
Managing the Evolution of .NET Programs

Susan Eisenbach1, Vladimir Jurisic1, and Chris Sadler2

1 Department of Computing
Imperial College

London, UK SW7 2BZ
{sue,vj98}@doc.ic.ac.uk
2 School of Computing Science

Middlesex University
London, UK N14 4YZ

c.sadler@mdx.ac.uk

Abstract. The component-based model of code execution imposes some require-
ments on the software components themselves, and at the same time lays some
constraints on the modern run-time environment. Software components need to
store descriptive metadata, and the run-time system must access this ‘reflectively’
in order to implement dynamic linking. Software components also undergo dy-
namic evolution whereby a client component experiences the effects of modifi-
cations, made to a service component even though these occurred after the client
was built.
We wanted to see whether the dynamic linking mechanism implemented in Mi-
crosoft’s .NET environment could be utilized to maintain multiple versions of
components. A formal model was developed to assist in understanding the .NET
mechanism and in describing our way of dealing with multiple versions. This
showed that .NET incorporates all the features necessary to implement such a
scheme and we constructed a tool to do so.

1 Introduction

The dynamic link library (DLL) was invented to allow applications running on a single
system to share code. Because it is linked at run-time, when a DLL is corrected or
enhanced, the effect on the client applications is experienced immediately.

This dynamic evolution is a benefit provided that two conditions are met. Firstly,
successive versions of the DLL must maintain backward compatibility. Secondly, on
any particular system, any given version of a DLL can only be replaced by a later ver-
sion. Failure to meet the first condition results in the upgrade problem whilst failure to
meet the second results in the downgrade problem. Together these problems contribute
to “DLL hell” which has been well described in [21, 20]. Many Microsoft support per-
sonnel report [2] DLL hell as the single most significant user problem that they are
called upon to respond to.

There is another way to solve these problems, and that is by allowing the system to
keep multiple versions of the same DLL such that each application is linked to a com-
patible version. Although it reduces the amount of code-sharing and loses the benefits of
dynamic evolution, this idea is the one that is implemented in Microsoft’s .NET environ-
ment. .NET aims to provide developers with a component-based execution model. Any

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 185–198, 2003.
c© IFIP International Federation for Information Processing 2003

186 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

application will consist of a suite of co-operating software components amongst whose
members control is passed during execution. The CLR (Common Language Runtime)
needs to be ‘language-neutral’ which means it should be possible to write a component
in any one of a variety of languages and have it executed by the CLR; and also that
it should be possible to pass data between components written in different languages
(using the Common Type System – CTS).

The usual way to do this is with an intermediate language which the high-level
languages compile to, and to constrain their data types to those recognized by the inter-
mediate language. .NET achieves this with IL (Intermediary Language). Whereas most
systems with an intermediate language have run-time systems that interpret the interme-
diate code (usually for portability reasons), the CLR uses a ‘just-in-time’ (JIT) compiler
to translate IL fragments (primarily method bodies) into native code at run-time.

The native code must run within some previously loaded context, and when the JIT
compiler encounters a reference external to the context, it must invoke some process
to locate and establish the appropriate context before it can resolve the reference. A
reference to a not yet loaded entity (type or type member) within the current, or another
(previously loaded) component, causes a classloader to load the corresponding type
definition. When the reference is to an entity external to all loaded components, it will
be necessary to load the new component (or .NET assembly) via the Library Loader.

The design of the .NET assembly reveals some details about how this is accom-
plished, with each assembly carrying versioning information structured into four fields
– Major, Minor, Revision and Build. This allows many versions of the same DLL to
co-exist in the system. To make this system useful two things are required. Firstly, we
have to agree on the semantics of what constitutes Major, Minor etc. Secondly, we have
to be able to exercise some control over which version will be loaded by the Library
Loader when a new component is needed at run-time. The Fusion utility in .NET is
configured to find, according to some policy, the appropriate component and to pass its
pathname to the Library Loader.

