
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2005; 10: 255–272
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spip.228

Process Modeling Across
the Web Information
Infrastructure

Research Section
Chris Jensen*,† and Walt Scacchi
Institute for Software Research, University of California-Irvine, Irvine,
CA, USA

Web-based open source software development (OSSD) project communities provide interesting
and unique opportunities for software process modeling and simulation. While most studies
focus on analyzing processes in a single organization, we focus on modeling software
development processes both within and across three distinct but related OSSD project
communities: Mozilla, a Web artifact consumer; the Apache HTTP server that handles the
transactions of Web artifacts to consumers such as the Mozilla browser; and NetBeans, a Java-
based integrated development environment (IDE) for creating Web artifacts and application
systems. In this article, we look at the process relationships within and between these
communities as components of a Web information infrastructure. We employ expressive and
comparative techniques for modeling such processes that facilitate and enhance understanding
of the software development techniques utilized by their respective communities and the
collective infrastructure in creating them. Copyright  2005 John Wiley & Sons, Ltd.

KEY WORDS: interorganizational process modeling; process collaboration; process conflict; interorganizational interaction; process
integration; open source software development; Apache; Mozilla; NetBeans

1. INTRODUCTION

Previous studies of interorganizational processes
focus on devising languages to represent work-
flows across organizational boundaries (Rasch and
Hansen 1997, Lenz and Oberweis 2001, Shen
and Liu 2001) and verification of workflow nets
(van der Aalst 2002b). Little work (van der Aalst
2002a) demonstrates real-life interorganizational
processes. In contrast, this article contributes a
framework for discovering, analyzing, and mod-
eling interorganizational software processes within

∗ Correspondence to: Chris Jensen, Institute for Software Rese-
arch, University of California-Irvine, Irvine, CA, USA 92697-3425
†E-mail: cjensen@ics.uci.edu
Contract/grant sponsor: US National Science Foundation;
contract/grant number: 0083075; 0205679; 0205724; 0350754

Copyright  2005 John Wiley & Sons, Ltd.

a multiproject software ecosystem. The ecosystem
selected is a network of organizations responsi-
ble for core of the Web information infrastructure.
Although nonopen source organizations are also
members of this ecosystem, our focus is on open
source software development (OSSD) organiza-
tions. Large-scale geographically distributed soft-
ware development projects, such as OSSD project
communities, present challenging process prob-
lems. The Apache, Mozilla, and NetBeans1 OSSD
communities collectively have millions of estimated
users, and tens of thousands of community par-
ticipants contributing in one fashion or another.
Such magnitudes would be difficult for most closed

1 The Eclipse project affiliated with IBM is similar in many ways
to the NetBeans project, in that both efforts are very large OSS
projects developing Java-based IDEs. But for our study, we
selected the NetBeans project.

Research Section C. Jensen and W. Scacchi

source organizations to manage. Yet, these three
communities have proven extremely successful at
it. Further, they have done so in a delicate ecosys-
tem that includes evolving Web standards, data
and software repositories, and tools. These serve
as a framework for integrating each community’s
tools together. Therefore, as the components of this
framework coevolve, each community must syn-
chronize, (re)integrate, and stabilize its position
within the process space.

In this article, we look at processes within and
across three related OSSD project communities (cf.
Scacchi 2002). In our efforts to model software
development processes on both community and
infrastructure levels, we have used a variety
of techniques. These include detailed narrative
models of processes, semistructured hyperlinked
models, formal computational process models, and
a reenactment simulator (Scacchi et al. 2004), all of
which serve as input for other process engineering
activities (Scacchi and Mi 1997, Noll and Scacchi
2001). Further, all of our process models are
hypermedia artifacts that, when submitted back
to the communities, may be consumed by the
processes they describe.

From here, we will set the stage for our investi-
gation with a discussion of each process modeled
independently before examining the infrastructure
as a whole in order to examine intercommunity
process modeling issues and outcomes as we found
them. Finally, we look at the modeling techniques
themselves, how they may be used to guide devel-
opers, and how they can serve as a basis for process
simulation and other process activities.

2. MODELING PROCESSES WITHIN WEB
INFORMATION INFRASTRUCTURE
PROJECTS

The Apache Web server, Mozilla Web browser,
and NetBeans integrated development environ-
ment (IDE) together form a Web information infras-
tructure for developing and deploying Web-based
software applications, content, and services (Field-
ing et al. 1998, Mockus et al. 2002). However, as
the projects that develop each of these three open
source software systems operate as virtual enter-
prises (Noll and Scacchi 1999), we have no basis
to assume that their development process activi-
ties, roles, or tools are identical or common, nor

how or where they interact. Thus, in order for these
projects, and other OSSD projects like them, to col-
lectively produce and sustain a viable global Web
information infrastructure, they must be able at
some point to synchronize and stabilize their pro-
cesses, their process activities, shared artifacts, and
targeted software releases (cf. Cusumano and Yoffie
1999).

Before we can understand software develop-
ment processes across each of these three Web
information infrastructure components, we must
understand them individually. As previously intro-
duced (Jensen and Scacchi 2003b, Scacchi et al. 2004),
we address three process modeling techniques here
as a sampling of those we have applied in our study.
These are the rich hypermedia, process flow graphs,
and formal modeling. Formal modeling in turn sup-
ports tools for simulated reenactment of software
processes, which is used to preview, interactively
walkthrough, validate (Atkinson and Noll 2003),
and support process training on demand (Scacchi
and Mi 1997). Additional details on these techniques
can be found elsewhere (Scacchi et al. 2004).

This section seeks to address both of these issues.
We start by presenting a brief overview of the quality
assurance (QA) process in the Mozilla Web browser
release cycle, modeling it as a rich hypermedia,
followed by the Apache release process, modeled as
a flow graph, and lastly, the NetBeans requirements
and release process, which we model formally and
reenact. For brevity, we will skip presenting the
rich hypermedia, flow graphs, and formal models
for each process; however, these models are detailed
elsewhere (Ata et al. 2002, Carder et al. 2002, Jensen
and Scacchi 2003b, Oza et al. 2002).

