
HAL Id: hal-00947659
https://hal.science/hal-00947659v1

Submitted on 17 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast in-memory XPath search using compressed indexes
Diego Arroyuelo, Francisco Claude, Sebastian Maneth, Veli Mäkinen, Gonzalo

Navarro, Kim Nguyễn, Jouni Sirén, Niko Välimäki

To cite this version:
Diego Arroyuelo, Francisco Claude, Sebastian Maneth, Veli Mäkinen, Gonzalo Navarro, et al.. Fast
in-memory XPath search using compressed indexes. Software: Practice and Experience, 2015, 45 (3),
pp.399-434. �10.1002/spe.2227�. �hal-00947659�

https://hal.science/hal-00947659v1
https://hal.archives-ouvertes.fr

Fast In-Memory XPath Search using Compressed Indexes

Diego Arroyuelo1, Francisco Claude2, Sebastian Maneth3, Veli Mäkinen4,

Gonzalo Navarro5, Kim Nguyễn6, Jouni Sirén5 and Niko Välimäki7
1Departamento de Informática, Universidad Técnica Federico Santa María, Chile

2Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Chile
3 School of Informatics, University of Edinburgh, United Kingdom

4 HIIT and Department of Computer Science, University of Helsinki, Finland
5Department of Computer Science, University of Chile, Chile

6LRI, Université Paris-Sud, France
7Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Finland

Abstract

XML documents consist of text data plus structured data (mark-up). XPath allows to
query both, text and structure. Evaluating such hybrid queries is challenging. We present
a system for in-memory evaluation of XPath search queries, that is, queries with text and
structure predicates, yet without advanced features such as backward axes, arithmetics, and
joins. We show that for this query fragment, which contains Forward Core XPath, our
system, dubbed “SXSI”, outperforms existing systems by 1–3 orders of magnitude. SXSI
is based on state-of-the-art indexes for text and structure data. It combines two novelties.
On one hand, it represents the XML data in a compact indexed form, which allows it to
handle larger collections in main memory while supporting powerful search and navigation
operations over the text and the structure. On the other, it features an execution engine
that uses tree automata and cleverly chooses evaluation orders that leverage the speeds of
the respective indexes. SXSI is modular and allows seamless replacement of its indexes.
This is demonstrated through experiments with (1) a text index specialized for search of bio
sequences, and (2) a word-based text index specialized for natural language search.

1 Introduction

As increasing amounts of data are stored, transmitted, queried, and manipulated in XML, the
popularity of XPath and XQuery as query languages for semi-structured data grows. Evaluating
such XML queries efficiently is challenging, and has triggered much research. Today there is a
wealth of public and commercial XPath/XQuery engines, apart from several theoretical proposals.
In this paper we focus on XPath, which is simpler and forms the basis of XQuery. XPath query
engines can be roughly divided into two categories: sequential and indexed. In the former, which
follows a streaming approach, no preprocessing of the XML data is performed. Each query
sequentially reads the whole document, and the goal is to be as close as possible to making just
one pass over the data, while using as little main memory as possible to hold intermediate results
and data structures. Instead, the indexed approach preprocesses the XML document to build a data
structure on it, so that queries can later be evaluated without traversing the whole document.

A serious shortcoming of the indexed approach is that the index can use much more space than
the original data, and thus may have to be manipulated on disk even on moderate-sized collections
where the data itself would fit in main memory. Given the way disk performance favors sequential
accesses, an index on disk may turn out to be slower than a streaming solution, even if the data is also
stored on disk and if the index accesses only a minor part of the data. There are two approaches for
dealing with this problem: (1) to load the index only partially (by using clever clustering techniques
on disk), or (2) to use less powerful indexes that require less space. Examples of systems using
these approaches are Qizx/DB [67], MonetDB/XQuery [11], and Tauro [64].

1

Most main memory XML query systems (such as Saxon [38], Galax [21], Qizx/Open [67], etc.)
use machine pointers to represent XML data. We observe that on various well-established DOM
implementations, this representation blows up memory consumption to about 5–10 times the size
of the original XML data. As a result, they can only handle in main memory XML collections that
are much smaller than what streaming approaches could acommodate (as these require no extra data
apart from the plain XML).

In this work we aim at an index for XML that uses little extra space on top of that of the data (or
actually less, as explained soon), yet without giving up on indexing power, but resorting instead to
compact data structures. As a result, the index fits in main memory whenever the data does, thereby
solving XPath queries without any need of resorting to disk. An in-memory index should outperform
streaming approaches by far, even when the latter also operate in main memory. This is confirmed
when comparing our indexed approach against two well-known streaming XPath engines (over data
coming from a RAM-disk): GCX [40] and SPEX [59] are about 50 and 350 times, respectively,
slower than our system.

An XML document can be regarded essentially as a text collection (that is, a set of strings)
organized into a tree structure, so that the strings correspond to the text data and the tree structure
corresponds to the nesting of tags. The problem of manipulating text collections and sequences
within compressed space is now well understood [30, 25, 55], and also much work has been carried
out on compact data structures for trees [36, 54, 28, 8, 2, 61]. In this paper we show how those types
of compact data structures can be integrated into a compressed index representation for XML data,
which is able to efficiently solve XPath queries.

A feature inherited from its components is that the compressed index replaces the XML
collection, in the sense that the data (or any part of it) can be efficiently reproduced from the index
(and thus the data itself can be discarded). The result is called a self-index, as the data is inextricably
tied to its index. A self-index might thus require less space than the original data, while representing
it and at the same time offering indexed access to it.

Ours is not the first self-index for XML data. The so-called XBW index [22, 23] is a self-index
offering some XPath search support, yet this is reduced to a very limited class of queries that are
handled particularly well: “simple paths”, that is, queries of the form //t1/t2/ . . . /tk, where each ti is
a tag name. For such queries they can count the number of nodes satisfying the query in time O(k),
and can report them in time O(log1+ǫ n) per result, for any constant ǫ > 0. For those specific queries,
the XBW can be between one and two orders of magnitude faster than our system [50]. Likewise,
there have been other attempts at using compact representations of the tree and the text. An earlier
system in this line is BSBC [14]. They do not implement query evaluation on their compressed
format, but their compression results are competitive. They show how some traversal operations
used for XPath query evaluation can be sped up by using inverted indexes on the text content. Using
inverted indexes, however, limits the applicability of the approach to compress natural language
XML collections.

We aim at handling general sequences at the text nodes, and at a much more complete XPath
coverage. Our system supports an extension of Forward Core XPath [31], that is, all forward
navigational axes. The extension includes text() and the attribute axis, and the three text predicates
= (equality), contains, and starts-with. We believe this to be a highly relevant and practical
subset of XPath, and observe that a large fraction of real-world queries over datasets, such as
Medline or DBLP, fall into this subset. Backward axes, arithmetics, and semi-joins, are not yet
handled. Our system, dubbed Succinct XML Self-Index (SXSI), is the first practical and public
tool for compressed indexing of XML data. It takes little space, solves a significant portion of
XPath, and largely outperforms the best public software supporting XPath we are aware of, namely
MonetDB/XQuery [11] and Qizx/DB [67], in many cases by 1–3 orders of magnitude.