Each assembly normally contains at least one code module1. If we restrict it to
exactly one module, then Microsoft’s definition of an assembly coincides with nearly
everybody else’s definition of a component, so we shall adopt that restriction. It is the
module that is the basic unit for loading in the .NET run-time. Each module contains
a piece of code (e.g. a class definition) translated into an IL binary. In addition, the
module incorporates metadata that records the name and location of every type and
member defined within the module. This metadata is referenced by the CLR whenever
it needs to instantiate an object, access an attribute, invoke a method or request a type
from the class loader.

In addition to the above (module) features, the assembly contains its own metadata,
consisting of type metadata and a manifest. These features distinguish .NET from other
current run-time environments. The type metadata records external type and member
references indexed against a manifest entry. The manifest contains details (name, ver-
sion number, public key, etc.) of each external component needed by the assembly. This
information is what permits dynamic linking between the executing components and,
in .NET it must be explicitly provided by the programmer at compile-time. By contrast,

1 An assembly can actually consist of resources only, but this is not common.

Managing the Evolution of .NET Programs 187

the Java Virtual Machine has a simpler dynamic linking mechanism that implicitly re-
solves references along various ‘classpaths’. The significance of this difference is that
the JVM can only accommodate one version of each component at a time – normally,
the first one encountered in the classpath unless elaborate mechanisms are employed to
invoke custom classloaders [27]. By forcing explicit references .NET allows the pro-
grammer to bind the client code to particular versions of the referenced services. At
run-time, those exact services will be accessed, provided that they still exist and that
the manifest binding is not superseded by an alternative policy.

The assembly metadata is the key to the management of both dynamic linking and
the sensible evolution of components. Some of this information can be accessed at run-
time by developers via a Managed Reflection API, but it cannot be manipulated by this
means. Instead, a set of ‘unmanaged’ COM interfaces allows full read/write access via
C++ hacking. By this means we can see a possible way out of DLL Hell: firstly, when
a component evolves, we do not need to replace the old version with the new, because
.NET lets us distinguish between them by means of version numbers. Secondly, by
manipulating the manifests of client components we can ensure that suitable clients can
benefit from the post-compile-time evolution of their service components, thus fulfilling
the main benefit of evolving DLLs. By the same means we can leave other clients’
bindings undisturbed and thus overcome DLL Hell. To do this, we need to –

1. establish the characteristics of a set of inter-related components – called, in .NET,
the Global Assembly Cache (GAC);

2. investigate how these inter-relationships may be affected by component evolution,
and identify any requirements this may impose;

3. reflect the requirements in new policies.

Section two tackles points (1) and (2) via a formal model. Section three describes a
tool Dejavue.NET [17] based on the model which attempts to implement (3). In section
four we report on other recent work which has addressed this problem, and in section
five we give some indications of where this work might lead in the future.

2 Modelling the Component Cache

To investigate the characteristics of systems of components with dynamic evolution we
modelled the system in Alloy [16]. Alloy is a notation that supports the declarative
description of systems that have relational structures. Alloy is a first-order relational
calculus with transitive closure. Alloy is supported by Alcoa, the Alloy analyser [8],
which allows us to analyse our Alloy model to check for consistency and to generate
example situations which we may not have considered.

The Alcoa tool provides a visualiser which will display example structures graph-
ically. This representation is easy to interpret. We can see how the components have
been joined together to form a system. The figures in this paper were generated by this
visualisation tool. The visualisation tool is quite flexible, allowing us to omit parts of
the model and to show fields either within an object or with an arrow from the object.
In figure 1 we use both ways to show the components of a system.

To work out the characteristics needed to avoid dynamic linking problems caused
by having multiple versions of components we modelled the system looking for unde-

188 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

sirable behaviour. Several properties not in the original system needed to be included to
simulate the behaviour we desired. The complete Alloy model is available at [12].

The type S of services is atomic2. A service s : S, is either a programming lan-
guage type (such as a class) or a member (field or method) represented by the under-
lying .NET Common Type System. Components c : C consist of a name, a version, an
optional main method, and three sets. These are the set of services that the component
imports – import, the set of services that the component exports – export, and a set
of components that provide the services that are listed in the imports – req. These sets
model the metadata. In a programming context, the services that a component imports
are the references that need to be resolved so that the component can be linked.