2.1. Rich Hypermedia Modeling with the Mozilla
Quality Assurance Process

Building on and extending the rich picture concept
described by Monk and Howard (1998), we created
a rich hypermedia variant as an informal model of
software development processes in each of Mozilla,
Apache, and NetBeans projects. These models show
the relationships between tools, agents, their devel-
opment concerns (i.e. nonfunctional requirements),
and activities that compose the overall process,
and its functional requirements. While Monk and
Howard propose a flat, static model, our hyper-
media is interactive, deep, and navigational (Noll
and Scacchi 2001), including process enactment

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

256

Research Section Process Modeling Across the Web

scenarios described and hyperlinked as use cases.
Use cases are a known technique compatible with
the Unified Modeling Language (UML) for repre-
senting user-system process enactment scenarios
(Fowler 2000). The hypermedia artifacts are also
annotated with detailed descriptions of each tool,
agent, and concern. Each of these process objects
is hyperlinked to its description. Descriptions can,
in turn, be linked to other data or hypermedia
resources. In this way, the modeler can define the
scope of the rich hypermedia to include as lit-
tle or as much information as the need requires.
The rich hypermedia provides a quickly discern-
able intuition of the process without the burden
of formalization. A rich hypermedia model for the
Mozilla quality assurance process is shown as an
image map in Figure 1.

The daily Mozilla QA cycle (Carder et al. 2002)
begins with the closing of the source tree to
submissions. After this, the ‘code sheriff’ and system

build engineer create a build of the source code tree
using the Mozilla Tinderbox build tool. If build
errors are present, the sheriff and build engineer
contact the ‘on the hook’ developers, reviewers, and
super reviewers responsible for the build source,
then they are called on via e-mail notifications to
correct the defects. When the defect is corrected or
the problematic source code is removed, the source
is rebuilt. This process iterates until all build errors
are corrected, and the compiled and built source
and executable image is ready for the next process
step.

The build results (including the executable soft-
ware image) are placed on the community FTP
server and the ‘smoke test’ coordinator issues a call
for developers and volunteer testers via the commu-
nity Internet relay chat (IRC) channel to download
and evaluate the build results (e.g. execute the image
on a test platform). After this, developers partici-
pating as QA contacts, QA owners, and volunteer

Figure 1. Mozilla quality assurance process rich hypermedia (cf. Carder et al. 2002)

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

257

Research Section C. Jensen and W. Scacchi

testers will announce what they plan to test, down-
load, and install the build and perform a series
of smoke tests, security-specific (SSL) smoke tests,
or less critical ‘general tests’ (periodic regression
checkups), based on bug reports submitted to the
bug repository. Testers note and discuss the results
over the IRC channel. Critical bugs are identified
and assigned to the on-the-hook developers to be
patched, whereupon the source is retested. Noncrit-
ical bugs are set aside until another tester confirms
them, uploaded to the Bugzilla defect repository,
and further dealt with at a later time. Once all critical
defects are corrected, the sheriff and build engineer
reopen the source tree to further development and
source submission.

When first detected, defects are entered into
Bugzilla as unconfirmed, noting their severity,
component, and platform where the defect was
observed. A member of the quality assurance
team (either a QA contact or owner) must then
research the defect and certify it as a new defect or
marking it as a duplicate of another known defect.
Patches are then created by developers during the
course of development or by drivers as the release
date approaches to ensure the overall quality of
the product, and the status revised to reflect the
changes.

2.2. Process Flow Graph Modeling with the
Apache HTTP Server Release Process

The process flow graph illustrates the flow of
resources (development artifacts) through a path
of interaction. The interaction accounts for process
agents using tools that manipulate the resources
through performance of tool-based activities. This
semistructured workflow representation provides a
partial ordering of the process fragments and allows
us to tease out dependencies between artifacts and
activities seen in the rich hypermedia. It also offers
an idea of which artifacts and activities are most
vital to development, by measuring the fan-in and
fan-out of each.

These artifacts are likely to be the cause of
bottlenecks in the development process when they
are found to be inadequate, incomplete, or faulty
results of prior development activities. Borrowing
from Web modeling terminology, an artifact that
is a hub or nexus for several activities will hold
up development until it is completed or found
satisfactory. Likewise, an artifact that is a product of

several inputs inhibits activities that require it until
it is ready for further processing. Additionally, we
can also detect cycles of development (re)work,
such as in the stabilization process and refining the
software build release plan.

While these insights can be captured in other
representational forms, this diagram, like the rich
hypermedia, provides an overall representation
of the context for process activities without the
weight of the details of more formal models.
Process entities shown in the flow graph may
also be hyperlinked to resources in the community
Web to provide interactive richness, as well as to
enable process inspection activities. Figure 2 shows
a process flow graph for the Apache HTTPD Server
project’s release process, where the boxes denote
process activities and ellipses denote the resources
or artifacts flowing through the process. Further,
software developer roles are associated with each
process activity.

As shown by this flow graph, in the Apache
release process (Ata et al. 2002, Erenkrantz 2003),
anyone can submit features or bug fixes in the form
of patches to the server project. To be included in
the project source repository, a ‘committer’ who has
write access to the repository must upload the code.
These patches are uploaded to the development
branch of the repository. It may then be promoted to
the stable release branch by a vote of the committers.
While any developer can vote on an item, only the
votes of primary author, committers, and members
of the project management committee are binding
(Fielding 1999). To be promoted, there must be at
least three binding positive votes, and no vetoes.
Further, for a release, there must be a majority
approval (that is, at least three binding positive
votes, and more positive than negative votes).
Granting a developer committer status requires
a complete consensus of the project management
committee.

When a committer decides to create a release,
she/he typically sends an announcement to fellow
developers outlining the release plan, and stating
who the release manager will be. Acceptance of the
release plan requires a ‘lazy consensus’ approval of
the committers2. As development moves towards
completion, the release manager determines which
features are fit for inclusion in the release and

2 http://httpd.apache.org/dev/guidelines.html

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

258

Research Section Process Modeling Across the Web

Figure 2. Apache HTTP server release process flow graph (cf. Ata et al. 2002)

which are not. Those that pass are compiled
into an alpha build, which is made available on
the community Web site and announced on the
developer mailing lists. Developers and committers
are then called upon to test the build on their own
servers manually or through use of the automated
Apache server test suite. Discovered defects are
sent to the community development e-mail list (and
potentially submitted to Bugzilla) and patched by
developers and subsequently subjected to the patch
review process. In the stable source branch, releases
that pass the committer vote usually skip the beta
and release candidate phase and proceed to general
availability.

