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Abstract: We present a completely automatic method to build “stable” average anatomical models of the
human brain using a set of magnetic resonance (MR) images. The models computed present two important
characteristics: an average intensity and an average shape, both in a single image. We provide results showing
convergence toward the centroid of the image set used for the computation of the model. In particular, the RMS
distances between the model and the MR images contained in the set stabilize in a range of 2.88mm to 3.36mm
from a range of 4.62mm to 5.51mm initially after only one iteration. As for the influence of the reference image
chosen for the model construction, this is minimal with differences of about 1.0mm, from approximately 3.5mm
initially. These results ensure the usefulness of our approach.
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Modéles moyens du cerveau: Une étude de convergence

Résumé : Nous présentons une méthode complétement automatique de construction de modéles moyens
anatomiques “stables” du cerveau humain en utilisant un ensemble d’images de résonance magnétique (RM).
Les modéles calculé ont deux caractéristiques importantes: une intensité moyenne et une forme moyenne, toutes
deux dans une seule image. Nous présentons des résultats montrant la convergence du modéle vers le centroide
de I’ensemble d’images utilisées lors de la construction. En particulier, les distances RMS entre le modéle
et les images de I’ensemble se stabilisent a l'interieur d’un intervalle de 2.88mm & 3.36mm aprés seulement
une itération, ces valeurs ébtant dans un intervalle de 4.62mm & 5.51mm initialement. Quant & ’influence de
I’image de référence choisie pour la construction modéle, elle est minime avec des différences d’environ 0.9mm,
initialement a 3.5mm. Ces résultats assurent 1’utilité de notre approche.

Mots-clés : Atlas anatomique, Modéle moyen, Recalage, Imagerie par résonance magnétique (IRM).
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1 Introduction

An important tool used to diagnose abnormal anatomical variations are medical atlases [1]. Traditional ones,
such as by Talairach & Tournoux [2] or Schaltenbrand & Wahren [3], are presented in textbooks, but com-
puterized atlases comprising information in a more practical and quantitative manner are becoming available
[4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16]. They usually include information obtained from a set of subjects,
as opposed to a single individual in most paper atlases, making them more representative of a population.
For example, the Montreal Neurological Institute (MNI) used three hundred and five (305) normal subjects
to build an atlas comprising intensity variations after affine registration in the stereotactic space defined by
Talairach & Tournoux [8]. These methods also enable the calculation of normal shape variations, such as in
the work of Gee et al. [17] which present a statistical framework for the construction of upgradable statistical
atlases, and Thompson & Toga [18] which presents a probabilistic atlas of the human brain based on random
vector field transformations.

The following work aims to develop and validate a concept drafted in a previous paper [19] to build an average
model of the human brain using a set of magnetic resonance (MR) images obtained from normal subjects. This
model has two important characteristics: average tissue intensity and average tissue shape up to an affine
transformation. We intend to demonstrate that the model construction converges toward the centroid of the
MR image set.

Reference
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Figure 1: Average model construction method.

As depicted in Figure 1, our method can be summarized in the following manner. Affine registration
between all the images of the set and a reference image corrects for positioning and global shape differences
due to translation, rotation, scaling and shearing, as well as global linear intensity variations due to acquisition
parameters or preprocessing. These are variations that are not of concern for our study. Elastic registration is
then used to evaluate residual variations due to pure morphological differences and produce images having the
same shape as the reference. Averaging the residual deformations and the locally registered images yields an
average deformation and an average intensity image, respectively. The average deformation is then applied to
the average image to produce the model. It presents in a single image an average intensity and shape modulo
an affine transformation corresponding to the affine characteristics of the reference image.

Although similar in terminology, the average shape and the average intensity characteristics have different
purposes. The average shape represents an average of morphological variations. This is generally a well un-
derstood concept. On the other hand, the average intensity is meant to average the response of corresponding
tissues to the acquisition parameters. Also, assuming Gaussian noise in each MR scan, the average intensity
increases the signal to noise ratio in the resulting model compared with individual scans.