Definition 1 (Component). A component c : C is defined as:

< name : id, version : ord, main : optional,

import : P(S), export : P(S), req : P(C) >

We can extract an element of a component by its name, e.g. c.main. We assume
the ordering of version is temporal, that is, if two components have the same name but
different version numbers, the one with the greater version number was produced more
recently. The four number Microsoft version numbers are totally ordered so a single
number is sufficient. The first of our version numbers is denoted by v0 or 0. Given a
version number v, the one that follows is next(v).

In our model services (class, method or field) don’t exist in isolation, they only exist
if they are exported from some component. The predicate in property 1 states this.

Property 1 (ServiceInComponent).

∀s ∈ S, ∃c ∈ C (s ∈ c.export)

In our model two components with the same name and version are considered the same
component, whatever their other elements are, whereas two components with the same
name but different version are distinguishable. This is stated in property 2.

Property 2 (Unique).

∀c1, c2 ∈ C ((c1.name = c2.name ∧ c1.version = c2.version) ⇒ c1 = c2)

For a given component, there is a relationship between the set of services import that
are imported by a component and the set of components req. Namely, the set req only
contains components that export the required services. More than one component may
export a given service so a given component’s req set is not necessarily unique.

Property 3 (ExportsFoundInRequiredComponents).

∀c ∈ C, ∀s ∈ c.import, ∃c1 ∈ c.req (s ∈ c1.export)
∀c1, c2 ∈ C (c2 ∈ c1.req ⇒ c1.import ∩ c2.export �= ∅)

Two different components with the same name (and hence different version num-
bers) may cause problems if one tries to link to both of them. So it is not possible for
one component to import services from two components with the same name3. Nor is

2 For a declared type T , t ∈ T and t : T will be used interchangeably.
3 This restriction does not exist in .NET although it does exist in many current .NET language

implementations [18].

Fig. 1. A Closed set of five components containing two versions of one component.

it possible in the transitive closure of the req sets of a given component to require two
components with the same name.

Property 4 (OnlyOneVersion).

∀c, c1, c2 ∈ C ((c1 �= c2 ∧ c1 ∈ c.req ∧ c2 ∈ c.req) ⇒ c1.name �= c2.name)
∀c, c1 ∈ C (c1 ∈ c.∗req ⇒ c.name �= c1.name)

Figure 1, automatically generated from the Alloy model at [12]4, contains an ex-
ample of a set of components that have already evolved over time. Comp3 and Comp4
have main methods and the other three components do not. There are two components
named Color. The earlier version Comp1 exports a service Color.Red. The later
version of this component Comp2 exports Color.White. Comp4 requires services
from Comp0 and Comp1 as can be seen from its req set whereas Comp0 is not depen-
dent on any other components.

It is possible that a service required by one of a set of components is not available.
We define the predicate Closed to test for whether all services required by the compo-
nents within a set are available in that set.

Definition 2 (Closed).

Closed ⊆ P(C)
Closed(C) ⇔ ∀c ∈ C, ∀s ∈ c.import, ∃ci ∈ C (s ∈ ci.export)

We need to model the component cache G. By requiring G to be Closed it will
have the property that services required from any component within the set are always
available within the set itself.

Definition 3 (GlobalComponentCache). A global component cache G : G is a finite
set of components s.t. Closed(G).

Next we define a program P : P . Programs consist of a set of components, such
that one c contains a main method and there are no unresolved references, in any of the
components. This component c is the starting point (main holds for this component)

4 Alloy generated figures have had a small amount of hand editing of the labels labels to make
the models easier to understand.

Comp3
req: Comp2
name: Wall

version: 1
main

White

import

Comp4
req: Comp1, Comp0

name: Roof
main

version: 3

Red

import

Tiled

import

Comp0
name: Style
version: 0

export

Comp1
name: Color

version: 0

export

Comp2
name: Color

version: 2

export

Managing the Evolution of .NET Programs 189

190 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

Fig. 2. A cache containing two programs.

and all other components are those that can be reached from this component by the
transitive closure of c.req. Figure 2, automatically generated from the Alloy model,
shows a cache G containing three components and two programs.