When the release manager is adequately satisfied
with quality of the source in the development
branch, she/he will declare the release suitable
for beta or final release candidacy. When she/he
announces this, the builds are made available on
the main page of the community Web and adopted
by a wider audience, for continued testing and

patching. At some point, the release manager deems
the source fit for general public use and creates
a general availability build release, announcing it
on the development, committer, and tester mailing
lists. This build is then voted on by the committers
and tested on the Apache community Web site. If
there is a simple majority of approval and at least
three positive votes, the release is declared final.
The result is announced via the community Web
and mailing lists, and then released for distribution
via a system of mirrored Web sites.

2.3. Formal Modeling and Reenactment
Simulation with the NetBeans Requirements and
Release Process

We developed formal models of software processes
following our preexisting process meta-model (Mi
and Scacchi 1996) using Protege-2000 knowledge
editing environment (Georgas 2002, Noy et al. 2001).
The resulting models have the form of a semantic

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

259

Research Section C. Jensen and W. Scacchi

web/hypertext (Noll and Scacchi 2001). The work
done here is identifying instances for all the
process meta-model components: agents, resources,
tools, actions, and activity control flows, which
we represent using the Protege-2000 tool. Once a
process instance is input, it may be exported to an
XML format, a graphical representation using the
OntoViz tool, or to our process modeling language,
PML (Noll and Scacchi 2001).

Protege-2000’s editing and visualization facili-
ties provide for a multitude of alternative views
and visual rendering of the modeled process com-
ponents, as well as their interrelationships and
dependencies. As a result, the graphical rendering
of a process model or process object-relation class
views can at times be more intuitive than a coded

textual format. Figure 3 shows a graphic represen-
tation of an underlying PML model of the NetBeans
Requirements and Release process that has been
interpreted for visual rendering and layout of its
relational interdependencies. However, the textual
PML representation can be used as input to other
process engineering tools such as those supporting
process enactment or process improvement.

The first step in the NetBeans requirements and
release process (Oza et al. 2002, Jensen and Scac-
chi 2003b) is to establish a release manager, a set
of development milestones (with estimated com-
pletion dates), and a central theme for the release.
The theme is selected by the community mem-
bers who have taken charge of the release, with
the goal of overcoming serious deficiencies in the

Figure 3. Visual rendering of the NetBeans requirements and release process formal model using Protégé-2000

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

260

Research Section Process Modeling Across the Web

product (e.g. quality, performance, and usability),
in addition to new features and corrective mainte-
nance planned by module teams. Historically, most
releases have been led by members employed by
Sun Microsystems, which provides development
and financial support for the community, though
volunteer releases also occur. On the basis of this,
and in conjunction with input from the feature
request reports, lead developers will draft a release
plan, providing the milestones, target dates, and fea-
tures to be implemented in the upcoming release.
After review and revision by the community, the
plan is accepted and developers are asked to vol-
unteer to complete the tasks outlined therein and
a volunteer is sought to act as release manager
and coordinate efforts of community. Usually, a
developer will either volunteer or be volunteered
for the role via the mailing list by and accepts
the nomination or is accepted through community
consensus.

All creative development must be completed
by the feature freeze milestone date specified in
the release proposal, which signals the end of
the requirements subprocess and the beginning
of the stabilization phase, the release subprocess.
At this point, only bug fixes may be submitted to
the source tree. The stabilization phase consists
of a build-test-debug cycle. Nightly builds are
generated by a series of automated build scripts
and subsequently subjected to a series of automated
test scripts, the results of which are posted to
the community Web site. Additionally, the quality
assurance team performs a series of automated and
manual testing every few weeks, as part of the Q-
Build program with the aim of ensuring that source
code submitted regularly meets reasonable quality
standards. Defects discovered during testing are
then recorded in the IssueZilla issue repository and
subsequently corrected. When the release branch is
believed to be devoid of critical ‘show-stopping’
defects, it is labeled a release candidate. If a
week passes without any further showstoppers, the
release candidate is declared final; else the defect
is corrected and another release candidate is put
forth. In addition to the formal depiction given in
Figure 3, the NetBeans requirements and release
process has also been reenacted. The motivation for
this is as follows.

Process analysis seeks to identify potential pit-
falls that can be discovered before or after their
deployment or adoption in a project. Process model

verifiers check static semantic properties such as
whether a resource required downstream is pro-
vided by some upstream process activity (Atkinson
and Noll 2003). Process simulators provide dynamic
analysis capabilities through enactment or reenact-
ment of processes, which are especially useful when
validating, modifying, or redesigning a process, as
well as for providing on-demand training (Scacchi
and Mi 1997, Scacchi 2000, Atkinson and Noll 2003).

Our process enactment simulator (Choi and Scac-
chi 2001, Noll and Scacchi 2001) interactively serves
a series of Web pages, or links to multiple alternative
pages, according to the control flow expressed in the
PML model of the process flow graph. This simula-
tor allows process performers and other community
members to simulate enacting the process through
a step-by-step interactive walkthrough. With such a
reenactment simulator, developers within a project
may be able to exercise, critique, and identify
improvement opportunities within processes that
can be observed at a distance. It also provides the
potential for a more easy transition from the sim-
ulator to live process enactment transactions on
the community Web site.3 In doing so, we have
been able to detect processes whose workflows
may be ‘hidden’, unseen, or unfamiliar to project
participants with little/no involvement with the
process. Similar analyses can also detect process
flow segments that are unduly lengthy or otherwise
suboptimal, which may serve as good candidates
for process improvement or redesign. It allows for
viewing and detection of the effects of duplicated
work by participants that may be unaware of such
duplication. Figure 4 thus displays a screen shot
of one step during the reenactment of the Net-
Beans requirements and release process (Jensen
and Scacchi 2003b). This display shows the pro-
cess decomposition on the left, the enactment step,
and corresponding link traversal options next, and
then the enacted step’s invocation on the right.