The main challenges in achieving our results have been to develop practical implementations of
compact data structures (for texts, sequences, trees, and others) that are at a theoretical stage, to
develop new compact schemes tailored to this particular problem, and to develop query processing
strategies tuned for the specific cost model that emerges from the use of these compact data
structures. The limitations of our scheme are that it is in-memory, that it is static (i.e., the index

2

must be rebuilt when the XML data changes), and that it does not handle the more sophisticated
parts of XPath nor XQuery. The first limitation is a design decision; the last two are subject of
future work.

This paper introduces the three main ingredients of SXSI: (i) the text index, (ii) the tree index,
and (iii) the query evaluator. While theoretical descriptions on the first two components can be
found elsewhere in the literature, we mention here the main aspects of these components and focus
on how they are integrated inside the practical SXSI system. For (iii) we have used tree automata,
because they describe queries at a low level, thus allowing one to integrate the calls to our indexes.
One important idea in integrating (ii) and (iii) is that of “jumping” to a descendant or following
node (without traversing the intermediate nodes). This provides large speed-ups, and allows an
“automata-optimal” evaluation [49]. Another important idea integrating (i) and (iii) is that of “true
bottom-up runs”: typically, a tree can only be accessed through its root node. In SXSI we are able
to access leaves of the document tree. This allows us to start evaluation at text nodes, a technique
that incurs large speed-ups for queries containing highly selective text predicates. Note that such
queries are very common in practice.

The main part of the experimental section is about comparing SXSI against the state-of-the-
art XPath engines MonetDB/XQuery and Qizx/DB. Certainly, this comparison must be considered
with care: MonetDB and Qizx are full-blown XQuery engines with many features (such as multi-
user and transaction support), while SXSI is a bare XPath engine. Hence, a comparison is hardly
fair. However, our comparison shows the potential of succinct data structures and automata, as
alternative core of XML databases. We use two batches of experiments: the “tree oriented” queries
of the XPathMark benchmark [26] (over XMark data [62]) and our own “text oriented” queries
(over Medline documents). Our results show that SXSI outperforms the other systems for virtually
all tested queries, in many cases by 1–3 orders of magnitude, and moreover that the running times of
SXSI are more predictable and “robust” than those of other systems. We also demonstrate SXSI’s
ability to seamlessly integrate other indexes. We replace the text index by (1) an index tailored
towards bio sequence search and (2) a word-based index tailord towards natural language search.

We extend the work of [4] by (i) detailed explanations and examples, (ii) a description of
important general optimizations used to efficiently run automata, (iii) a raw speed comparison of the
indexes against naive solutions, (iv) an experimental analysis of the impact of different optimization
techniques, and (v) an experimental comparison with alternative text indexes.

2 Basic Concepts and Model

We regard an XML document as (i) an ordered set of strings and (ii) a labeled tree. The latter is the
natural XML parse tree defined by the hierarchical tags, where the (normalized) tag name labels the
corresponding node. We add an extra root node (labeled “&”) on top of the document’s root node;
this node is needed for XPath semantics, but could also be used to hold additional information such
as the document name. Each text node is represented as a leaf labeled #. Attributes are handled as
follows in this model. Each node with attributes gets an additional single child labeled @ (at the first
child position), and for each attribute @attr=value of the node, a child labeled attr is added to its
@-node, and a leaf child labeled % to the attr-node. The text content value is then associated to that
leaf. Thus, there is exactly one string content associated to each tree leaf labeled # or %. We refer
to those strings as texts. We do not store empty texts; for instance, the XML document <a> is
stored as a single a-labeled leaf node (which is the unique child of the &-labeled root node).

Let us call T the concatenation of all the texts, each separated by a symbol “$” smaller than
any other. Let n the total number of tree nodes, Σ the alphabet of the strings, t the total number
of different tag and attribute names, and d the number of texts (that is, # or %-labeled tree leaves).
These receive text identifiers which are consecutive numbers assigned in a left-to-right parsing of
the data. In our implementation Σ is simply the set of byte values 1 to 255, and 0 will act as a special
terminator called $. This symbol occurs exactly once at the end of each text in T . Note that our
implementation can easily support also UTF-8 encoding and hence adheres to the XML standard.
Table 1 summarizes the notation.

3

Table 1: Notation.
Term Meaning
T Concatenation of all the texts in the collection
Σ Alphabet of the distinct text symbols
$ Character that terminates each text in the collection
n Number of nodes in the XML tree
t Number of different tag and attribute names in the document
d Number of texts in the XML tree (in our model, tree leaves)

Hk(S) k-th order empirical entropy of string S

1000000000000000000000000000000000

 <color>blue</color>
 <stock>40</stock>

 Soon discontinued.

</part>

 <stock>30</stock>
</part>

</parts>

XML data

blue 40 30

part part

name

@ # color

#

stock

#

stock

name

@

#

3 4 6

pen1 rubber5

%%

2
Soon discontinued

Doc[1] = 6

Doc[2] = 4

Doc[3] = 2

...

pen$Soon discontinued$blue40rubber30T =

$$$$$$0034 SbbbcddeeeeiilnnnnoooprrstuuuF =

bwtL = T =

Doc

Text collection

1
2
3
4
5
6

21 3 4 5 6

nde0r043$$nubse uupbtdbeooiocSeinrlnp = "part"

c = "color"

s = "stock"

Model

parts

&

2

1

3

4

5

6

7 8

9 11

10

12

13

14

15

16

17

P = "parts"

Tag =

Par =

<parts>
<part name="pen">

<part name="rubber">

n = "name"

Tree

& P p @ n % /% /n /@ # /# c # /# /c s # /# /s /p p @ n % /% /n /@ s # /# /s /p /P /&

(((((())) () (()) (())) (((())) (()))))

/@:

/%:

/p:
n:

/n:
c:

/c:
s:

/s:
#:

/#:
@:

%:

0000100000000000000000100000000000
0000000100000000000000000100000000
0000000000010000000000000000000000
0000000000000010000000000000000000
0000000000000001000000000001000000
0000000000000000001000000000001000
0000000001001000100000000000100000
0000000000100100010000000000010000
0001000000000000000001000000000000
0000000010000000000000000010000000
0000010000000000000000010000000000
0000001000000000000000001000000000

p:
0000000000000000000100000000000100
0010000000000000000010000000000000

P:
/P: 0000000000000000000000000000000010

0100000000000000000000000000000000

&:
/&: 0000000000000000000000000000000001

Figure 1: Our running example on representing an XML document.

To connect tree nodes and texts, we define global identifiers, which give unique numbers to both
internal and leaf nodes, in depth-first preorder. Figure 1 shows a toy document (top left) and our
model of it (top right), as well as its representation using our data structures (bottom), which serves
as a running example for the rest of the paper. In the model, the tree is formed by the solid edges,
whereas dotted edges display the connection with the set of texts. The tree contains the extra root
node (labeled &), as well as extra internal nodes (labeled #, @, and %). Note how the attributes are
handled. There are six texts, which are associated to the tree leaves and receive consecutive text
numbers (marked in italics at their right). Global identifiers are associated to each node and leaf
(drawn at their left). The conversion between tag names and symbols, drawn within the bottom-left
component, is used to translate queries and to recreate the XML data. Note that if the return and
space (indentation) characters are present precisely as shown in the “XML data” box of the figure,
then there are indeed several additional #-leaves in the tree: for instance, the whitespace (return
and space characters) after the initial <parts> and before the final </parts> give rise to two extra
texts (and therefore the parts-node in the tree has additional first and last children labeled #). In
total there are seven such whitespace texts which have been omitted in our figure for reasons of
readability.