Definition 4 (program). A program P : P is a finite set of components including a
component c with a main s.t.

P = {c} ∪ c.req∗

Programs don’t exist in isolation. They are held within caches.

Property 5 (ProgramInCache).

∀P : P , ∃G : G (P ⊆ G)

Sometimes we need to know whether a set of components (e.g. a program or a
cache) uses the latest versions of components that provide needed services available in
that set5. This we call WellVersioned.

5 This model assumes that there are no side-effects – everything provided by a component is in
its exports.

Market

Comp2
name: Feed

main
version: 2

component

start

Sell

export

Buy

export

Punter

component

Comp0

req: Comp2, Comp1
name: Deal

main
version: 2

component

start

Comp1
req: Comp2
name:Broker

version: 0

component

import

import

export

import

Cache

contains

contains

contains

Managing the Evolution of .NET Programs 191

Definition 5 (WellVersioned).

WellVersioned ⊆ P(C)
WellVersioned(C) = ∀c ∈ C, ∀c1 ∈ C \ {c} ((c.name = c1.name) ⇒

((c.version ≥ c1.version) ∨ ¬Closed(c.req∗ ∪ {c} \ {c1})))
A component can be added to a set of components (e.g. a program or a cache)

only if adding it doesn’t lead to unresolved references in the augmented set. Before
adding a component a unique version number has to be given to the component. If the
component to be added is the first possessing its name then its version number is 0. If
another component already exists within the set with the same name, then the version
number of the new component needs to be greater than all other version numbers of
components with the same name.

Definition 6 (NewNum).

NewNum : (P(C), C) −→ C
NewNum(C, c) = < n, 0, m, i, e, r >,

if �c1 ∈ C (c1.name = c.name)
= < n, next(c1.version), m, i, e, r >,

if (∃c1 ∈ C (c1.name = c.name)∧
∀c2 ∈ C (c2.name = c.name ⇒ c2.version ≤ c1version))

where c =< n, v, m, i, e, r >

Definition 7 (Add).

Add : (P(C), C) −→ P(C)
Add(C, c) = C ∪ {NewNum(C, c)}, if Closed(C ∪ {NewNum(C, c)})

= C, otherwise

As we add components to a cache (or a program) some housekeeping needs to be
done, to ensure that the latest versions of components that don’t break code will be
dynamically linked. In particular before a given component starts executing we have
to update the pointers that indicate which components will get chosen to resolve refer-
ences. These are modelled as the req set for each component. None of our definitions so
far, alter this set for a given component, even when newer versions of components have
been added. Firstly we need to find out which is the latest version of a component that
provides whatever was required. There will always be such a component since there is
no operation that can remove the Closed property from a set.

Definition 8 (Latest).

Latest : (P(C), C) −→ C
Latest(C, c) = c1, if c ∈ C ∧ c1 ∈ C∧

c.name = c1.name ∧ c.export ⊆ c1.export∧
∀c2 ∈ C (c.name = c2.name ⇒
(c2.version≤ c1.version∨ c.export � c2.export))

= undef, otherwise

192 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

Once we know which version of a component should be linked we need to be able
to create for each component a new req set. This we do with Provides which takes a
component’s req set within a cache G and returns a set with the newest components that
contain the required exports.

Definition 9 (Provides).

Provides : (P(C),P(G)) −→ P(C)
Provides(R, G) = {ci | ∃c ∈ R (ci = Latest(G, c) ∧ R ⊆ G ∧ ci ∈ G)}

We now have the functionality needed to reconfigure all the pointers so that pro-
grams can evolve. We use the ⊕ symbol to override the values of a component’s req
set.

Definition 10 (Reconfigure).