The main contribution of this paper is the description of a fully automatic technique to obtain an average
intensity and shape image, producing the average model M, and to show that this model, up to an affine
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4 Guimond, Meunier & Thirion

transformation, is stable with respect to the choice of the initial reference image and repeated applications of
the algorithm (iterations).

The most similar work regarding average intensity atlases is that of Bookstein [20] who created from nine MR
scans a two-dimensional image representing the average intensity of the mid-sagittal plane. Thirteen manually
identified landmarks in the mid-sagittal plane of each scan where matched with a reference image using the
thin-plate spline interpolant [21]. The nine resampled images where then averaged to result into a morphometric
average atlas. Our method differs mainly by two aspects. First, as suggested by Bookstein [20], we make full use
of the three-dimensionality of the scans to compute a three-dimensional average image. Second, our registration
method is automatic and computes a dense deformation field instead of an interpolated function based on
thirteen landmarks. This deformation identifies for each voxel of the reference the corresponding positions in
the other scans. Within this process, every voxel of the reference can be though of as a landmark automatically
determined in the other scans.

The work of the MNI group [8], where three hundred and five (305) three-dimensional MR scans were
registered using translations, rotations and scalings, and averaged to build a statistical neuroanatomical model,
also relates to our work. We enrich this idea by proceeding further in using a less constrained type of deformation
after the affine match to accommodate for local shape variations.

In the same vein, Woods et al. [13] describe a method that finds from a set of images a common space that
preserves the average orientation, size, and affine shape of the group by registering all possible pairs of images
it contains. Averaging the images after affine mapping to this common space produces an average intensity
brain atlas in the average affine space. Their method is computationally very intensive as it requires n(n —1)/2
registrations, n being the number of subjects in the group. The basic difference between this approach and the
one by the MNI group is that this one finds the average affine space, whereas the MNI method uses Talairach
space.

The average shape concept is most similar to the beautiful work of the Brown/Washington group [14, 22],
who have put together a framework in which the construction of a template from a set of anatomies is proven
to minimized the energy of the deformations required to map it onto all the elements of that set. Our work
complements theirs in that we provide quantitative measurements confirming their formulation, though we do
not compute small deformations as is required for their proof. It should be noted that our resulting model also
includes average intensity information and that our respective groups use different registration methods.

Le Briquer and Gee [12] have also developed a method that provides, for a given group of subjects, the mean
shape and the modes of principal variation along with their amplitude. Their approach is set in a statistical
framework and aims at deriving a shape model. Our method differs in that we aim the analysis of local
information rather than global patterns.

The work presented here also relates to the methodologies of Subsol et al. [16], Bookstein [23] and Kendall [24]
who compute average shapes modulo similarity or affine transformations. We have not tried to strictly follow the
theory developed in their works. Our intention was to conform to the idea of making abstraction of differences
between images due to first order transformations, and analyze residual variations. Our main contribution
resides in the characteristics used to build the average shape, that is the image intensities instead of landmarks
or crestlines. Again, this enables the computation of dense deformations fields representing variations everywhere
is the MR scan, as opposed to interpolating transformations found using landmarks, lines or surfaces. We believe
this technique may find less accurate matches in the close surroundings of the landmarks, but provides better
overall registration.

As will be shown, compared to these previous efforts, our method provides clearer images with higher
contrasts and more sharp definitions of tissue boundaries. Most importantly, we provide numbers showing the
convergence of the model towards the centroid of the image set.

The remaining sections of this paper are organized in the following manner. First, we detail the method
used to construct the average model. We then present results showing the convergence of the method towards
an average intensity and shape model, and show the effect of the choice of reference image. We conclude by a
discussion on future research tracks.