With the above insight into the development
processes executing within Mozilla, Apache, and
NetBeans, we can now explore development pro-
cesses between them.

3 For example, the NetBeans.org project posted a link to our
ProSim’03 Workshop article (Jensen and Scacchi 2003) where
some of these ideas were initially proposed and evaluated. See
http://www.netbeans.org/community/articles/UCI papers.
html.

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

261

Research Section C. Jensen and W. Scacchi

sequence Set Release Date {

 ...
iteration Update IssueZilla {
 action Report Issues To IssueZilla {
 requires { Test results }
 provides { IssueZilla entry }
 tool { Web browser }
 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
 script {

Navigate to IssueZilla

Query IssueZilla

Enter issue } }

...

The PML fragment (excerpt) that specifies a process step for the action, “Report Issues to
IssueZilla”, corresponding to its reenactment below.

Figure 4. A step in the simulated process reenactment of the NetBeans requirements and release process (cf. Noll and
Scacchi 2001)

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

262

Research Section Process Modeling Across the Web

3. MODELING PROCESSES ACROSS WEB
INFORMATION INFRASTRUCTURE
PROJECTS

We would like to be able to model interorga-
nizational processes using the same techniques
we use to model intraorganizational processes:
top–down modeling followed by bottom–up dis-
covery. In intraorganizational process modeling,
we often know a priori the types of activities, arti-
facts, tools, and roles we are likely to see (Jensen
and Scacchi 2003b). Subsequently, we can create
a reference model describing how to classify their
instances (Jensen and Scacchi 2003a). This guides
us in our search for process data within the soft-
ware development artifacts available for study. In
modeling interorganizational processes used across
projects in the Web information infrastructure, we
have no such reference model. Instead, we first
step back and examine the types of relationships
that exist between organizations. Management and
information systems research give us tools to char-
acterize the types and extent of interorganizational
processes. We show how to identify stakehold-
ers (boundary agents) and objects of interaction
(boundary objects), and their concerns, modeling
them as a rich hypermedia. Next, we examine com-
munication processes between organizations, as are
modeled in flow diagrams, as described previously.
These can be then modeled formally, and reenacted

via simulation. Finally, we apply this strategy in a
detailed example.

3.1. Characterizing Interoperation Among Web
Information Infrastructure Projects

Successful interoperation between components of
a Web information infrastructure depends on the
relationships between the organizations of which
it is comprised. Traditional management literature
(Bluedorn et al. 1994) identifies six mechanisms of
interorganizational interoperation or integration,
which entail loose or tight coupling. These mech-
anisms include joint ventures, network structures,
federation, cooperative agreements, trade associa-
tions, and interlocking directorates (see Table 1).
Though originally devised to describe corporate
and government interorganizational relationships,
our choice is to apply them to provide an over-
all characterization of a software ecosystem for, in
this case, the Web infrastructure. Unsurprisingly,
the degree of coupling carries implications for the
degree of process integration between these orga-
nizations. Alter (1999) defines degrees of process
integration (ranging from loose to tight coupling)
to include sharing a common culture, utilizing
common standards, information sharing, coordi-
nation, and finally collaboration, as described in
Table 2. Together, these give us a basic frame-
work for examining the types of processes we can

Table 1. Interorganizational synchronization and stabilization mechanisms (after Bluedorn et al. 1994)

Interorganizational
form

Example Tightness of coupling

Joint venture Apache, GNU foundation members Tightly coupled. Two or more firms form a separate entity for
a variety of strategic purposes (e.g. market power, efficiency,
transfer of learning).

Network structure System plug-in developers Tightly coupled. A hub and wheel configuration with a focal
firm at the hub organizing interdependencies of a complex
array of firms.

Federation Mozilla ‘on-the-hook’ developers Tightly coupled. Established to manage and coordinate the
activities of affiliated members (common in hospitals). The
federation controls all or part of the management activities of
the members.

Cooperative agreements Meta-communities (e.g. JTC) Loosely coupled. Arrangements between two or more firms
that have strategic purposes, but do not have shared
ownership.

Trade associations Tool integration Loosely coupled. Distribute trade statistics, analyze industry
trends, offer legal and technical advice, and provide a
platform for collective lobbying.

Interlocking directorates NetBeans governance/community
management

Loosely coupled. Information sharing, expertise and enhanced
organizational reputation.

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

263

Research Section C. Jensen and W. Scacchi

Table 2. Levels of business process integration (cf. Alter 1999)

Level Example Description

Common culture OSSD motivations, development
methods

Shared understandings and beliefs

Common standards Data formats, communication
protocols

Using consistent terminology and procedures to make
business processes easier to maintain and interface

Information sharing OSSD Web repositories Access to each other’s data by business processes that
operate independently

Coordination Meta-communities, tool integration,
plug-in development

Negotiation and exchange of messages permitting
separate, but interdependent, processes to respond to
each other’s needs and limitations

Collaboration NetBeans, Mozilla spell-checking
module development

Such strong interdependence that the unique identity of
separate processes begins to disappear

expect to find in the Web infrastructure. Further,
they provide the constructs of the rich hyperme-
dia: interacting members of the Web infrastructure
(stakeholders), their relationships, and the motiva-
tions of these relationships (concerns). Identification
of these stakeholders, relationships, and concerns
requires analysis of the interprocess communica-
tion among infrastructure projects. We address this
next.

3.2. Interprocess Communication Among Web
Information Infrastructure Projects

Communication between project communities pro-
vides opportunities both for integration and sources
of conflict between them (Elliott and Scacchi 2003,
Jensen and Scacchi 2004). We will say communi-
cation is integrative if it identifies compatibilities
or potential compatibilities between development
projects. From a process perspective, integrative
communication enables external stakeholders to
continue following their internal process as normal,
perhaps with a small degree of accommodation.
They also reinforce infrastructural processes since
they do not require changes in the interoperations
between communities. If the degree of accom-
modation or adaptation becomes too great, this
can precipitate conflictive communication between
project communities. Conflict may occur due to
changes in tools or technologies shared between
them, or in contentious views/beliefs for how best
to structure or implement new functionality or data
representations across projects. These conflicts may
require extensive process articulation to adapt (cf.
Scacchi and Mi 1997). Sections 4.2.1 and 4.2.2 take a
closer look at process integration and conflict, fol-
lowed by a discussion of how these processes are
discovered and modeled.