Some notation and measures of compressibility follow, preceding a rough description of our
space complexities. The empirical k-th order entropy [51] of a sequence S over alphabet Σ,
Hk(S) ≤ log |Σ|, is a lower bound to the output size per symbol of any k-th order compressor

4

applied to S. The formula of the zero-order entropy is as follows:

H0(S) =
∑

c∈Σ

sc
s
log

s

sc
,

where sc is the number of occurrences of c in S and s = |S|. We assume log = log2 and 0 log 0 = 0
henceforth. Let Σk denote the set of words over Σ of length k. Now let SW be the set of characters
preceding the occurrences of W ∈ Σk in S, then for k > 0,

Hk(S) =
1

s

∑

W∈Σk

|SW |H0(SW).

Note 0 ≤ Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H0(S) ≤ log |Σ|.
We will build on self-indexes able of handling text collections T within |T |Hk(T) +

o(|T | log |Σ|) bits [55, 25, 47]. On the other hand, representing an unlabeled tree of n nodes requires
2n−O(log n) bits, and several representations using 2n+ o(n) bits support many tree query and
navigation operations in constant time (e.g., [61]). The labels require in principle other n log t bits.
Sequences S of length n over an alphabet of size t can be stored within n log t(1 + o(1)) bits (and
even nH0(S) + o(n log t)), so that any element S[i] can be accessed, and they can also efficiently
answer the following queries [33, 30, 25, 6]:

rankc(S, i) is the number of c’s in S[1, i];

selectc(S, j) is the position of the j-th c in S.

These are essential building blocks for more complex functionalities, as seen later.
The final space requirement of our index will include:

1. |T |Hk(T) + o(|T | log |Σ|) bits for representing the text collection T in self-indexed form.
This supports the string searches of XPath and can (slowly) reproduce any text.

2. d log d+ o(d log d) bits for the mapping between the self-index and the text identifiers, e.g.,
to determine to which text identifier a self-index position belongs, or restricting self-index
searches to some texts.

3. 2n+ o(n) bits for representing the tree structure. This supports many navigational operations
in constant time.

4. 4n log t+ 2n+ o(n) bits to represent the tags in a way that they support very fast XPath
searches.

5. 2n+ o(n) bits for mapping between tree nodes and text identifiers.

6. Optionally, |T | log |Σ| or |T |Hk(T) + o(|T | log |Σ|) bits, plus O(d log |T |
d
), to achieve faster

text extraction than in 1).

As a practical yardstick, without the extra storage of texts (Item 6) the memory consumption of
our system is about the size of the original XML file (and, being a self-index, includes it!), and with
the extra text store the memory consumption is 1–2 times the size of the original XML file.

In Section 3 we describe our representation of the set of strings, including how to obtain text
identifiers from text positions. This explains items 1, 2, and 6 above. Section 4 describes our
representation for the tree and the labels, and the way the correspondence between tree nodes and
text identifiers works. This explains items 3, 4, and 5. Section 5 describes how we process XPath
queries on top of these compact data structures. In Section 6 we give some implementation details
and empirically compare our SXSI engine with the most relevant public engines we are aware of.
We conclude in Section 7.

5

3 Text Representation

Text data in SXSI is represented as a succinct full-text self-index [55] that is generally known as the
FM-index [24]. The index supports efficient pattern matching operations that can be easily extended
to support different XPath predicates.

3.1 FM-Index and Backward Searching

Given a string T of total length |T |, from an alphabet Σ, the alphabet-friendly FM-index [25]
requires |T |Hk(T) + o(|T | log |Σ|) bits of space for any k ≤ α log|Σ| n and any constant 0 < α < 1.
The index supports counting the number of occurrences of a pattern P in O(|P | log |Σ|) time.
Locating the occurrences takes extra O(log1+ǫ |T |) time per answer, for any constant ǫ > 0.

The FM-index is based on the Burrows–Wheeler transform (BWT) of string T [15]. Assume T
ends with the special end-marker $. Let M be a matrix whose rows are all the cyclic rotations of T in
lexicographic order. The first column of M, denoted F , contains all symbols of T in lexicographic
order. The last column L of M forms a permutation of T which is the BWT string T bwt. The matrix
is only conceptual; the FM-index uses only on the T bwt string. Figure 2 illustrates the matrix M
with its first and last rows (F and T bwt) in bold. Figure 1 (bottom right) shows how this fits in our
overall scheme.

The resulting permutation from T to T bwt is reversible. There exists a simple last-to-first
mapping from symbols in T bwt to F [24]: Let C[c] be the total number of symbols in T that are
lexicographically less than c. Then the LF-mapping is defined as

LF(i) = C[T bwt[i]] + rankT bwt[i](T
bwt, i).

Note that T bwt[i] is the symbol preceding the i-th lexicographically smallest row of M. Thus, if
T bwt[i] = T [j], then T bwt[LF(i)] = T [j − 1]. The symbols of T can therefore be read in reverse
order by starting from the location i such that T bwt[i] = $, and applying LF recursively:

T [|T |] = $ = T bwt[1] T [|T | − 1] = T bwt[LF(1)] T [|T | − 2] = T bwt[LF(LF(1))]

and so on until, after |T | steps, we get the first symbol T [1]. The values C[c] can be stored in a
small array of |Σ| log |T | bits. Function rankc(T

bwt, i) can be computed in O(log |Σ|) time with a
data structure called wavelet tree which, when built on T bwt, uses only |T |Hk(T) + o(|T | log |Σ|)
bits [33, 25, 45]. In practice we opt for a Huffman-shaped wavelet tree using uncompressed bitmaps
inside [17]. Despite this achieves space |T |(H0(T) + 1)(1 + o(1)), it is much faster than the other
implementations. In particular, operations cost O(H0(T)) time on average under some conditions,
an improvement that applies to all the O(log |Σ|) worst-case complexities that follow.

Pattern matching is supported via backward searching on the BWT [24]. Given a pattern P [1,m],
the backward search starts with the range [sp, ep] = [1, |T |] of rows in M. At each step i ∈ {m,m−
1, . . . , 1} of the backward search, the range [sp, ep] is updated to match all rows of M that have
P [i,m] as a prefix. The new range [sp′, ep′] is given by sp′ = C[P [i]] + rankP [i](T

bwt, sp− 1) + 1

and ep′ = C[P [i]] + rankP [i](T
bwt, ep). Each step takes O(log |Σ|) time using the wavelet tree, and

finally ep− sp+ 1 gives the number of times P occurs in T . Figure 2 gives the pseudocode.
To find out the location of each occurrence, the text is traversed backwards from each sp ≤ i ≤ ep

(virtually, using LF on T bwt) until a sampled position is found. This is a sampling carried out
at regular text positions, so that the corresponding positions in T bwt are marked in a bitmap
Bs[1, |T |], and the text position corresponding to T bwt[i], if Bs[i] = 1, is stored in a samples array
Ps[rank1(Bs, i)]. If every l-th position of T is sampled, the extra space is O((n/l) log n) + o(n)
(including the compressed Bs [60]) and the locating takes O(l log |Σ|) time per occurrence.
Using l = Θ(log1+ǫ |T |/ log |Σ|) for any ǫ > 0 yields o(|T | log |Σ|) extra space and locating time
O(log1+ǫ |T |).