2 Methodology

2.1 Registration

The work that follows assumes each point in one image has a corresponding equivalent in the others. It also
assumes available a matching method able to find these correspondences and capable of providing a vector field
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Average Brain Models D

representing those relationships. In theory, neither of these conditions is realized. That is, at a microscopic
scale, there is not a one to one relationship between the brain cells of two individuals, and assuming there was, to
this day, no algorithm is able to find it. In practice however, deforming one brain so its shape matches the one of
another is conceivable and many algorithms realizing this process have been developed [21, 4, 25, 26, 27, 17, 13].
The procedure used in the following work is the demons method [28] using a complete grid of demons. We
briefly detail it here and refer the reader to the original article for more information.

2.1.1 Evaluating Shape Differences

When applied to MR images, the demons algorithm can be considered as an optical flow variant [29]. From this
point of view, the 3D images to be registered are considered as a time sequence represented by I(x,t) where
z = (x1,22,23) is a voxel position in the image and ¢ is time. It computes forces by constraining the brightness
of brain structures to be constant in time so that

dI(z,t)
dt

=0.

This leads us to the basic optical flow formulation (See [29] for details about the derivation.),

aI(x, )/t

=V I(z.t)—T PP
0=Vl G T pIE

dry > Ozg ' Oz
numerical stability reasons when V,I(z,t) is close to zero, the denominator of the above formula is modified to
result in the basic displacement formulation for the demons algorithm using a complete grid of demons,

which is the movement component in the brightness gradient direction V,I(z,t) = (8I(z’t) ol(z,t) al(z’t)). For

OI(x,t)/0t
[|VoI(x,t)||2 + |0I(z,t)/0t

v=-=V.I(z,t)

When ||V I(z,t)|| = 0 no displacement is computed.

As with all optical flow formulations based on differential techniques, the problem here resides in finding
the components of the movement in the directions orthogonal to the gradient. Many regularization methods
have been proposed [30] each with their strengths and weaknesses. The one proposed by Thirion is to apply
a Gaussian filter to each of the three components of v. This provides a smooth displacement field in a time
efficient way. It is interesting to know that Bro-Nielsen and Gramkow [31] have shown that regularizing the
deformation field using a Gaussian filter approximates linear elasticity.

The method is iterative and makes use of a multi-scale scheme which resolved the problem of finding large
deformations, a common problem with optical flow techniques and a basic assumption in the formulation and
implementation of the derivative filters.

2.1.2 Relaxing the Intensity Constraint

We mentioned that the registration algorithm assumes the same intensity for corresponding brain structures
in the images to be registered. For all sort of reasons, such as acquisition parameters or preprocessing, this
may not be the case. To relax this constraint, a linear intensity correction is evaluated at each iteration of the
registration procedure. It is obtained by finding the line that best fits the joint histogram of the two images
(See Figure 2). This line is obtained using linear regression and outlier rejection. From experience, we know
that such an intensity correction provides images in which boundary definitions are clearer and better matched.

2.1.3 Relevance of the Resulting Transformation

In the case of inter-subject non-rigid registration, quantifying the accuracy of a method is difficult. One could
deform an image I using a known deformation D into I’, register I with I’ and compare the result of the
registration with D, but this comparison is biased by the way D is generated. For example, since the demons
algorithm produces a smooth deformation field, if the vectors of D were to be generated randomly, the method
is expected to perform poorly. Another method is to place landmarks in the images to register and evaluate
differences between landmarks after registration (See for example [13]). No such study has been performed
using the demons algorithm.
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Figure 2: Intensity correction method.
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An approach which is a generalization of the previous one is to compare manual and automatic segmentation
using segmentation propagation, the manual result serving as ground truth (See for example [32]). We believe
this approach may be better suited to evaluate the quality of high dimensional transformations such as the
ones obtained using the previously described algorithm (typically 3 x 2003 = 24 x 10° degrees of freedom).
Such a study has been perform previously by Dawant et al. [33] for the demons algorithm. To summarize
their work, contours of different brain structures, large and small, have been segmented manually on nine MR
images. One of these images was mapped to all eight other images and manual and propagated segmentations
where compared. Their similarity index is defined as two times the area encircled by both contours divided
by the sum of the areas encircled by each contour. This index ranges from zero to one, with zero indicating
zero overlap and one indicating a perfect agreement between two contours. It is sensitive to both displacement
and differences in shape and it is thus preferable to a simple area comparison. The average similarity indices
between the manual and automatic segmentations was 0.96, 0.97 and 0.845 for the whole head, the cerebellum
and the head of the caudate respectively. Compared with intra-rater results of 0.97, 0.97 and 0.88, the difference
in the mean similarity indices between two manual delineations and between the manual delineations and the
automatic segmentation method are statistically significant for the whole head and the caudate but not for the
cerebellum. The authors put forth though that similarity indices over 0.85 correspond to contours that are
virtually indistinguishable and that a more relevant comparison should be performed using inter-rater manual
results which are known to have more discrepancies.

