
defines keypoints on the border, they can be automatically connected using the
algorithm of [9] to obtain a closed contour that encloses the region of interest.
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Fig. 1. Left: The shortest path generated (solid) between border voxels ‘1’ and ‘2’
does not follow the intended contour (dashed), even though the path is constrained to
border voxels. Right: A region grown from the seed voxel (black) within the contour
will include not only the intended region of interest (darker voxels in the top layer) but
also other voxels in the border set to which they are connected (bottom layer).

Delimiting the region using the voxel-chain contour is inadequate. Consider
for example the object detail shown in Fig. 1 (left). The voxels marked ‘1’ and
‘2’ both belong to the border set. When connecting them (as part of the contour
generation process) using an algorithm like [9], the connection (solid) will not
follow its intended path (dashed). Once a closed contour within the border set
has been created, Fig. 1 (right) demonstrates that the contour does not properly
enclose the region of interest. A region grown from the seed voxel (black) within
the outline will include not only the intended region of interest (darker voxels in
the top layer) but also other voxels in the border set to which they are connected
(bottom layer).

The difficulties associated with using the border voxel set can be eliminated
by keeping track of the boundary of the object, the set of voxel faces that sep-
arates the object from the background [1]. This is easily verified for the patho-
logical cases shown in Fig. 1.

Marking the region of interest requires the following steps. First, detection of
the border-set and the boundary. Second, selection of key-faces on the boundary
and creation of a chain of faces that connects the key-faces on the surface.
Third, seed selection within the region of interest, growing the region of interest
on the boundary and associating it with the border-set. Maintaining the border-
set representation is crucial, since the surface area estimation algorithm, based
on [14], operates on the border-set.

2.2 Algorithms

Border and Boundary Detection. The straightforward approach to simul-
taneous detection of the border-set and the boundary is to visit each voxel in
the 3-D image and determine whether it is 6-connected to a background voxel.
Each surface voxel detected is inserted to a border hash table and each boundary
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face to a boundary hash table. In practice, for the brain images used in this re-
search, this operation took only 7 seconds on a 350MHz PC. Thus, sophisticated
alternative algorithms were not needed.

Constructing the Boundary Adjacency Graph. Following the detection of
the border and the boundary, the boundary faces adjacency graph is constructed.
For each boundary face, adjacent boundary faces are determined. A simple closed
surface can be represented as a directed graph with indegree and outdegree
two [1]. Here, we extract a region of interest on the closed surface of an object,
i.e., a surface patch. The directed graph representation is not suitable for the
surface patch: there will be nodes in the graph with indegree (or outdegree)
smaller than two. For example, consider an object that consists of a single voxel.
Suppose the region of interest contains five faces out of the six that form the
surface of the voxel. Only one of these five faces has four neighbors (two of them
are adjacent faces in the sense of [1], that share the outgoing edges with the
source face. The other two share the incoming edges). Each of the other four
faces has only three edges shared with other faces. Clearly, this simple region of
interest cannot be described using the directed graph representation. Thus, to
find the boundary faces adjacent to each face, we modify the method of [1] to
allow four adjacent faces for each boundary face, one for each of its edges.

Connecting Key-Points on the Boundary. Kiryati and Székely [9] described
an efficient algorithm for finding shortest paths on voxel surfaces represented
as graphs. Here, given the boundary graph representation, a similar algorithm
can be devised to find reasonably short paths between the keypoints defining
the region of interest on the surface. As in [9], the sparsity of the boundary
adjacency graph allows very efficient search. Unlike [9], where different spatial
adjacency relations (link types) between voxels induce different weights for arcs
in the surface graph, here all four arcs connecting a boundary face to adjacent
faces are equally weighted. This algorithm requires O(N log N) time, where N
is the number of boundary faces.

Growing the Region of Interest on the Object Boundary. In the bound-
ary adjacency graph, the degree of each node is between one and four. Like [1],
we use a breadth first search algorithm for graph traversal that begins at an arbi-
trary node. Unlike [1], we have the list of boundary faces in memory so we do not
have to detect the boundary, but only to mark the nodes (boundary faces) that
are within the region of interest. To allow the search to stop at the borderline
of the region of interest, all the nodes representing the outline of the region of
interest are marked as they are generated by the shortest-path algorithm. Thus,
they are already marked when surface growing starts.