3.2.1. Process Integration
Process integration can be direct and explicit, as in
the case where NetBeans and Mozilla community
members collaborated on a spell-checking module.
But, it can also be indirect and implicit. For Mozilla’s
browser to correctly present Web artifacts, it must
implement both protocols for processing Web trans-
actions to the Apache server, and also standards for
displaying content of the document or object types
generated by NetBeans IDE. Similarly, the NetBeans
IDE must produce artifacts and applications forms
that artifact consumers, including Mozilla’s browser
and Apache’s server, expect. The Apache server, for
its part, must comply with the standard transac-
tion protocol the Mozilla browser anticipates (e.g.
HTTP/1.1) and provide Web application module
support required by applications produced by the
NetBeans IDE. Although these communities may
not have explicitly negotiated and agreed on com-
mon data standards to be used between them, they
have individually implemented standards provided
and maintained by outside parties – particularly,
the W3C, the World Wide Web Consortium.

These standards can be viewed as objects of inter-
action or boundary objects4 (Star 1989, Pawlowski
et al. 2000). Following Alter’s (1999) classification,
shared standards connote a low degree of process
interaction between organizations in the Web infras-
tructure. However, other boundary objects exist, as
shown in Table 3. Within OSSD project commu-
nities of the Web infrastructure, boundary objects
include (a) shared beliefs and culture (Elliott and
Scacchi 2003), (b) community infrastructure tools,

4 Boundary objects are those that inhabit and span several
communities of practice, as well as satisfy the informational
requirements of each community (Star 1989).

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

264

Research Section Process Modeling Across the Web

Table 3. Boundary objects of the Web information infrastructure

Object type Example

Community infrastructures

Community culture/bylaws Source licenses, governance style, community organizational composition
Community infrastructure tools Defect repositories (e.g. Bugzilla, IssueZilla), collaborative development tools

(e.g. WIKI, CVS, mail list managers)
Development processes Defect discovery/submission procedures, source check-in procedures

Product infrastructure
Product infrastructure tools Plug-ins, modules, libraries
Development artifacts/software informalisms Software documentation, how-to guides, design styles (e.g. P2P, client-server)
Protocols HTTP, RPCs
Shared data formats HTML, CGI, XML

such as defect repositories produced by other affil-
iated organizations (Halloran and Scherlis 2002),
and (c) development processes. Additional bound-
ary objects are found in the product infrastructure
(e.g. applications program interfaces and remote
procedure calls that enable data sharing and remote
invocation of software modules across systems).
These may take the form of software application
plug-ins or modules. The Java-based Tomcat Web
Server, created by the Apache community and
integrated into the NetBeans IDE, is one exam-
ple. They may share or coordinate development
artifacts. And, as discussed, they may implement
or utilize common data communication protocols
and data representation formats that enable reliable
communication between their tools. Although no
structure is implied by the modeling paradigm, our
rich hypermedia has traditionally featured devel-
opment tools at the center of intraorganizational
process models. In modeling the Web informa-
tion infrastructure, we have expanded our view to
include other types of boundary objects, as shown
in Figure 5a.

While certain boundary objects indicate a degree
of interaction between processes in the Web infras-
tructure, it is yet unclear how this interaction plays
out. As long as each member of the infrastructure
adheres to these standards, they may choose to oper-
ate independently, following their individual pro-
cesses as usual. However, the Web infrastructure is
not a static network of interacting objects or a single
coherent virtual enterprise. Commonly held stan-
dards change to meet evolving needs. Relationships
between interacting software system developed by
otherwise independent OSSD projects help adapt
to infrastructure changes. Such relationships may
require tighter coupling at the level of integration

or explicit collaboration between organizational
processes. By synchronizing their communication
protocols and common data representations with
one another through the process integration mecha-
nisms of their choice, they stabilize the network.
When an individual community varies from a
standard or implements an update/revision to an
existing standard, the other communities act to sup-
port it or choose to reject it. Likewise, defects in data
representations or operations of one Web infras-
tructure software system can cause breakdowns or
necessitate workarounds by the others. We look at
the causes and negotiations of these conflicts next.

3.2.2. Process Conflict
Process conflict can precipitate or follow from pro-
cess breakdown, disarticulation, or disintegration.
Conflictive activities often arise from organiza-
tions competing for market share and control of
the technical direction of infrastructure and shared
technologies. It also arises from common and less
belligerent activities, such as introducing a new ver-
sion of a tool or database that other organizations
depend on, requiring massive effort to incorporate.
In these cases, the organization placed into conflict
may simply choose to reject adopting the new tool
or technology alterations, possibly selecting a suit-
able replacement tool/technology if the current one
is no longer viable. This path was chosen by the
shareware/open source image editing community
infrastructure due to patent conflicts with the GIF
image format in the 1990s, leading to the creation of
the portable network graphics (PNG) image format
standard5.

5 http://cloanto.com/users/mcb/19950127giflzw.html

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

265

Research Section C. Jensen and W. Scacchi

(a)

(b)

Figure 5. (a) Rich hypermedia modeling of processes spanning web information infrastructure projects.
(b) Intercommunity interprocesses communication flow spanning Web information infrastructure projects. (c) Formal
PML, (d) and reenactment models of processes spanning Web information infrastructure projects

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

266

Research Section Process Modeling Across the Web

Process Web Information Infrastructure Evolution (excerpt)

...
Sequence Mozilla Processes{ Action Release Bugzilla Defect Repository{ ...} ... }

Sequence Tigris.org Processes{ Sequence Create IssueZilla{

Action Download Bugzilla Sources{ ... }
Iteration Modify Bugzilla/IssueZilla Sources{ ... }
Action Release IssueZilla Issue Repository{...}

}...
}...
Sequence NetBeans Processes{ ...