It should be pointed out that the demons algorithm does not explicitly track the transformation’s Jacobian
to make sure its determinant is positive, such that in theory it is possible to obtain a singular transformation.
In our experience on MR data, this does not occur when using a sigma, of 1 voxel to define the Gaussian filter
for the smoothing operation. Also, the algorithm matches intensities and a global intensity correction is made
over the whole image. Hence the transformed image is not an exact duplicate of the target. This is due to
the smoothness constraint applied to the displacement field which establishes a compromise between intensity
resemblance and uniform local deformations at each iteration and thus in the final result.

2.2 Average Model Construction

The average model construction needs as input a reference image Ir and a set S of N images I1,...,Iy
representing the group of subjects under consideration. The method can be divided in six steps as follows:

1. The first step regards the evaluation of global shape and intensity differences between the reference and
each image of the set. Elastic registration between Ir and I, provides vector fields D; giving for each
voxel zg of Ir the analogous anatomical location z; in I; as well as an intensity transformation I7;.
An affine transformation A; which best approximates, in a least squares sense, the corresponding D; is
computed. Since we have correspondences between anatomical points of the I; and I that have the form
z; = D;(zg), we compute the A; by minimizing the distance Y_ ||z — A; *(D;(z))||?> (See for example
[34] for a closed form), where the summation is performed on the voxel positions in Ig corresponding to
cerebral tissues’.

2. In the second step, residual variations due to pure morphological differences are evaluated. Elastic regis-
tration is performed between I'p and each I; using the corresponding A; and IT; as initial transformation
estimates. This provide the resulting matched images I as well as the residual vector fields R;.

3. The third step averages the I/, producing a mean intensity image I with the shape of Ir.

4. The fourth step aims to produce the deformation presenting the shape variations between Ip and the
average shape of the set elements after correction of affine differences. Since the residual deformations
R; are all defined in the same anatomical space, that of I, calculating their vectorwise average R(z) =
1/N YV R(«) will provide the desired deformation.

5. The fifth and final step consists of applying this average residual deformation to the average intensity
image to obtain an average intensity and shape image representing the anatomical average model M (see
appendix A for details about the resampling process used in this step).

Considering numerical errors due the fact that automatic registration methods usually perform better when
images are closer to each other, all these steps may be repeated by replacing Ir with M, thus constructing

!These positions are obtained using an automatic method for brain segmentation similar to that of Brummer et al [35]. From
hereon, all summations over x are assumed to be on the voxel positions obtained using this algorithm.
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8 Guimond, Meunier & Thirion

Model | Reference | Image Set
My Tn, Si
My Ig, S
My, I, S
Mo, IR, Sy

Table 1: References and image sets used to build the different models.

a model with a reference image closer to the centroid of our set. Intuitively, this should reduce the mean
registration error and provide a new model M’ closer to the theoretical solution.

In the next section we will further study this convergence with respect to the choice of the reference image
Ir and the number of iterations needed to achieve convergence.

3 Results

(a) A coronal slice of Ig, . (b) A coronal slice of Ig,.

Figure 3: coronal slices from the two reference images Ir, and Ig, respectively.