Reconfigure : P(C) −→ P(C)
Reconfigure(G) = {ci | ∃c ∈ G (ci = c ⊕ Provides(c.req, G))}

Finally we need an algorithm for evolving the global cache. We only put into the
cache (using Add) new components whose references can be completely satisfied by
the components already in the cache. After we put a component in we need to do some
housekeeping. Firstly, all components in the global cache (including the new one) have
to have their req sets updated, so they now get their import services from the latest
versions of components that provide them. Secondly, any components which are no
longer needed should be removed.

Definition 11 (Evolve).

Evolve : (P(C), C) −→ P(C)
Evolve(G, c) = Reconfigure(Keep(Add(G, c), c))
where

Keep(C, c) = {ci | ci ∈ C∧
(c.name �= ci.name)∨
((c.name = ci.name) ∧ ((c.version < ci.version)∨
(ci.version ≤ c.version ∧ ci.export � c.export)))}

Theorem 1. If a set of components C is Closed and WellVersioned then

∀c : C (Evolve(C, c)) is Closed and WellVersioned .

Proof. For each of the properties, by contradiction.

Unfortunately Alloy cannot be used to check the theorem (using its assert) since
it is higher order. All one can see is that the theorem is not inconsistent with the model.
This can be seen by adding the conditions Closed and WellVersioned of the input set
and the output set to Evolve. The models generated are the same as those without these
conditions.

The sets of components we are actually interested in are caches.

Managing the Evolution of .NET Programs 193

Corollary 1. If the set of components in a GlobalComponentCache G is WellVersioned
then

∀c : C (Evolve(G, c)) is Closed and WellVersioned .

Using Alloy to build and test the model helped refine it considerably. Running early
versions immediately threw up undesirable behaviour. Most of the properties (such as
ExportsFoundInRequiredComponents or those in Component) were added to stop the
converse from being possible. We convinced ourselves that the definition of Evolve be-
haved as we wanted by using Alloy to show that there were no models that failed to
meet our theorem.

This model was built using features that are all available from .NET assemblies.
New programs are WellVersioned and the changes during cache evolution are designed
to maintain WellVersionedness. If the component cache is evolved according to our
model, then the programs built from the cache components should contain the latest
versions of components that do not cause problems.

Of course there are other ways of modelling a component cache. The formalization
cannot cope with components that engage in cyclic import relationships because we
only add one component at a time whilst maintaining Closed at all times. This restriction
reflects current .NET development tools (but not .NET itself). Also in our model the set
of services that are imported and the set of components that provide these services are
not explicitly paired. Nor is there an explicit list of connections between components.
The model might have been in some sense more natural, if these were included, but then
it would have deviated from what actually occurs in .NET metadata.

We set out to build a versioning tool, Dejavue.NET, that could follow the precepts of
our model to manage evolution in .NET. The prototype is described in the next section.

3 Dejavue.NET

Before designing a tool based on our model, a number of practical problems needed
to be solved. Our model envisages a single version number with the convention that a
higher number indicates a later version. Early Beta versions of .NET revealed a ver-
sioning policy that would resolve references against an assembly with higher Revision
and Build numbers than the compile-time version, provided the Major and Minor num-
bers were the same. No checking was done to determine whether or not the two versions
were binary compatible. Presumably, this approach did not solve the problems for the
Beta testers because in later Beta releases and indeed in the .NET official release, this
policy was dropped in favour of a default policy of an exact match between the compile-
time and the link-time versions – thus ruling out dynamic evolution altogether6.

Until there is some agreement amongst developers about what sort of evolution
will cause change in which parts of the version number, it will never be possible to
implement sufficiently sensitive policies based on version numbers alone. For the tool
therefore, we will stick to the idea that a higher number indicates a later version, and

6 So the approach is that rolling forward is only safe if explicit policy statements have been
made.

194 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

Component
Repository

Client
Configuration

File

Client Front End

Cache Manager
Component

Installation Procedure

Fig. 3. High level architecture of the single-machine Dejavue.NET.

we will use Closed and WellVersioned properties to determine which later version, if
any, maintains compatibility.

Initially we planned to manipulate assembly metadata in situ in order to keep client
components abreast of service component evolution. This idea was frustrated in two
ways – firstly, .NET encrypts assemblies in the GAC and this puts the metadata out
of reach of unmanaged API manipulations. Secondly, in the .NET release the GAC
assemblies were placed out of reach of even the managed API. This is another blow
(like the inflexible versioning policy) to dynamic evolution.