Sequence Deploy IssueZilla issue repository{ ... } ...
Sequence NetBeans Development Process{

Action Submit Issues to IssueZilla{ ... }
Action Detect Inefficiency/Problems with IssueZilla{

Requires { Issue reports }
Provides { Problem description }
Agents { NetBeans developers }
Tools { HTTP Web browser implementation, IssueZilla deployment }

Script {
Developers notice that IssueZilla
cannot track bugs across versions

Developers
bring up the matter on community mailing lists/message forum }

}
Action Determine Possible Workarounds/Solutions{

Requires { Problem description }
Provides { List of workarounds/solutions }
Agents { NetBeans developers }
Tools { HTTP Web browser implementation, IssueZilla deployment, developer, community discussion

message forums }
Script {
Discuss

workaround viability

Discuss
workaround viability } }

(d)

(c)

Figure 5. (Continued)

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

267

Research Section C. Jensen and W. Scacchi

Conflicts across OSSD projects that get resolved
are done so through collaborative means. Most
typically, this occurs through the exchange of
messages between participants (message threads)
communicated on project discussion forums or
other computer-mediated communication systems
(e-mail, chat, instant messaging, etc.). Alternatively,
an organization causing or resisting a tool or tech-
nology may succumb to pressure exerted by support
from the rest of the infrastructure. Irreconcilable dif-
ferences, if they persist and are strongly supported,
can lead to unresolved conflicts (e.g. software
updates that do not get implemented), incompat-
ibilities in the interoperating software systems, or
possibly to divisions in the infrastructure.

3.2.3. Discovering Interprocess Communication Across
Web Information Infrastructure Projects
Though instances of direct communication between
organizations within the infrastructure are visible
(e.g. NetBeans and Mozilla developers collaborating
on spell-checking module), indirect communication
appears the more prevalent method. We see it
in the form of version changelogs announcing
support (and changes in support) for tools and
technologies integrated into development. It may
also appear in defect/feature request repositories, e-
mail discourse, and community newsletters within
the respective community Web sites, in addition
to external news sources (e.g. slashdot.org and
freshmeat.org). Communities must monitor these
information sources to assess their degree of impact
and whether the impact is directly or indirectly
integrative or conflictive. NetBeans, for example,
uses the IssueZilla bug/feature request repository
developed by the Tigris community, which is, in
turn, an extension of Mozilla’s Bugzilla tool (see
Figure 5b). Detecting indirect communications and
their relationships to development process activities
can be as simple as entering community specific
terms, such as ‘Mozilla’, in the Search function
input field on the NetBeans main Web page.6

This action will search the NetBeans community
Web site for instances of artifacts (e.g. project
Web pages or forum postings) that contain the
term Mozilla. The returned search results provide
links to development artifacts or boundary objects
associated with different development releases,

6 http://www.netbeans.org/

bug reports, software module (in)compatibilities,
or external (user) functionality assessments. In
other cases, process communication can be nearly
impossible to detect if no evidence is publicly
available or is too circumstantial to validate.

3.2.4. Modeling Interprocess Communication Across
Web Information Infrastructure Projects
Synchronization and stabilization of shared arti-
facts, data representations, and operations or trans-
actions on them are required for a common informa-
tion infrastructure to be sustained. This process is
not ‘owned’ (Larsen and Klischewski 2004), located
within, or managed by a single organization or
virtual enterprise. Instead, it represents a collec-
tively shared set of activities, artifacts, and patterns
of communication that are enacted across the par-
ticipating communities. Thus, it might better be
characterized as an ill-defined, ad hoc, or one-off
boundary-spanning process that differs in form
with each enactment. Consequently, the form of
these processes is dynamic and emergent, rather
than static and recurring. Modeling such one-off
processes thus must be justified, since they occur
infrequently and do not reoccur. As such, our
approach to modeling trades off representational
detail of individual process forms, and instead
uses a more abstract, low-fidelity representation
(Atkinson et al. 2004). This is done so as to only
model (or suggest) an abstract set of relationships
of interaction, whose individual elements would be
composed anew for each enactment.

Community communication channels (i.e. recur-
ring patterns of communication of shared arti-
facts, data representations, or protocols) can be
used to connect the interprocess resources flows
between interoperating communities within the
Web infrastructure. Each channel between com-
munities connotes ad hoc processes that articulate
the interoperability or interdependence of tools and
technologies between them, as well as the boundary
objects shared between them. The Web informa-
tion infrastructure development process can there-
fore be characterized by the communication flow
that enables integration or conflict process activ-
ities between constituent projects. Figure 5b illus-
trates some of the interorganizational relationships
we have uncovered across the NetBeans, Mozilla,
and Apache organizations, spanning many of the
mechanisms of interorganizational interoperation
described by Bluedorn and associates (1994), as

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

268

Research Section Process Modeling Across the Web

well as the degrees of process integration outlined
by Alter (1999) as a low-fidelity resource flow graph.
Subsequently, these communication channels that
enable interoperation and interdependence can be
represented as a rich hypermedia, a low-fidelity
resource flow graph, or as a low-fidelity formal pro-
cess model, as shown in the examples of Figure 5. A
narrative of the NetBeans IssueZilla issue tracking
tool integration process depicted is these models
follows.

3.3. Example: NetBeans IssueZilla Integration

The NetBeans community Web site is hosted by
Sun Microsystems utilizing the commercially avail-
able collaborative development environment and
Web portal software from Collab.net. Collab.net
in turn utilizes the IssueZilla open source issue
tracking system (sometimes also called ‘issuetrack’).
Thus, the NetBeans project community has a recip-
rocal trading relationship (see Table 1) – in this
case a producer–consumer relationship – with the
Tigris.org community. Tigris.org has a similar rela-
tionship with Mozilla. As such, any changes made,
defects discovered, and documentation provided
by Tigris.org and Mozilla may provide occasion
for integration and conflict processes between Net-
Beans and the Tigris.org and Mozilla communities.
One such occasion occurred in April of 2001. Net-
Beans developers noticed an inability to track issues
across multiple versions and branches of the source
tree7. This caused interorganizational coordination
problems as they needed to know what techni-
cal problems existed in the previous version. In
response to this and other less serious imperfec-
tions of Bug/IssueZilla system, NetBeans devel-
opers were forced to come up with workarounds
until a new issue tracking system could be adopted.
These workarounds involved storing the versioning
information in heretofore-unused meta-data fields
in each bug report, and implementing a transition
plan for this new bug submission process. Unlike
integration and conflict situations that arise from
changes to the organizational network, the circum-
stances that created the need for a workaround
led to a process adaptation within NetBeans that
arose from an inability for existing network state to
innately handle the changing needs of the NetBeans

7 See: http://qa.netbeans.org/processes/bug-handling-guide-
lines.html

community. The adaptation process proceeded as
follows.