Figure 2 illustrates a sampling of T each l = 3 symbols. Assume we look for P = “n”; then
backward search finds [sp, ep] = [8, 9]. Now to locate the occurrence at 8 we see that Bs[8] =
0, Bs[LF(8)] = Bs[10] = 0, and finally Bs[LF(10)] = Bs[2] = 1. This corresponds to position

6

F T
bwt

Bs

$ d i s c o n t i n u e d 1

c o n t i n u e d $ d i s 1

d $ d i s c o n t i n u e 0

d i s c o n t i n u e d $ 1

e d $ d i s c o n t i n u 0

i n u e d $ d i s c o n t 0

i s c o n t i n u e d $ d 0

n t i n u e d $ d i s c o 0

n u e d $ d i s c o n t i 0

o n t i n u e d $ d i s c 0

s c o n t i n u e d $ d i 0

t i n u e d $ d i s c o n 1

u e d $ d i s c o n t i n 1

Ps

13

4

1

7

10

d i s c o n t i n u e d $

1 2 3 4 5 6 7 8 9 10 11 12 13

$ 0

c 1

d 2

e 4

i 5

n 7

o 9

s 10

t 11

u 12

C

FM-Count(p1p2 . . . pm)
1. i := m
2. sp := 1
3. ep := |T |
4. While sp ≤ ep and i ≥ 1 Do
5. c := pi
6. sp := C[c] + rankc(T

bwt, sp− 1) + 1

7. ep := C[c] + rankc(T
bwt, ep)

8. i := i− 1
9. If ep < sp Then
10. Return 0
11. Else
12. Return ep− sp+ 1

Figure 2: On the left, an example of the FM-index for text T = “discontinued” sampled each
l = 3 positions. On the right, counting algorithm on the FM-index.

Ps[rank1(Bs, 2)] = Ps[2] = 4. Since we applied LF twice, the answer is 4 + 2 = 6. We have found
the occurrence T [6..] = “n..”.

3.2 Text Collection and Queries

The textual content of the XML data is stored as $-terminated strings so that each text corresponds
to one string. Let T be the concatenated sequence of the d texts. Array Ps is extended to record
both the text identifier and the offset inside it. Since there are several $’s in T , we fix a special
ordering such that the end-marker of the i-th text appears at F [i] in M (see Figure 1, bottom right).
This generates a valid T bwt of all the texts and makes it easy to extract the i-th text starting from its
$-terminator.

Now T bwt contains all end-markers in some permuted order. This permutation is represented
with a data structure Doc, that maps from positions of $s in T bwt to text identifiers. Let T bwt[j]
correspond to the first symbol of the text with identifier x, thus if i = LF(j) it holds T bwt[i] = $.
Then we store Doc[rank$(T

bwt, i)] = x. Furthermore, Doc can be stored in a format that allows
for range searching (as illustrated in Figure 1 (right)): Given a range [sp, ep] of T bwt and a range
of text identifiers [x, y], Doc can be used to output identifiers of all $-terminators within the range
[sp, ep]× [x, y], in O(log d) time per answer [46]. In practice, because we only use the simpler
functionality in the current system, Doc is implemented as a plain array using d log d bits.

Note Doc allows us to never switch from one text to another while looking for the preceding
sampled value: If we reach a $ before finding any Bs[i] = 1, array Doc can be used to determine
that we are at the first position of some text with identifier x.

The basic pattern matching feature of the FM-index can be extended to support XPath functions
such as starts-with, ends-with, contains, and operators =, ≤, <, >, ≥ for lexicographic ordering.
Given a pattern and a range of text identifiers to be searched, these functions return all text identifiers
that match the query within the range. In addition, existential (is there a match in the range?)
and counting (how many matches in the range?) queries are supported. Time complexities are
O(|P | log |Σ|) for the search phase, plus an extra for reporting. While we describe the operators in
their general form, which needs the range reporting functionality from Doc, our current prototype
implements only the simple case [x, y] = [1, d], where Doc can be an array.

starts-with(P, [x, y]) : The goal is to find texts in range [x, y] prefixed by the given pattern P .
After the normal backward search, the range [sp, ep] in T bwt contains the end-markers of all the texts
prefixed by P . Now [sp, ep]× [x, y] can be mapped to Doc, and existential and counting queries can
be answered in O(log |Σ|+ log d) time. Matching text identifiers can be reported in O(log d) time

7

per identifier. If [x, y] = [1, d] and Doc is an array, the counting time after the backward search is
O(log |Σ|), and each text identifier can be reported in constant time.

ends-with(P, [x, y]) : Backward searching is localized to texts in [x, y] by choosing [sp, ep] =
[x, y] as the starting interval, since we have forced the ordering of F [1, d] so that F [z] = $ is the
terminator of text with identifier z. After the backward search, the resulting range [sp, ep] contains
all possible matches, thus existential and counting queries are answered in constant time after the
search. To find out text identifiers for each occurrence, the text must be traversed backwards to find
a sampled position (or a $). The cost is O(l log |Σ|+ log d) per answer, where l is the sampling step.
If [x, y] = [1, d] and Doc is an array, the cost is just O(l log |Σ|).

operator = (P, [x, y]) : Whole texts which are equal to P , and with identifiers in the range
[x, y], can be found as follows. Start with a backward search as in ends-with, and then map to the
$-terminators as in starts-with. The time complexities are same as in starts-with.

contains(P, [x, y]) : To find texts that contain P , we start with the normal backward search and
finish like in ends-with. In this case there might be several occurrences inside one text, which
have to be filtered. Thus, the time complexity is proportional to the total number of occurrences,
O(l log |Σ|) for each. Existential and counting queries are as slow as reporting queries. The basic
O(|P | log |Σ|)-time counting of all the occurrences of P can still be useful for query optimization.

operators ≤, <, >, ≥ : Operator ≤ matches texts that are lexicographically smaller than or equal
to the given pattern. It can be solved like the starts-with query, but updating only the ep of each
backward search step, while sp = 1 stays constant. While [sp, ep] delimits the rows of M that start
with P [i,m], [1, ep] delimits the rows that start with a prefix lexicographically smaller than or equal
to P [i,m]. If at some point there are no occurrences of P [i] = c within the prefix T bwt[1, ep], this
means that P [i,m] does not appear in T . To continue the search we replace ep = C[c] and continue
for P [1, i− 1]. Other operators can be supported analogously, and costs are as for starts-with.

The new XPath extension, XPath Full Text 1.0 [68], suggests a wider functionality for text
searching. Implementation of these extensions requires regular expression and approximate
searching functionalities, which can be supported within our index using the general backtracking

framework [41]: The idea is to alter the backward search to branch recursively to different ranges
[sp′, ep′] representing the suffixes of the text prefixes (i.e., substrings). This is done by computing
sp′c = C[c] + rankc(T

bwt, sp− 1) + 1 and ep′c = C[c] + rankc(T
bwt, ep) for all c ∈ Σ at each step

and recursing on each [sp′c, ep
′
c]. Then the pattern (or regular expression) can be compared with all

substrings of the texts, allowing us to search for approximate occurrences [41]. The running time
becomes exponential in the number of errors allowed, but different branch-and-bound techniques
can be used to obtain practical running times [42, 43]. We omit further details, as these extensions
are out of the scope of this paper.