The method is tested by computing four models using two reference images Ir, and Ig, (see Figures 3(a)
and 3(b)) and two image sets S; and S, each composed of five images (see Table 1).

The 3D MR protocol provides coronal images obtained using a 1.5 Tesla SIGNA (General Electric, Mil-
waukee, U.S.A.) whole body MR imaging system. One hundred and twenty four (124) coronal T1-weighted
images were obtained using a spoiled gradient echo (SPGR) pulse sequence (TE=9 seconds, TR=34 seconds,
flip angle=45°). Two NEX acquisitions took 27 minutes and 52 seconds. The Field of View (FOV) of the images
was 20 cm and each image refers to a contiguous section of tissue of 1.6 mm thickness. The two acquisitions,
as opposed to one, gave increased contrast between gray and white matter, and therefore more ready definition
of structure boundaries. The images showed no evidence of movement or chemical shift artifacts, and partial
voluming effects were minimal. The acquisition time was well tolerated by all subjects. The 256 x 256 x 124
voxels of size 0.78mm x 0.78mm X 1.6mm were trilinearly interpolated to 200 x 200 x 198 to give cubic voxels
of 1mm side.

We analyze our results with regards to two factors. First, the iteration process is investigated to see if
convergence is achieved, and if so how fast is the convergence rate. Second, we study the effect of changing the
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reference image. If the model is a veritable average of the image set, changing the reference should produce an
identical model up to an affine transformation defined by the affine difference between references.

In our evaluation procedure, three metrics are used. The first determines the average distance (AD) from
an image I to the elements of a set S,

AD(Z,5) = Z lew— 2)|1?,

where R; is the residual deformation from I to the ith element of S, n is the number of voxels characterizing
cerebral tissues and N represents the number of elements in S.

The second is the root mean square norm (RMSN) which supplies information regarding the shape variation
expressed by a deformation field D,

RMSN(D \/ ZH:U — D(z)|]?,

where n is the number of voxels characterizing cerebral tissues in the reference from which D was obtained.
The third provides a measure of brightness disparity between two images I; and I;. It is the normalized
intensity difference (NID) of the images intensities at corresponding locations,

NID(;, I;) = \/Zz%@) —Li(z)*

(Li(2))?

An easy way to interpret this formula is to notice that if I; = I;, NID(I;, I;) = 05 if I; = 2I;, NID(I;, I;) = 1; if
I; = 1I;, NID(;, I;) = 0.5; and so on.

3.1 Effect of Iterating

To evaluate the effect of iterating, we construct the four models repeating the process five times and using
the result of the previous iteration as the reference image. We will designate the model M;;, obtained with
reference image I; and set S, computed at the ith iteration by MJ(,? For convenience, M](-,S) will be identified
to the average intensity image having the shape of I;. This represents a sort of iteration after applying only the
three first steps described in section 2.2.

Four measures were computed:

AD(M ](,?, Sk) The average distance from the reference of the current iteration to all the elements of the set.

RMSN(R; ) The shape variation expressed by the residual deformation field R( Y when M ](,? is used as the
reference

RMSN(D 52) The shape difference between models computed at successive iterations. D( i) is the deformation
obtained by registering M](;c) with Mj(z+1)'

NID(M; k » M; (”1 ) The brightness disparity between models obtained at successive iterations.

If the models computed tend towards the centroid of the image set, the first measure should diminish. This
process is depicted in Figure 4(a): as the model evolves towards the center (dotted line), the average distance
to the image set elements decreases. The second and third measures, representing the shape evolution of the
model (see Figure 4(b)), should tend towards zero. Finally, the fourth value should also decrease to zero since
it represents the brightness differences between successive models.

The results of these calculations on the four models are presented in Figure 5. Note that the iterations range
up to 4 and not 5 since we compare models computed at iterations ¢ and i + 1. We remind the reader that
“models” M;g), that is models before the first iteration, characterize only average intensities and not average
shapes.