However, before it looks in the GAC, the Fusion utility consults a sequence of con-
figuration files. Whoever can control these files has the capability to override, with more
up-to-date possibilities, the assembly metadata relationships established at compile-
time. This provides a mechanism for implementing a more evolutionary dynamic link-
ing policy, utilising the operations and predicates identified within our theoretical
model.

Instead of using the GAC, our tool mimics the GAC with its own Component Repos-
itory (CR) which is maintained by a CacheManager module (see Figure 3). This faith-
fully implements the installation regime defined in our model via a Component Instal-
lation Routine. A second function in the CacheManager, the Redirection Information
Retrieval Routine, traverses the CR dependency tree to construct, for a given compo-
nent, a configuration file containing the current (link-time) dependency information.

The final part of the tool is the ClientFrontEnd. This allows users to execute the
most up-to-date version of an executable component c, in the following steps:

1. requests the CacheManager to interrogate the CR to produce a list of executable
components;

2. allows the user to select the required component c;
3. passes the component name back to the CacheManager to construct ‘on the fly’

the appropriate configuration file, which is stored in the ClientFrontEnd’s working
directory;

4. invokes c.

Managing the Evolution of .NET Programs 195

Component
Repository

Client
Configuration

File

Distributed
Front End

Client
Configuration

File

Distributed
Front End

Client
Configuration

File

Distributed
Front End

Client
Configuration

File

Distributed
Front End

Distributed Server

Fig. 4. Distributed Dejavue.NET architecture.

Once this has been done, any references external to c will be resolved by invoking
the Fusion utility. Instead of looking in the GAC however, Fusion will use the configu-
ration file to locate components in the CR.

A tool of this sort can help an end-user to keep up-to-date provided all updates
are downloaded onto the local system and introduced to the Component Repository
via the Cache Manager. This is not a very practical solution, especially from the point
of view of component developers. Instead, a prototype distributed version of the tool
has been developed (see Figure 4). In this scheme the Component Repository is hosted
on a server which performs the functions of the Cache Manager. Each client then has
a local copy of the Client Front End which maintains local copies of the application
configuration files.

This scheme could slow down execution times if all external references have to
be resolved across the network, so efficiency considerations may dictate some local
caching mechanism. In addition, where support is required for distributed component
developers and maintainers, each one needs to be able to install components in the
Component Repository. This is a complex procedure which alters the state of the entire
cache, therefore it is necessary to lock the cache during each execution of the Com-
ponent Installation Routine. This may make the Component Repository noticeably in-
accessible to other developers and to all users, so there is some risk of degrading the
service. This gives further motivation to the idea of local caching.

196 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

4 Related Work

The model in the last section was built using Alloy [16], a language for building and
analysing software systems. There are several different modelling approaches we could
have chosen including [5, 15]. We chose to use Alloy because the models one can write
are at the same level of abstraction as our models and there is tool support for analysing
them. The models are declarative and describe the structure of systems.

The work described here is a natural extension of work on Java done in collabo-
ration with Drossopoulou and Wragg [26, 25]. Drossopoulou then went on to model
dynamic linking in [6] and we looked at the nature of dynamic linking in Java [9].
More recently with Drossopoulou and Lagorio [24] there has been work on providing
an operational semantics model for dynamic linking flexible enough to model either
Java or C#. There has also been work looking at the software engineering aspects of
dynamic linking. We have examined the problems associated with the evolution of Java
distributed libraries [10, 11], have looked at the problems that arise with binary compat-
ible code changes in [10] and have built tools, described in [11, 27]. Other formal work
on distributed versioning has been done by Sewell in [23].

Rausch [3] models software evolution in terms of Requirements/Assurances con-
tracts. Associated with every component there are explicit textual declarations of the
services that the component requires and provides (assures) together with predicates to
specify the desired behaviour. The Requirements/Assurances contracts are additional
documents that map some or all of the Requirements of one component to the Assures
of a second one. As the components evolve, the contract provides the means to check
syntactic and behavioral consistency. Since the contracts must explicitly identify the
components, it does not seem possible to automatically maintain multiple versions of a
single component.