3 Surface Area Estimation

3.1 The Estimator of Mullikin & Verbeek [14]

Mullikin and Verbeek [14] extended the theory of 2-D perimeter estimation to
3-D surface area estimation. Their algorithm begins by detecting all surface
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Fig. 2. The nine unique surface voxel classes (after [14]). A voxel under consideration
(dark) is classified according to the arrangement of adjacent surface voxels (lighter grey
and white). Only voxels of types S1−3 appear in a planar surface.

voxels, i.e., object voxels that are 6-connected to background voxels. Each voxel
is classified into one of nine possible classes, and the surface area is estimated
as a linear combination of the class membership values {Ni}:

Ŝ =
9∑

i=1

WiNi

Each surface voxel is classified according to the number and configuration
of its faces that are exposed to the background. Up to rotation and mirroring,
there are exactly nine unique voxel classes (Fig. 2), denoted S1−9. Only voxels
of types S1−3 appear in digital planes. Voxel types S4−6 are found in curved
border regions. Voxel types S7−9 exist in extreme situations, where the object
is a plane, line or point respectively.

Having defined the voxel classification scheme, Mullikin and Verbeek de-
termined the weights W1−3 associated with voxels in classes S1−3, to make
the surface area estimate unbiased for random plane orientations and to mini-
mize the mean square error. These weights are W1 ≈ 0.894, W2 ≈ 1.3409 and
W3 ≈ 1.5879; the coefficient of variation (CV = σ/µ) for planes is 2.33%. Clearly,
an unbiased estimator for planes will have very small errors when operating on
curved surfaces, where local estimation errors, obtained at differently oriented
patches, essentially cancel out.

This methodology does not determine the weights W4−9 associated with
classes S4−9. Following the spatial grid method [4], Mullikin and Verbeek set
W4 = 2, W5 = 8/3 and W6 = 10/3. No weights were assigned by Mullikin and
Verbeek to voxel types S7−9. Experimental performance evaluation with spheres
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revealed some bias related to the radius, that can be alleviated by averaging the
surface area of the object with that of the background.

The surface area estimator of [14] is local. While it does not exhibit multigrid
convergence, it operates directly on voxels, is easy to implement, very fast to
compute and achieves very reasonable accuracy. Note that multigrid convergence
is related to surface area estimation accuracy with resolution approaching infinity
(and surface curvature approaching zero). This is not the case in present MR
brain images, where the cortical surface curvature is high. For an alternative
voxel-based surface area estimation method, see e.g. [6].

3.2 Voxel Types in Brain Surfaces

Table 1 shows the frequency of the nine surface voxel types in a 160 × 200 × 160
segmented white matter MR brain image (in the grey-white matter interface).
It is seen that all nine voxel classes are represented, and that voxel types S4−9
constitute 3.23% of the 187,567 surface voxels. About 1.35% of the surface voxels
are of types S7−9.

Table 1. The frequencies of surface voxels types in the grey-white matter interface of
a segmented 160 × 200 × 160 MR brain image.

S1 S2 S3 S4 S5 S6 S7 S8 S9 total
No. of voxels 65878 46532 37218 1151 2547 1383 468 923 725 187567

Frequency (%) 42.1 29.6 23.7 0.73 1.62 0.88 0.30 0.59 0.46 100

The presence of voxels types S4−9 in brain data necessitates the assignment
of weights to these classes, but these are not provided by the design methodol-
ogy, that is based on digital planes. However, the fairly low frequency of these
voxels means that the overall surface estimation accuracy is not too sensitive to
the weights selected. As discussed above, weights for classes S4−6 were already
proposed in [14]. For voxel classes S7−9, we suggest the following.

For S7, with two opposite faces exposed to the background, we take the
weight to be twice the weight of voxel type S1 (that has only one face exposed
to the background), i.e., W7 = 1.79. A voxel in S8 has two pairs of adjacent faces
exposed to the background; we can take its weight as twice that of voxel type
S2 (that has only one pair of adjacent faces exposed to the background), i.e.,
2.68. Alternatively, one can argue that the weight should be 4/5 of the weight of
S6 (that has 5 faces exposed to the background). This gives an almost identical
weight of 2.67. Thus, for all practical purposes we can take W8 = 2.68. As to S9,
with all 6 faces exposed to the background, the weight can be taken to be the
sum of the weights of S6 and S1 (4.23), or twice that of S4 (4) or the sum of the
weights of S5 and S2 (4.01). The difference between these values is insignificant
considering the low frequency of these voxels. We take the average, W9 = 4.08.

Consider a flat, thin object consisting of a single layer of S7 voxels. Suppose
that the boundary region of interest is on one side of the object. Each of the S7



364 Guy Windreich, Nahum Kiryati, and Gabriele Lohmann

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 3. Left: The relative mean estimation error (percent) in estimating the surface
area of spheres, as a function of sphere radius (with object-background averaging).
Right: The corresponding coefficient of variation (percent).

voxels has two faces exposed to the background, but only one of them belongs to
the region of interest! In this case only half of the weight W7 should contribute
to the surface area estimate. Generally, for a voxel with P faces exposed to the
background, of which p faces belong to the region of interest on the boundary,
we take

W p
i =

p

P
· Wi

where Wi is the voxel class weight. In most cases p = P , so W p
i = Wi.