Upon realizing the inadequacy of the issue
repository, and following discussion thereof on the
mailing lists8, core developers posted an update
to the bug-handling guidelines community Web
page, announcing the nature of the problem and
possible solutions. This was followed by discussion
on the mailing lists of the desirability of the
solutions presented9. Being an open source tool
itself, some developers considered trying to modify
the IssueZilla tool; however, development on it had
ceased10, the source from Bugzilla had long been
forked11, and the only available source versions
were very complex12. In the end, the decision
was made to alter the issue submission policy to
use a previously unused field in the issue report
to store the version-specific data as a stopgap
solution, until a new defect repository was adopted.
Though the inadequacy of the issue repository was
reported in April 2001, the community still awaits
the deployment of a new issue repository. Figure 5
provides rich hypermedia, process flow graph, and
formal PML, and reenactment representations of
this process.

4. DISCUSSION

The Apache, Mozilla, and NetBeans project com-
munities are three prominent members of a larger
organizational ecosystem that constitutes the Web
infrastructure. In the space of software develop-
ment, this ecosystem forms a development domain:
the Web information infrastructure. Other promi-
nent members of this ecosystem include OpenOf-
fice.org, Tigris.org, Microsoft, IBM, the JCT, the
W3C, and the Java Community Process (JCP). The
three communities are the focus of our process mod-
eling effort because they are developing large-scale
software systems and related products through

8 http://www.netbeans.org/servlets/ReadMsg?listName=
nbdiscuss&msgId=333146
9 http://www.netbeans.org/servlets/ReadMsg?listName=
nbdev&msgId=79215
10 http://www.netbeans.org/servlets/ReadMsg?listName=
nbdiscuss&msgId=388854
11 http://www.netbeans.org/servlets/ReadMsg?listName=
nbdiscuss&msgId=389086
12 http://www.netbeans.org/servlets/ReadMsg?listName=
nbdiscuss&msgId=331896

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

269

Research Section C. Jensen and W. Scacchi

complex processes that integrate efforts of tens of
thousands of developers with millions of users. At
the same time, the ecosystem is not static. The com-
munities, and different OSSD projects within them,
rise and fade from prominence. As they increase
in mass (membership) and interconnectivity, they
create a sense of both gravity and inertia around
them, and other organizations may seek integra-
tive relationships. While closed source projects tend
to enjoy tightly coupled integration with relatively
few counterparts, OSSD communities tend towards
loosely coupled interoperability with many coun-
terparts. The effect of this is that there are likely
many more organizations impinging on the ecosys-
tem with more complex, but weaker, bindings than
those of proprietary system relationship networks,
which may well be sparser and rely on more stable
ties enforce through contractual arrangements or
partnerships.

5. CONCLUSION

In this article, we described techniques and issues
in modeling software processes used within three
large and interdependent open source software
development communities. The software devel-
oped in these communities form an information
infrastructure for creating, serving, and consuming
Web artifacts. We described an approach to mod-
eling software development processes within and
across these communities, as well as issues and
trade-offs that arise along the way. Our approach
draws attention to the need to model such pro-
cesses using informal, semistructured, and formal
process modeling techniques and representations,
as well as to reenact them using a process simula-
tor. We demonstrated how development processes
within these communities interact in terms of ad
hoc or fragmentary processes across communities
through the direct or indirect flow of development
artifacts found on each community’s Web sites.
This helps show the potential for the use of Web-
based artifacts like rich hypermedia, resource flow
graphs, and semantic web/hypertext models to cap-
ture and specify the processes of OSSD projects
in the Web information infrastructure. We believe
this promotes a more comprehensive, multimodel
understanding of the processes rendered, as well as
offering insights for the application of additional
process improvement tools and techniques. The

results presented here suggest a need for additional
work in discovering, modeling, simulating, and
analyzing interorganizational software processes.
Our classification framework is rooted in a more
traditional, closed source software development
paradigm. But, are interorganizational relationships
and their associated processes changing with the
involvement of nontraditional software develop-
ment organizations? Do these factors differ across
software ecosystems? Finally, how can these lessons
be applied to devising and improving interorgani-
zational processes? Questions such as these denote
issues to be addressed in follow-on studies that seek
to model software processes that span independent
projects in different organizations. After processes?

ACKNOWLEDGEMENTS

The research described in this report is sup-
ported by grants #0083075, #0205679, #0205724, and
#0350754 from the US National Science Foundation.
No endorsement implied. Contributors to work
described in this article include Mark Ackerman at
the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign;
John Noll at Santa Clara University; John Geor-
gas, Maulik Oza, Eugen Nistor, Susan Hu, Bryce
Carder, Baolinh Le, Zhaoqi Chen, Veronica Gasca,
Chad Ata, Michele Rousseau, and Margaret Elliott
at the UCI Institute for Software Research.

REFERENCES

Alter S. 1999. Information Systems, A Management
Perspective, 3rd edn. Addison-Wesley: Reading, MA.

Ata C, Gasca V, Georgas J, Lam K, Rousseau M. 2002. The
Release Process of the Apache Software Foundation,
http://www.ics.uci.edu/∼michele/SP/index.html [10
January 2005]

Atkinson D, Noll J. 2003. Automated validation and
verification of process models. Proceedings of the 7th
International IASTED Conference on Software Engineering
and Applications, Marina del Ray, CA.