3.3 Construction and Text Extraction

The FM-index can be built by adapting any BWT construction algorithm. Linear time algorithms
exist for the task, but their practical bottleneck is the peak memory consumption. Although there
exist general time- and space-efficient construction algorithms, it turned out that our special case of
text collection admits a tailored incremental BWT construction algorithm [65] (see the references
and experimental comparison therein for previous work on BWT construction): The text collection
is split into several smaller collections, and a temporary index is built for each of them separately.
The temporary indexes are then merged, and finally converted into a static FM-index. The BWT
allows extracting the i-th text by successively applying LF from T bwt[i], at O(log |Σ|) cost per
extracted symbol.

8

3.4 Faster Text Extraction using More Space

To enable faster text extraction, we allow storing the texts in plain format in n log |Σ| bits, or
in an enhanced LZ78-compressed format (derived from the LZ-index [5]) using |T |Hk(T) +
o(|T | log |Σ|) bits. These secondary text representations are coupled with a delta-encoded bit vector

storing starting positions of each text in T . This bitmap requires O(d log |T |
d
) more bits.

In fact, keeping next to the FM-index an additional copy of all texts in plain format has more
advantages. As mentioned before, the time complexity of contains-queries is proportional to the
total number of occurrences. This implies that for large occurrence numbers, it becomes faster
to search over the plain texts than over the FM-index. The precise cut-off point depends on the
sampling factor l, see Section 6.3 for more details. Since a global count over the FM-index is fast
(O(|P | log |Σ|) time), we use it to decide whether to search over the plain text or over the FM-index.

In practice we opt for a plain text representation, which is much faster for extraction than an
LZ-index at the price of not much more space.

4 Tree Representation

4.1 Data Representation

The tree structure of an XML collection is represented by the following compact data structures,
which provide navigation and indexed access to it. See also the bottom left of Figure 1.

4.1.1 Par

This is the balanced parentheses representation of the tree structure (see, e.g., [53]). It is obtained
by traversing the tree in depth-first-search (DFS) order (or pre-order), writing a “(” whenever we
arrive at a node, and a “)” when we leave it (thus it follows the sequences of events generated by an
XML SAX parser). In this way, every node is represented by a pair of matching opening and closing
parentheses. A tree node is identified by the position of its opening parenthesis in Par (that is, a node
is just an integer index within Par). In particular, we use the balanced parentheses implementation
of [61], which supports a very complete set of operations, including finding the i-th child of a node,
in constant time; for more information concerning implementation details and performance, see [3].
Overall Par uses 2n+ o(n) bits. This includes the space needed for constant-time binary rank on
Par, which is very fast in practice.

4.1.2 Tag

This is the sequence of the tag identifiers of each tree node, including an opening and a closing
version of each tag, to mark the beginning and ending point of each node. These tags are numbers
in [1, 2t] and are aligned with Par so that the tag of node i is simply Tag[i].

We also need rank and select queries on Tag. They allow us to carry out special operations such
as “TaggedDesc” which “jumps” to the first descendant of the given node having a given label (see
Section 4.2.2). Several sequence representations supporting access and these operations are known
[33, 30, 17]. Given that Tag is not too critical in the overall space, but it is in time, we opt for
a practical representation that favors speed over space. First, we store the tags in an array using
⌈log 2t⌉ bits per field, which gives constant time access to Tag[i]. The rank and select queries over
the sequence of tags are answered by a second structure. Consider the binary matrix R[1..2t][1..2n]
such that R[i, j] = 1 if Tag[j] = i. We represent each row of the matrix using Okanohara and
Sadakane’s structure sarray [58]. Its space requirement for each row i is ni log

2n
ni

+ ni(2 + o(1))
bits, where ni is the number of times symbol i appears in Tag. The total space of both structures

9

adds up to 2n log(2t) + 2nH0(Tag) + n(2 + o(1)) ≤ 4n log t+ 2n+ o(n) bits. Thus we support
access and select in O(1) time, and rank in O(log n) time.1

4.2 Tree Navigation

We define the following operations over the tree structure, which are useful to support XPath queries
over the tree. Most of these operations are supported in constant time, except when a rank over Tag

is involved. In what follows, we assume that all the operations take an implicit argument Tree (we
do not write it explicitly to improve the readability). Nodes of Tree (that is, positions in Par) are
ranged over by x, y, and so on. We assume the existence of a dummy node Nil guaranteed to be
distinct from any node of Tree (for instance −1).

4.2.1 Basic Tree Operations

These are directly inherited from Sadakane’s implementation [61]. We mention only the most
important ones for this paper.

• Close(x): The closing parenthesis matching Par[x]. If x is a small subtree this takes a few
local accesses to Par, otherwise a few non-local table accesses.

• Preorder(x) = rank((Par, i): Preorder number of x.

• SubtreeSize(x) = (Close(x)− x+ 1)/2: Number of nodes in the subtree rooted at x.

• IsAncestor(x, y) = x ≤ y ≤ Close(x): Whether x is an ancestor of y.

• IsLeaf(x) = (Par[x+ 1] = “)”): Whether node x is a leaf in the tree.

• FirstChild(x) = x+ 1: First child of x, if any (i.e., if Par[x+ 1] = “(”), Nil otherwise (i.e.

if x denotes a leaf).

• NextSibling(x) = Close(x) + 1: Next sibling of x, if any (i.e., if Par[Close(x) + 1] = “(”),
Nil otherwise.

• Parent(x): Parent of x, found as the closest parentheses pair enclosing x. Somewhat costlier
than Close(x) in practice, because the answer is less likely to be near x in Par. Return Nil

for the root node.

4.2.2 Connecting to Tags

The following operations are essential for our fast XPath evaluation. Let tag be a tag identifier.

• SubtreeTags(x, tag): Returns the number of occurrences of tag within the subtree rooted at
node x. This is ranktag(Tag,Close(x))− ranktag(Tag, x− 1).

• Tag(x): Gives the tag identifier of node x. In our representation this is just Tag[x]. Returns
Nil if there are no such nodes.

• TaggedDesc(x, tag): The first node (in pre-order) labeled tag strictly within the subtree
rooted at x. It is obtained as selecttag(Tag, ranktag(Tag, x) + 1) if it is ≤ Close(x), otherwise
there is no such node and the function returns Nil.

1They report higher complexities, but these are easily improved by using a representation for dense arrays that
supports select in constant time.

10

• TaggedPrec(x, tag): The last node labeled tag with preorder smaller than that of node x, and
not an ancestor of x. Let r = ranktag(Tag, x− 1). If selecttag(Tag, r) is not an ancestor of
node x, we return it. Otherwise, we set r = r − 1 and iterate. Returns Nil when r = 0.

• TaggedFoll(x, tag): The first node labeled tag with preorder larger than that of x, and not in
the subtree of x. This is selecttag(Tag, ranktag(Tag,Close(x)) + 1). Return Nil if there is no
such node.

4.2.3 Connecting the Text and the Tree

Conversion between text numbers, tree nodes, and global identifiers, is easily carried out by using
Par and a bitmap B of 2n bits that marks the opening parentheses of tree leaves containing text, plus
o(n) extra bits to support rank/select queries. The bitmap B uses an implementation of [60] which
is described in [17], and it enables the computation of the following operations:

• LeafNumber(x): Gives the number of leaves up to x in Par. This is rank1(B, x).

• TextIds(x): Gives the range of text identifiers that descend from node x. This is simply
[LeafNumber(x− 1) + 1,LeafNumber(Close(x))].