Other groups have studied the problem of protecting clients from troublesome li-
brary modifications. [22] identified four problems with ‘parent class exchange’. One
of these concerned the introduction of a new (abstract) method into an interface. The
other issues all concern library methods which are overridden by client methods in cir-
cumstances where, under evolution, the application behaviour is adversely affected. To
solve these problems, reuse contracts are proposed in order to document the library de-
veloper’s design commitments. As the library evolves, the terms of the library’s contract
change and the same is true of the corresponding client’s contract. Comparison of these
contracts can serve to identify potential problems.

Mezini [19] investigated the same problem (here termed horizontal evolution) and
considered that conventional composition mechanisms were not sophisticated enough
to propagate design properties to the client. She proposed a smart composition model
wherein, amongst other things, information about the library calling structure is made
available at the client’s site. Successive versions of this information can be compared
using reflection to determine how the client can be protected. These ideas have been
implemented as an extension to Smalltalk.

Formal treatments of static linking were suggested in [4]. Dynamic linking at a fun-
damental level has been studied in [13, 1, 28], allowing for modules as first class values,
usually untyped, concentrating on confluence and optimization issues. [14], discuss dy-
namic linking of native code as an extension of Typed Assembly Language without

Managing the Evolution of .NET Programs 197

expanding the trusted computing base, while [7] takes a higher-level view and suggests
extensions of Typed Assembly Language to support type safe dynamic linking of mod-
ules and sharing.

5 Conclusions

Perhaps DLL Hell is a special place reserved only for Microsoft people, but the Upgrade
Problem has to be faced by everybody who writes or uses component-based software.
Some part of the solution may lie in clever language design, and another may lie in em-
ploying strict software development and maintenance procedures – but a large part lies
in the versioning strategy of the linking mechanism deployed by the run-time system.

In this paper we have looked at this mechanism as deployed by current .NET devel-
opment tools. We have shown that if a discipline is kept over which components can be
added to the Global Assembly Cache, DLL Hell can be avoided. All the features needed
to avoid the problem exist in the .NET manifests but there currently does not seem to be
the will to implement the discipline. For example, the multi-part version numbers give
developers scope to classify the effects of modifications precisely, and the assembly
metadata with the managed code API offers the prospect of reflective code compati-
bility analysis. However, some of the implementation trade-offs in the current release
have frustratingly limited the scope of what is possible. Consequently, the GAC is not
usable as a cache for evolving components. As a consequence we have developed our
prototype tool, to work alongside and within .NET and to demonstrate what could be
attainable.

Our tool is currently more restrictive then is necessary. In the future we will seek
to integrate our tool more closely with the GAC and to relax the requirements that
components can only be added singly.

Acknowledgements

We would like to thank Sophia Drossopoulou for her careful reading of earlier versions
of the model and Michael Huth for suggesting Alloy. Matthew Smith and Rob Chatley
made helpful suggestions about the paper. Dejavue.NET was influenced by DEJaVU a
tool for Java evolution, implemented by Shakil Shaikh and Miles Barr. Andrew Tseng
and Dave Porter of UBS Warburg provided motivation beyond idle academic curiosity.
Finally, we would like to thank Sophia Drossopoulou and all the project students of our
weekly meeting group for their helpful suggestions and insights while the ideas were
being developed.

References

1. Davide Ancona and Elena Zucca. A Primitive calculus for module systems. In PPDP Pro-
ceedings, September 1999.

2. R. Anderson. The End of DLL Hell. http://msdn.microsoft.com/, January 2000.
3. A. Rausch. Software Evolution in Componentware using Requirements/Assurances Con-

tracts, pages 147–156. ACM Press, Limerick, Ireland, May 2000.
4. Luca Cardelli. Program Fragments, Linking, and Modularization. In POPL’97 Proceedings,

January 1997.