Atkinson DC, Weeks DC, Noll J. 2004. The design of
evolutionary process modeling languages. Proc. 11th
Asia-Pacific Software Engineering Conference, Busan, Korea,
587–592.

Bluedorn A, Johnson R, Cartwright D, Barringer B. 1994.
The interface and convergence of the strategic

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

270

Research Section Process Modeling Across the Web

management and organizational environment domains.
Journal of Management 20(2): 201–262.

Carder B, Le B, Chen Z. 2002. Mozilla SQA and Release
Process, http://www.ics.uci.edu/∼acarder/225/ [10
January 2005]

Choi JS, Scacchi W. 2001. Modeling and simulating
software acquisition process architectures. Journal of
Systems and Software 59(3): 343–354.

Cusumano M, Yoffie D. 1999. Software development on
internet time. Computer 32(10): 60–69.

Elliott M, Scacchi W. 2003. Free software developers
as an occupational community: resolving conflicts and
fostering collaboration. Proceedings of ACM International
Conference on Supporting Group Work, Sanibel Island, FL,
21–30.

Erenkrantz J. 2003. Release management within open
source projects. Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, Oregon, 51–55.

Fielding RT. 1999. Shared leadership in the Apache
project. Communications of the ACM 42(4): 44–45.

Fielding RT, Whitehead EJ, Anderson KM, Bolcher GF,
Oriezy P, Taylor RN. 1998. Web based development of
complex information products. Communications of the
ACM 41(8): 84–92.

Fowler M, Scott K. 2000. UML Distilled: A Brief Guide to
the Standard Object Modeling Language, 2nd edn. Addison
Wesley: Reading, MA.

Georgas J. 2002. Software Process Modeling with Protégé.
University of California: Irvine, CA. 9 June, 2002.
http://www.ics.uci.edu/∼jgeorgas/ics225/index.htm
[10 January 2005]

Halloran T, Scherlis W. 2002. High quality and open
source software practices. Proceedings of the 2nd Workshop
on Open Source Software Engineering, Orlando, FL.

Jensen C, Scacchi W. 2003a. Applying a reference
framework to open source software process discovery.
Proceedings of the First Workshop on Open Source in an
Industrial Context, Anaheim, CA, 39–42.

Jensen C, Scacchi W. 2003b. Simulating an automated
approach to discovery and modeling of open source
software development processes. Proceedings of ProSim’03
Workshop on Software Process Simulation and Modeling,
Portland, OR.

Jensen C, Scacchi W. 2004. Collaboration, leadership,
control, and conflict negotiation in the NetBeans.org
community. Proceedings of the Fourth Workshop on Open
Source Software Engineering ICSE04-OSSE04, Edinburgh,
Scotland, 48–52.

Larsen MH, Klischewski R. 2004. Process ownership chal-
lenges in IT-enabled transformation of interorganiza-
tional business processes. Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, Big
Island, Hawaii.

Lenz K, Oberweis A. 2001. Modeling interorganizational
workflows with XML nets. Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, Maui,
Hawaii, on CD.

Mi P, Scacchi W. 1996. A meta-model for formulating
knowledge-based models of software development.
Decision Support Systems 17(4): 313–330.

Mockus A, Fielding R, Herbsleb J. 2002. Two case studies
of open source software development: Apache and
Mozilla, ACM Transactions on Software Engineering and
Methodology 11(3): 1–38.

Monk A, Howard S. 1998. The rich picture: a tool for
reasoning about work context. Interactions 5(2): 21–30.

Noll J, Scacchi W. 1999. Supporting software develop-
ment in virtual enterprises. Journal of Digital Informa-
tion 1(4): http://jodi.ecs.soton.ac.uk/Articles/v01/i04/
Noll/[10 January 2005].

Noll J, Scacchi W. 2001. Specifying process-oriented
hypertext for organizational computing. Journal of
Network and Computer Applications 24(1): 39–61.

Noy NF, Sintek M, Decker S, Crubezy M, Fergerson RW,
Musen MA. 2001. Creating semantic web contents with
protégé-2000. IEEE Intelligent Systems 16(2): 60–71.

Oza M, Nistor E, Hu S, Jensen C, Scacchi W. 2002. A First
Look at the NetBeans Requirements and Release Process,
http://www.ics.uci.edu/cjensen/papers/FirstLook-
NetBeans/ [10 January 2005]

Pawlowski S, Robey D, Raven A. 2000. Supporting shared
information systems: boundary objects, communities, and
brokering. Proceedings of the Twenty First International
Conference on Information Systems, Brisbane, Queensland,
Australia.

Rasch RH, Hansen JV. 1997. A design approach
for analyzing interorganizational information systems.
Annals of Operations Research 71(1): 95–113.

Scacchi W. 2000. Understanding software process
redesign using modeling, analysis and simulation.
Software Process–Improvement and Practice 5(2/3): 183–195.

Scacchi W. 2002. Understanding the requirements
for developing open source software systems. IEE
Proceedings – Software 149(1): 24–39.

Scacchi W, Jensen C, Noll J, Elliott M. 2005. Multi-Modal
Modeling of Open Source Software Requirements Processes,

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

271

Research Section C. Jensen and W. Scacchi

Proceedings of the 1st International Conference on Open Source
Systems, Genova, Italy.

Scacchi W, Mi P. 1997. Process life cycle engineering:
a knowledge-based approach and environment.
International Journal of Intelligent Systems in Accounting,
Finance, and Management 6(1): 83–107.

Shen M, Liu D. 2001. Coordinating interorganizational
workflows based on process-views. Lecture Notes in
Computer Science 2113: 274–283.

Star SL. 1989. The structure of Ill-structured solutions:
boundary objects and heterogeneous distributed problem

solving. In Distributed Artificial Intelligence, Vol. 2.,
Gasser L, Huhns MN (eds.). Pitman: London, 37–54.

van der Aalst WMP. 2002a. Inheritance of interorga-
nizational workflows to enable business-to-business E-
commerce. Electronic Commerce Research 2(3): 195–231.

van der Aalst WMP. 2002b. Inheritance of interorgani-
zational workflows: how to agree to disagree without
loosing control? Information Technology and Management
Journal 2(3): 195–231.

Copyright  2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 255–272

272