From Figure 5(a), we know the average distance from the references to the image set elements is between
4.62mm and 5.51mm and reduces to a range of 2.88mm to 3.36mm. Notice that the average distances for the
models build using the same image set are very close (0.09mm for both models) while the distance for the
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10 Guimond, Meunier & Thirion

(a) The average distance of the model to the (b) The distance between successive models di-
image set elements decreases. minishes.

Figure 4: Evolution of the model (circles) toward the center of the image set (squares).

models built using different image sets is much higher (in the range of 0.30 to 0.48mm, depending of which
models are compared). This is easily explainable by the fact different small image sets will tend to have different
average distance from their centroid. Compared to these values, the variation between successive models (see
Figure 5(b) and 5(c)), which is in the range of 0.41mm to 0.52mm, seems minor. Figure 5(d) presents numbers
showing the brightness difference between successive models diminishes rapidly to almost 0, increasing our belief
that models do not evolve significantly after the first iteration.

3.2 Effect of the Reference

If the models computed are equal up to an affine transformation, changing the reference image should produce
a model identical to the previous one after removing their affine differences. To verify this characteristic, we

performed an affine registration between models built using the same image set. MZ(; is registered with Ml(;)
to provide the image M'S) and ML) with MY to result in M’(Y.
Two measure were used:

RMSN(D,(:)) The shape variation from Ml(;c) to M’ g’k) D,(:) is the deformation obtained by registering the two
images.

NID(Ml(fc), M’ gk)) The brightness disparity between the two models.

Results are shown in Figures 6(a) and 6(b) respectively. We notice that shape variation between the models
reduces from about 3.4mm to 0.9mm. This last value is close to the difference between successive models which
we know from Figures 5(b) and 5(c) to be approximately 0.4mm. The brightness disparity also diminishes
rapidly and does not change drastically after the first iteration. From these results, one can see that the models
build using different reference image are very close but not identical. We believe the differences are due to
errors in our registration method and to the resampling procedure applied to the models to put them in the
same affine space, which tends to smooth the image. This last artifact is not present when comparing models
obtained from successive iterations as we did for the results of Figure 5(d). Still, the average distance between
models is less than the resolution of the image, and both the average distance and the normalized intensity
difference evolve only slightly after the first iteration.

Figures 7 to 10 present some results obtained during this process. In Figure 7 the average intensity images
corresponding to the reference images of Figure 3 are presented. They basically have the same shape as their
respective reference image and their intensities corresponds to the average of the image set S;. Notice how
the signal to noise ratio is increased while contrast is preserved. These average intensity images are deformed
using the corresponding average residual deformations to provide the average models of Figure 8. The average
model Mé}) is then registered with Ml(}) using an affine transformation to set it in the same affine space. This
result is presented in Figures 9(a) and 9(b). The same procedure has been performed for all five iterations for
both image sets S1 and Ss. The resulting models for the fifth iteration using image set S is also shown in
Figures 9(c) and 9(d). In Figure 10, slices are taken where there is more variability in the cortex area and thus
where our registration method finds correspondences in which we have less confidence. As can be seen, in these
regions the model image is less clear and the contrast between gray and white matter is less pronounced.
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Figure 5: Impact of the iteration process when computing the models. Note that the iterations range up to 4
and not 5 since we compare models computed at iterations ¢ and 7 + 1. We remind the reader that “models”
M ](-2), that is models before the first iteration, characterize only average intensities and not average shapes.
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Figure 6: Influence of the reference on the model computed.

(a) Average intensity image I build using Ig, and Si (b) Average intensity image I build using Ir, and Si
during first iteration. during first iteration.

Figure 7: Average intensity images build using reference images I'r, (Figure 3(a)) and Ig, (Figure 3(b)) and
the same image set S1. They were obtained during the first iteration of the model construction method. Notice
how the signal to noise ratio is increased while contrast is preserved.
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(a) A coronal slice of Ml(i)

- ----==.II—-—-"-
_ IIIII

(c) A regular grid deformed by the average residual de- (d) A regular grid deformed by the average residual de-
—(0) —(0)

formation Riy . formation Ry, .