198 Susan Eisenbach, Vladimir Jurisic, and Chris Sadler

5. A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, 1994.
6. S. Drossopoulou. An Abstract Model of Java Dynamic Linking, Loading and Verification.

In Types in Compilation, September 2001.
7. Dominic Duggan. Sharing in Typed Module Assembly Language. In Preliminary Proceed-

ings of the Third Workshop on Types in Compilation (TIC 2000). Carnegie Mellon, CMU-
CS-00-161, 2000.

8. D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy Constraint Analyzer, pages
730–733. ACM Press, Limerick, Ireland, May 2000.

9. S. Eisenbach and S. Drossopoulou. Manifestations of the Dynamic Linking Process in Java.
http://www-dse.doc.ic.ac.uk/projects/ slurp/dynamic-link/linking.htm, June 2001.

10. S. Eisenbach and C. Sadler. Ephemeral Java Source Code. In IEEE Workshop on Future
Trends in Distributed Systems, December 1999.

11. S. Eisenbach and C. Sadler. Changing Java Programs. In IEEE Conference in Software
Maintenance, November 2001.

12. S. Eisenbach. Alloy Model of .NET Evolution. Technical report,
http://www.doc.ic.ac.uk/˜sue/alloymodel, August 2003.

13. Kathleen Fisher, John Reppy, and Jon Riecke. A Calculus for Compiling and Linking
Classes. In ESOP Proceedings, March 2000.

14. Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and Flexible Dynamic Linking of
Native Code. In Preliminary Proceedings of the Third Workshop on Types in Compilation
(TIC 2000). Carnegie Mellon, CMU-CS-00-161, 2000.

15. G. Holzmann. The Model Checker Spin. In IEEE Transactions on Software Engineering,
volume 23, 5, May 1997.

16. D. Jackson. Micromodels of Software: Lightweight Modelling and Analysis with Alloy.
Technical report, http://sdg.lcs.mit.edu/˜dng/, February 2002.

17. V. Jurisic. Deja-vu.NET: A Framework for Evolution of Component Based Systems.
http://www.doc.ic.ac.uk/˜ajf/Teaching/Projects/DistProjects.html, June 2002.

18. E. Meijer and C. Szyperski. Overcoming independent extensibility challenges. Communica-
tions of the ACM, 45(10):41–44, October 2002.

19. M. Mezini and K. J. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary Soft-
ware Development. In Proc. of OOPSLA, pages 97–116, 1998.

20. M. Pietrek. Avoiding DLL Hell: Introducing Application Metadata in the Microsoft .NET
Framework. In MSDN Magazine, http://msdn.microsoft.com/, October 2000.

21. S. Pratschner. Simplifying Deployment and Solving DLL Hell with the .NET Framework.
In MSDN Magazine, http://msdn.microsoft.com/, November 2001.

22. K. Mens P. Steyaert, C. Lucas and T. D’Hondt. Reuse Contracts: Managing the Evolution of
Reusable Assets. In Proc. of OOPSLA, 1996.

23. P. Sewell. Modules, Abstract Types, and Distributed Versioning. In Proc. of Principles of
Programming Languages. ACM Press, January 2001.

24. S. Drossopouloum, G. Lagorio and S.Eisenbach. Flexible Models for Dynamic Linking. In
Proc. of the European Symposium on Programming. Springer-Verlag, March 2003.

25. D. Wragg S. Drossopoulou and S. Eisenbach. What is Java binary compatibility? In Proc.
of OOPSLA, volume 33, pages 341–358, 1998.

26. S. Eisenbach S. Drossopoulou and D. Wragg. A Fragment Calculus: Towards a Model of
Separate Compilation, Linking and Binary Compatibility. In Logic in Computer Science,
pages 147–156, 1999.

27. S. Eisenbach, C. Sadler and S. Shaikh. Evolution of Distributed Java Programs. In IFIP/ACM
Working Conf on Component Deployment, June 2002.

28. Joe Wells and Rene Vestergaard. Confluent Equational Reasoning for Linking with First-
Class Primitive Modules. In ESOP Proceedings, March 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