• XMLIdText(d): Gives the global tree preorder identifier for the text with identifier d. This is
Preorder(select1(B, d)).

• XMLIdNode(x): Gives the global identifier for a tree node x. This is just Preorder(x).

4.3 Displaying Contents

Given a node x, we want to recreate its XML serialization, that is, return (a portion of) the original
XML string. We traverse the structure starting from Par[x], retrieving the tag names and the text
contents, from the text identifiers. The time is O(log σ) per text symbol (or O(1) if we use the
redundant text storage described in Section 3) and O(1) per tag.

• GetText(d): Generates the text with identifier d.

• GetSubtree(x): Generates the subtree at node x.

5 XPath Queries

In this section we define the XPath fragment “Core+”, show its translation into automata, and
discuss efficient execution of these automata. We do not formally define the semantics of XPath
and assume the reader to be familiar with the basics of XPath, see, e.g., [31].

5.1 The XPath Fragment Core+

Our goal is to support a practical subset of XPath, while being able to guarantee efficient evaluation
based on the data structures described in the previous sections. As a first shot we target the forward
fragment of “Core XPath” [31]. Here is an EBNF for Core XPath.

Core ::= LocationPath | / LocationPath
LocationPath ::= LocationStep (/ LocationStep)*
LocationStep ::= Axis :: NodeTest | Axis :: NodeTest [Pred]

Pred ::= Pred and Pred | Pred or Pred | not (Pred) | Core | (Pred)

11

We focus our presentation on the descendant and child axes, but self, attribute and
following-sibling are also supported in our implementation. A node test is either the wild-card
(*), a tag name, or a node type test, that is, one of “text()” or “node()”.

Our fragment, called Core+, supports forward Core XPath and additionally all text predicates
of XPath 1.0, that is, the = (equality), contains, starts-with and ends-with predicates. These
predicates appear inside filters (square brackets) and are generated by the non-terminal “Pred”.
Equality tests if a (constant) string is equal to a string selected by a Core+ expression; contains
tests if the string is contained in the expression; and starts-with tests if the string is a prefix of
the expression. Thus our Core+ fragment specializes the above EBNF with the following rules.

Axis ::= descendant | child | self | attribute | following-sibling
NodeTest ::= * | TagName | text() | node()
Pred ::= Core+ = String | contains(Core+,String) | starts-with(Core+,String)

| ends-with(Core+,String)

An XPath query selects nodes of an XML document. The last axis in a query determines the
selected nodes. For instance, the query /descendant::listitem/child::keyword selects all
keyword-children of all listitem-nodes in the document. The query T = /descendant::text()

selects all text nodes of the document, and the query A = /descendant::*/attribute::* selects
all attribute nodes of the document. In terms of our example document in Figure 1, the query T
selects the nodes 7, 9, 11, and 17 of our model. XPath processors return the XML content (subtrees)
of the selected nodes. Thus, for T the strings “Soon discontinued”, “blue”, “40”, and “30” are
returned (plus the whitespace text nodes, cf. the discussion at the beginning of Section 2).

The string held by every text and attribute node is called its value. If a subquery only selects text
and attribute nodes, then we call it a value expression. The “Core+” non-terminals mentioned on
the right hand side of our last “Pred” rule must correspond to value expressions (we have avoided
to complicate the grammar to enforce that). As an example, the query

/descendant::text()[contains(self::node(),’and’)]

is in Core+; note that “self” here is a value expression, because /descendant::text() is.

5.2 From XPath to Automata

We use “marking tree automata” as our execution model for Core+ queries. Before we formally
define these automata in the next section, we explain here by means of an example how a Core+
query is translated into an automaton. The translation of an XPath query to an automaton is a
simple syntax-directed translation that can be carried out in one pass through the parse tree of the
query. Roughly speaking, the resulting automaton is “isomorphic” to the original query. Consider
the query

/descendant::listitem/descendant::keyword[child::emph] .

This query selects all keyword-nodes that are descendants of listitem-nodes, and that have a
child node tagged emph. Formally speaking, the query starts with the expression “/” which selects
the root node of the document (in our model, the &-node), then applies the descendant axis to that,
and so on. The automaton has four states, q0, q1, q2, q3 which correspond to the four steps in the
query (namely, “/”, two descendants, and the child one). Its transitions are given in Figure 3 The
automaton has start state q0, and end states q1, q2. At first we can consider that this automaton is
a classical non-deterministic alternating tree automaton (e.g. as the ones documented in [18] and
[35]). The transitions have the form: “state, set of labels → formula” In the transitions above, L
denotes the whole alphabet of the automaton and in the formulas, ⊤ denotes the Boolean “true”,
and ↓1 q (resp. ↓2 q) is true if there exists an accepting run from state q on the first child (resp. next
sibling) of the current node. The notion of (accepting) run for a given input tree is again the usual
one:

12

1 q0, {&} → ↓1 q1

2 q1, {listitem} → ↓1 q1 ∧ ↓1 q2 ∧ ↓2 q1
3 q1,L → ↓1 q1 ∧ ↓2 q1

4 q2, {keyword} → mark ∧ ↓1 q2 ∧ ↓1 q3 ∧ ↓2 q2
5 q2,L → ↓1 q2 ∧ ↓2 q2

6 q3, {emph} → ⊤
7 q3,L → ↓2 q3

Figure 3: The tree automaton for the query /descendant::listitem/descendant::keyword[child::emph]

• the root must be in a start state (here q0)

• the leaves must be in an end state (here q1 or q2)

• a node x of the tree is in state q if there exists a transition q, L → φ, if the label of x, is in L
and if the formula φ holds (which possibly requires some conditions on the left or right child
of x).

The novelty here is the presence of the mark predicate (Transition 4) whose intuitive meaning is to
remember the nodes in which the transition containing mark (here Transition 4) was valid.

Let us now describe informally the correspondence between the XPath formula and the
automaton. The latter starts at the root of the input tree in state q0. Here only Transition 1 can be
satisfied. That is the case if the first child of the root is in state q1. That state has two corresponding
transitions (recall that our automaton is non-deterministic). Transition 2 requires that (i) the current
label is listitem and q2 hold for the first child and q1 hold for both the first child and next sibling.
Transition 3 has no requirement on the label (it can be anything in L) but q1 must hold for both the
first child and next sibling of the current node. This self reference to q1 in both directions simply
encodes the recursion performed by the descendant axis in the query. Likewise for q2 (and in
general for any step of the query but the initial “/”) there are two transitions. Transition 5 handles
the recursion in case the label of the current node is not keyword or if the current node is a keyword
which has no emph in child position. Transition 4 requires that the current node has label keyword,
that q2 holds for both first child and next sibling (recursion) and that q3 holds for the first child. If
that is the case, the node is marked. Lastly q3 encodes the filter [child::emph]. If the current
label is emph, then the transition is satisfied (there is no need to iterate in that case, since only one
emph-node is sufficient for the filter to be true). Or the current node is not emph, and the automaton
looks for an emph on the next sibling (recursion on ↓2 only, which encodes a child axis).

There are of course several accepting runs for a given input tree (since the automaton is non-
deterministic), but if a node is marked during a run, then it is a keyword node which has a listitem-
node above it and an emph node amongst its children.