Figure 8: Average models Mﬁ) (Figure 8(a)) and Mz(i) (Figure 8(b)) computed using reference images Ig,
(Figure 3(a)) and Ig, (Figure 3(b)) and the same image set S;. They were build from the average intensity
images of Figure 7(a) and Figure 7(b) respectively. Figures 8(c) and 8(d) are the corresponding deformed grids.
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(c) A coronal slice of MS) (d) A coronal slice of M 1551)~

Figure 9: Average models computed using reference images Ir, (Figure 3(a)) and Ig, (Figure 3(b)) and the
same image set S;. Figures 9(b) and 9(d) have been transformed into the same affine space as Figures 9(a)
and 9(c) respectively, and can therefore be compared directly.
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(a) A coronal slice of Ml(f) (b) A coronal slice of M’gsl).

Figure 10: Average models computed using reference images Ir, (Figure 3(a)) and Ir, (Figure 3(b)) and the
same image set S1. Figure 10(b) has been transformed into the same affine space as Figure 9(c) and can therefore
be compared directly. Compared with Figure 9, these slices are taken where there is more variability in the
cortex area and thus where our registration method finds correspondences in which we have less confidence. As
can be seen, in these regions the model image is less clear and the contrast between gray and white matter is
less pronounced.

RR n° 3731



16 Guimond, Meunier & Thirion

4 Discussion

Figure 5 presents numbers showing that our method constructs average models well representing the average
intensity and shape of our image sets. In particular, Figure 5(a) shows that the average distance from one image
to the set elements varies between 4.62mm and 5.51mm. This distance reduces and stays between 2.88mm to
3.36mm after the first iteration. Figure 5(b) and 5(c) illustrate a minor shape evolution of the models at each
iteration. Furthermore, Figure 5(d) allows us to claim the visual aspect of the models changes only minimally.
This leads us to the conclusion that models constructed are different, but equivalent from a practical point of
view. That is, we believe the model slowly wanders around the optimum solution. Their intensity difference is
practically null, and their shapes, although different, all have the same average distance to the other elements
of the set. Hence, we believe one or two iterations are sufficient to build representative average models.

The reader should appreciate the low noise, high contrast and high quality of the models produced in
Figures 8, 9 and 10. They present models built using different reference images and the same image set. The
ventricular shape bias introduced using Ig, is minimal if not null. Also, Figure 6 shows that the models built
using different references seem to converge towards the same solution. Their shape difference presented in
Figure 6(a) of about 0.9mm is low compared to the average distance between the models and the set elements,
which is in the range of 2.88mm to 3.36mm, and just over the distance between successive average models which
varies from 0.30 to 0.48mm. Figure 6(b) also presents a low disparity between the different models intensities.

(a) Coronal slice, elastic regis- (b) Sagittal slice, elastic regis-
tration. tration.

(d) Coronal slice, affine registra- (e) Sagittal slice, affine registra- (f) Axial slice, affine registration.
tion. tion.

Figure 11: Corresponding slices of Mj; using affine registration (Figures 11(d), 11(e) and 11(f)) instead of
elastic registration (Figures 11(a), 11(b) and 11(c)).
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If familiar with the work of Bookstein [20] or the MNT group [8], the reader will appreciate the high contrast
and visual quality of the images produced, although due in part to the smaller number of images used. To
better visually appreciate the gain in using high-dimensional volumetric maps (200% x 198 x 3 = 2.376 x 107
degrees of freedom) instead of affine transformations (12 degrees of freedom) during registration, Figure 11
presents corresponding slices of the model Mj; build using the method presented in this paper and the one
build restraining registration to affine transformations. Note that Figures 11(a), 11(b) and 11(c), obtained
using the method described above, provide higher contrasts and more sharp definitions of tissue boundaries
than Figures 11(d), 11(e) and 11(f) which where obtained using affine registration only.