3.3 Performance Evaluation

Mullikin and Verbeek [14] evaluated the performance of their surface area esti-
mator using simulated spheres and cylinders. Here we report on our simulation
results, with synthetic spheres and ellipsoids. Small spheres represent objects
with high surface curvature, that deviate mostly from the planar surface model
used in the design of the estimator. Large spheres, with their uniformly dis-
tributed surface normals, can demonstrate the unbiasedness of the estimator.
Unlike spheres, surface normal directions on ellipsoids are not uniformly dis-
tributed. Testing the surface area estimator on ellipsoids, suggested in [7], in-
dicates the sensitivity of the estimation error to nonuniformity of the normal
directions distribution. Note that planar objects, having a single normal direc-
tion (or two opposite directions if both sides are considered), are generally the
worst case for the estimator: the coefficient of variation (the standard deviation
divided by their mean) is 2.33% for randomly oriented planes.

Fig. 3 (left) shows the relative mean estimation error (percent) in estimating
the surface area of spheres (average of object and background surface areas), as a
function of sphere radius. Each point in the graph is based on 50 spheres, whose
center points are uniformly distributed within the unit voxel. It is seen that the
relative mean estimation error is less than 1% even for spheres of radius 2, that
it rapidly decreases as the radius is increased, and is practically zero for radii
larger than 10. The coefficient of variation of these measurements is presented
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Fig. 4. Left: Relative mean estimation error (percent) as a function of ellipsoid main
semi-axis a (using object-background surface area averaging). The dots refer to the
ellipsoid family (a, 26, 25); the x’s to (a, 51, 50). Right: The corresponding coefficients
of variation (percent).

in Fig. 3 (right). It rapidly decreases with the sphere radius, from about 4%
with sphere radius 2, through 0.5% with radius 5 to negligibly small values at
larger radii. These results are similar to those obtained with spheres in [14]; they
demonstrate the outstanding accuracy of the estimator even when the surface
curvature is very high. Note that surface curvature radii between 2 and 5 are
common in the segmented MR white matter brain data used in this research.

Consider an ellipsoid with semi-main axes a, b and c parallel to the coordinate
system axes. Each data point in Fig. 4 corresponds to surface area estimation
of 50 such ellipsoids, with center points uniformly distributed within the unit
voxel. The dots in Fig. 4 (left) refer to the ellipsoid family (a, b = 26, c = 25),
and shows the relative mean surface area estimation as a function of a. The x
signs refer to the ellipsoid family (a, b = 51, c = 50). As expected, the error is
almost zero for nearly spherical ellipses; it slowly grows as a increases and the
ellipses become elongated. The respective coefficients of variation are shown in
Fig. 4 (right); they are very small.

4 Application to Brain Data

The methods presented in this paper have been implemented as a C++ program
named Surf3D, for Unix platforms. Surf3D receives as input 3D binary images,
visualizes the data, and allows the user to interact with the surface using the
mouse. A graphical user interface allows easy object rotation, synthetic illumi-
nation, etc. Using the mouse, the user marks a set of key points that indicate
the region of interest on the surface of the viewed object. The keypoints are
connected automatically to create the surrounding contour. From a seed point
selected by the user, Surf3D grows the region of interest and estimates its area.

A typical work session with Surf3D is illustrated in Fig. 5. The input data was
a 160 × 200 × 160 segmented white matter MR brain image, with 558,363 cubic
object voxels, of which 156,825 were surface voxels, having 300,130 boundary
faces (larger data sets are readily accommodated). The session begins by loading
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an image containing segmented white matter MR brain data. The border and
the boundary of the object are detected and displayed. The user defines the
contour of the region of interest by selecting keypoints on the surface. When
ready, the program is instructed to close the contour. The user then clicks on a
surface point within the region of interest, from which the program grows the
region and estimates its surface area. With a 350MHz PC running Linux, the
computing time spent in each of the steps is a few seconds or less.

Fig. 5. Interactive definition of the region of interest on the surface. Left: Automatic
connection of key points provided by the user. Right: Closure of the contour surrounding
the region of interest.

5 Conclusions

This research provides a fast, accurate and convenient scheme for estimating the
surface area of regions of interest on the surface of digital objects. The input
is a 3D binary digital image, i.e., a set of voxels. The voxel representation is
maintained and no triangulation is carried out. The suggested technique bridges
the gap between the theoretical results of Mullikin and Verbeek [14] and the
reality of complex medical data. In particular, the method is well suited for
highly convoluted surfaces. The accuracy is verified using synthetic surfaces:
simulation results reported in [14] are corroborated, and augmented by results
on ellipsoids. Operation is demonstrated on segmented white-matter MR brain
data.
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