It is well-known that all the runs of a non-deterministic automaton can be simulated in a one
pass traversal of the input (this holds for word automata as well as tree automata). Essentially,
one maintains for each node a set of states (all those in which the non-deterministic automaton can
be) instead of a single state. We show, after introducing formally our automata model, how we
can compute the set of nodes marked during any non-deterministic run for a given automata, first
using only FirstChild and NextSibling move, in one traversal of the tree. Then we show several
optimizations techniques that allow us to leverage the speed of the low-level tree and text indices
and compute efficiently the set of marked nodes.

5.3 Tree Automata Representation

Tree automata are a well-known and popular tool for reasoning about XML, see, for example, [57,
63, 29, 44]. Only seldom have they been used as a tool for query evaluation. In [32] automata are
used to evaluate, on an XML stream, many (very simple) XPath queries in parallel. It is well-known

13

that Core XPath can be evaluated using tree automata; see, for example, [39] and [9]. Here we
use alternating tree automata (as in [18] and [35]). Such automata work with Boolean formulas
over states, which must become satisfied for a transition to be triggered. This allows a much
more compact representation of queries through automata, than ordinary tree automata (without
formulas). Our tree automata are defined over a binary tree view of the XML tree where the left
child is the first child of the XML node and the right child is the next sibling of the XML node.

Definition 5.1 A non-deterministic marking automaton A is a tuple (L,Q, T ,B, δ), where:

• L is a countable (possibly infinite) set of tree labels;

• Q is a finite set of states;

• T ⊆ Q is a set of top states (that is, states that must be satisfied at the root node);

• B ⊆ Q is a set of bottom states (that is, states that must be satisfied at the leaves);

• δ : Q× 2Lf ∪ 2Lcof → F is a transition function, where F is the set of Boolean formulas, 2Lf is

the set of finite subsets of L, and 2Lcof is the set of co-finite subsets of L. A Boolean formula φ
is produced by the grammar:

φ ::= ⊤ | ⊥ | mark | φ ∨ φ | φ ∧ φ | ¬φ | a | p (formula)

a ::= ↓1 q | ↓2 q (atom)

where p ∈ P is a built-in predicate and q is a state.

Before explaining in detail the use of formulas, we motivate our use of finite or co-finite sets as
guards for transitions. While traditionally automata transitions are guarded by a state and a single
label, this would make the encoding of XPath into automata very tedious and needlessly complicate
the algorithms. Indeed, one of the features of XPath is a wildcard element test, namely “*”. One
solution could be to suppose that for a given automaton the set of labels of the input document
is known in advance and that this set is used as alphabet for the automaton. Unfortunately, this
does not accurately reflect the semantics of XPath in which a query can be defined independently
of any document and can even be executed on any document (it might not yield any result but its
application is valid). Another solution (as in [32]) is to equip automata with a special “default”
transition, labeled for instance “_”, which is taken if in the current state no other transition can be
evaluated. This has two drawbacks. Firstly, it is only well-defined for deterministic tree automata
(our encoding makes heavy use of non-determinism). Secondly, the evaluation function is polluted
by the special cases which handle this default transition. Our solution is more blunt. We guard
transitions by finite or co-finite sets of labels, and a transition is taken if the label of the current node
is a member of that set. For instance, the “*” XPath test is encoded as a transition guarded by the
set L − {@, #}, where “@” and “#” represent labels of subtrees containing attribute nodes and text
nodes in our encoding. This allows us to give a very straightforward evaluation function for tree
automata, which relies on the evaluation of Boolean formulas, presented next.

Definition 5.2 (Evaluation of a formula) Given an automaton A and an input tree t, the

evaluation of a formula is given by the judgment R1,R2, t
′ ⊢A φ = (b, R) where R1 and R2 are

mappings from states to sets of nodes of t, t′ is a node of t, φ is a formula, b ∈ {⊤,⊥}, and R is a

set of nodes of t. We define the semantics of this judgment by the means of the inference rules given

in Figure 4.

These rules are straightforward and combine the rules for a classical alternating automaton, with
the rules of a marking automaton. Rules (or) and (and) implement the Boolean connective of the
formula and collect the marking found in their true sub-formulas. Rules (left) and (right) (written as
a rule scheme for conciseness) evaluate to true if the state q is in the corresponding set. Intuitively,

14

R1,R2, t
′ ⊢A ⊤ = (⊤, ∅)

(true)
R1,R2, t

′ ⊢A φ = (b, R)

R1,R2, t
′ ⊢A ¬φ = (b, ∅)

(not)

R1,R2, t
′ ⊢A φ1 = (b1, R1)

R1,R2, t
′ ⊢A φ2 = (b2, R2)

R1,R2, t
′ ⊢A φ1 ∨ φ2 = (b1, R1) 6 (b2, R2)

(or)

R1,R2, t
′ ⊢A φ1 = (b1, R1)

R1,R2, t
′ ⊢A φ2 = (b2, R2)

R1,R2, t
′ ⊢A φ1 ∧ φ2 = (b1, R1) 7 (b2, R2)

(and)

q ∈ dom(Ri)
R1,R2, t

′ ⊢A↓i q = (⊤,R(q))
for i ∈ {1, 2} (left,right)

R1,R2, t
′ ⊢A mark = (⊤, {t′})

(mark)

EvalPred(p, t′) = b, R

R1,R2, t
′ ⊢A p = (b, R)

(pred)
when no other rule applies
R1,R2, t

′ ⊢A φ = (⊥, ∅)

where:
⊤ = ⊥ and ⊥ = ⊤

(b1, R1) > (b2, R2) =

⊤, R1 if b1 = ⊤, b2 = ⊥
⊤, R2 if b2 = ⊤, b1 = ⊥

⊤, R1 ∪R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

(b1, R1) ? (b2, R2) =
{

⊤, R1 ∪R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

Figure 4: Inference rules defining the evaluation of a formula.

R1 (resp. R2) is the set of states recognizing the left (resp. right) subtree of the input tree. Rule
(pred) assumes the existence of an evaluation function for built-in predicates. Among the latter, we
assume the existence of a special predicate mark, which evaluates to ⊤ and returns the singleton set
containing the current node.

We now give the semantics of an automaton by means of the run function TopDownRun (see
Figure 5). This algorithm is based on the textbook algorithm for recursive bottom-up evaluation of

Input An automaton A = (L,Q, T ,B, δ), a node x (of the implicit Tree), and a set of states
Qtd ⊆ Q.

Output A mapping R from states to sets of nodes, such that R(q) is the set of nodes in the subtree
rooted at x that were marked during an accepting run from x starting in state q.

TopDownRun(A, x, Qtd)
1. If x is Nil Then
2. Return {q → ∅ | q ∈ B ∩Qtd}
3. Else
4. trans := {(q, ℓ → φ) | q ∈ Qtd,Tag(x) ∈ ℓ, (q, ℓ → φ) ∈ δ}

5. Qi
td := {q | ↓i q occurs in φ, (q′, ℓ → φ) ∈ trans} for i ∈ {1, 2}

6. R1 := TopDownRun(A,FirstChild(x), Q1
td)

7. R2 := TopDownRun(A,NextSibling(x), Q2
td)

8. Return {q 7→ R | R1,R2, x ⊢A φ = (⊤, R), (q, ℓ → φ) ∈ trans}

Figure 5: Evaluation function for tree automata.

tree automata (see, e.g., [35]). The algorithm performs a recursive first child/next sibling traversal

15

of the tree until a leaf is reached (base case for the recursion). When returning form the recursive
evaluation on the left and right subtrees (Lines 6 and 7, Figure 5) the function evaluates the set of
transitions for the current node, based on the set of states recognizing the left and right subtree.
However, instead of blindly doing a recursive descent from the root to the leaves and evaluating
when returning from the recursive calls, the transitions are restricted by the set of states Qtd (Line 4).
This technique is dubbed “bottom-up evaluation with top-down preprocessing” in [35]. We therefore
named the run function TopDownRun to differentiate it from a real bottom-up run (starting from
the leaves of the tree) that we present in Section 5.4.2. The novelty is our use of maps from states to
nodes instead of only sets of states. The resulting map associate any state q which has an accepting
run from x with the set of nodes that were marked during that run.