(a) Coronal section. (b) Sagittal section in left hemi- (c) Axial section.
sphere.

Figure 12: Coronal, sagittal and axial sections of the probabilistic atlas. Shape variability is superimposed in
red (see text for more details). Images are shown using the radiological convention, i.e. patient’s left side is on
the right side and vice-versa.

In the event that bad matches occur during registration, the model would reflect this by having larger
variances in deformation and/or intensity. The image obtained and the corresponding statistics regarding
deformations and intensities would not reflect normal variations, but to a certain extent reflect normal variations
within our registration framework. It is our belief that the models obtained in this paper are in a great deal
linked to our modeling of the registration problem. Though cross-validation of registration techniques results
reports mutually coherent matches [36], average variations of 3mm to 4mm have been observed in this study.
These figures are too large to give significance to our models’ statistics using other registration methods.

Although beyond the scope of this article, we present in Figure 12 preliminary results of a probabilistic atlas
built using the information gathered during the construction of M;;. This figure presents slices of the average
model on which information about shape variability is superimposed in red. This variability is computed as
follows: we calculate the voxelwise covariance matrix of the residual deformation fields R; obtained from the
registration of each element of S; with M;;. The determinant, or the product of the eigenvalues, of each of
these matrices is computed. The resulting values can be interpreted as probabilistic volumes (See [37] for more
detailed geometric interpretations of this measure). Hence, for a given voxel, a large volume corresponds to a
large variability of the positions of corresponding voxels found in S;. This volume has been normalized and
converted to a red intensity value added to the MR image.

We remind the reader that this probabilistic atlas was built using only five normal subjects, and hence does
not reflect the extent of normal variability that is to be found in a larger population. Nonetheless, we wish to
point out that high variability was found in the cortical region, which is known to present large shape variations.
There also seems to be more variability in the left hemisphere than in the right one.

We are presently working on the evaluation of the number of subjects needed to fully represent the extent
of variations in a normal population. Further interpretations of the corresponding probabilistic atlas will follow
this work.
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5 Conclusion

We have presented a completely automatic method to build average anatomical models of the human brain
using a set of MR images. To this end, brain shape variations between subjects were identified. Differences due
to linear transformations were excluded, resulting in the quantification of pure morphological differences. The
result is an average intensity and shape image representative of the characteristics of the image set elements
used for the construction. Furthermore, we have shown that this model corresponds to the centroid of the image
set and does not depend on the reference image used for its construction. This stability is very important to
ensure the efficiency and usefulness of our method. The coupling of such a high quality model with statistical
information regarding normal deformations, such as the one presented in Figure 12 or in the work of Thomp-
son & Toga [18] or the Washington/Brown group [14], could enrich the significance of statistical tests by adding
intensity information, useful for example in detecting gliosis in T2 MR, images, and would supply an important
tool in the analysis of normal anatomy.
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A Forward Resampling

Average Intensity Average Model

.

Figure 13: Forward resampling with bilinear distribution for two voxels.

Because of the way the average deformation is computed, we only have correspondences going from the
average intensity to the average model, M (R(z)) = I(x). To be able to resample the average intensity using a

customary interpolation method, the inverse deformation R lis required in order to have a relation of the form
M(z) = I(R "(x)). Instead of tackling the problem of inverting a vector field or of finding explicitly bijective
deformation functions, we chose to use a different kind of resampling strategy. For this purpose, “forward
resampling” involving trilinear distribution was used (see Figure 13). The intensity of each voxel of the average
intensity image is distributed to the neighbors of its location in the average model according to the same weights
found for trilinear interpolation. As in linear interpolation where the sum of weights sums to unity, each voxel
of the average model needs to be normalized according to the sum of the weights.

This kind of resampling may produce holes which can be filled using gray-scale image mathematical mor-
phology [38], a process intended for image reconstruction. This “hole” effect did not occur in our experiments
and mathematical morphology was not used.
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