5.4 Leveraging the Speed of the Low-Level Interface

We have seen how to evaluate an XPath query by compiling it into a tree automaton and running
the latter on the input document. We present now several techniques that make use of the tree and
text index presented in Sections 4 and 3. These are the techniques that make our SXSI prototype
competitive in speed with state-of-the-art XML databases.

5.4.1 Jumping to relevant nodes

Conventionally, the run of a tree automaton visits every node of the input tree. This is, for instance,
the behaviour of the tree automata presented in [39], which perform two scans of the whole XML
document (the latter being stored on disk in a particular format). However, for typical queries,
most of the nodes are “useless” in the sense that the automaton only loops through them staying
in the same set of states. In other words, the automaton ignores most of the nodes. To restrict
the run to interesting nodes, we use the notion of relevant nodes introduced in [49]. While the
full characterization is out of the scope of this paper, we give a flavor of relevant nodes, using an
example. Consider again the query

/descendant::listitem/descendant::keyword[child::emph] .

whose corresponding automaton is given in Figure 3. If we consider the starting transition, (Line 1)
in Figure 3 we can see that at the root node, (labeled &) the automaton will first go on the first child,
in state {q1}. Then, it will loop, going down on the first child and next sibling of each node until
it reaches a listitem element, on which it changes state and goes in {q1, q2}. Here we see, first,
that there are no relevant nodes between the root and the first listitem. Indeed, the tree could be
of any shape, and labeled with any tag (besides listitem), and the result of the query would be
the same. Second, we see this listitem node is reached through the following sequence of moves
(informally):

↓1 q1 · (↓1 q1| ↓2 q1)
∗

(one first child move followed by an arbitrary sequence of first child and next sibling moves). Note,
that all nodes that can be reached by such a sequence of move are descendants of the root node.

Our TopDownRun algorithm is therefore specialized as follows.

1. We compute from the formulas of the transitions we consider (Line 4, Figure 5) the set of
states Q1 (resp. Q2) that are reached by a ↓1 move (resp. ↓2 move).

2. For Q1 (resp. Q2) we compute which set of labels cause a transition from one of the states
in Q1 to go in a state not in Q1. These labels make the node that have them relevant.

3. We test whether the sequence of moves that can make the automaton leave the set of state
Q1 (resp. Q2) has a specific pattern, for which our low-level library has an optimized call:
TaggedDesc, TaggedFoll,

16

4. We use that special call instead of FirstChild (resp. NextSibling)

In the above example, we are initially in state {q0} with label &. We have {q1} as set of states Q1.
We see that a label listitem will make the automaton go from Q1 to Q′

1 = {q1, q2}. We therefore
perform a TaggedDesc(_, listitem) to reach the next node (Line 6 of Figure 5)). The same process
occurs recursively at each node, (e.g. after finding a listitem node, we look for a keyword node
in the same fashion, jumping using low-level calls. Note that for the algorithm to remain sound, we
cannot always jump in this fashion. For instance, once reaching a keyword node, we cannot jump
arbitrarily, since e.g. on its first child, several situations may happen (all in parallel):

• the first child is labeled with emph, in which case the automaton will change back into a state
that looks for a descendant keyword

• the first child is labeled with keyword, in which case the automaton will change into a state
that (1) looks for a sibling of that node labeled emph and check below this second keyword
node if there is a child labeled emph

• the first child is labeled by neither tag, then the automaton looks for a emph sibling and a
keyword descendant

This behaviour is similar to the idea of “partitioning and pruning” in the staircase join [34],
but here achieved by means of automata. One advantage of using automata instead of working
directly on the syntactic form of the XPath query, is that some simplification occur “for
free”. For instance, query /descendant::*/descendant::a, /descendant::*/descendant::a,
/descendant::*/child::a and /child::*/descendant::a are all executed in the same,
efficient fashion: move one level down from the root then jump to all the a descendants. This
happens because the for all these queries, the automata perform the same state change during the
top-down phase.

5.4.2 Bottom-Up Runs

While the previous technique works well for tree-based queries it still remains slow for very
selective value-based queries. For instance, consider the query

/descendant::listitem/descendant::keyword[contains(.,"Unique")] .

The text interface described in Section 3 can answer the text predicate very efficiently, returning
the set of text nodes matching this contains query. If the number of occurrences is low, and in
particular smaller than the number of listitem or keyword tags in the document (which can also
be determined efficiently through the tree structure interface), then it would be faster to take these
text nodes as starting points for query evaluation and test if their path upward to the root matches the
XPath expression before the filter. This scheme (already mentioned in [52]) is particularly useful
for text oriented queries with low selectivity text predicates. However, it also applies for tree only
queries; consider again the query

/descendant::listitem/descendant::keyword[child::emph]

on a tree with many listitem nodes but only a few keyword nodes. We can start by jumping to
the keyword nodes, run the remainder of the query (child::emph) on the subtree rooted at that
node and then check its ancestors for listitem nodes. Note that with the tree index described in
Section 4, we cannot directly jump to all bottom-most keyword nodes. We would need to iterate
through all keyword nodes. Direct access could be provided through additional sarrays storing for
each label its bottom-most nodes.

We now devise a real bottom-up evaluation algorithm of our automata. The algorithm takes an
automaton and a sequence of potential match nodes (in our example, keyword labeled nodes). It

17

Input An automaton A = (L,Q, T ,B, δ) and a sequence s of nodes in pre-order.

Output A mapping R from states to sets of nodes, such that R(q) is the set of nodes in the tree that
were marked during an accepting bottom-up run that maps q to the root.

BottomUpRun(A, s)
1. If s is empty Then
2. Return ∅

3. Else

4. x, s′ := Head(s),Tail(s)
5. R := TopDownRun(A, x,Q)
6. R′, s′′ := MatchAbove(A, x, s′,R, Nil)
7. Return R′

Input An automaton A = (L,Q, T ,B, δ), a node x, a sequence s of nodes (in pre-order) occurring
after x in pre-order, a mapping R1 from states to sets of descendant nodes of x, and a node
stop that is an ancestor of x (or Nil).

Output A mapping R from states to sets of nodes and a sequence s′ of nodes such that R(q) is the
set of nodes that were marked during an accepting bottom-up run that maps q to the node
stop and a sequence s of nodes that are not descendants of stop.

MatchAbove(A, x, s, R1, stop)
8. p := Parent(x)
9. If p = stop Then
10. Return R1, s
11. Else
12. If s is empty or not(IsAncestor(p, Head(s))) Then

13. R2, s
′′ := ∅, s

14. Else

15. x′, s′ := Head(s),Tail(s)
16. R := TopDownRun(A, x′,Q)
17. R2, s

′′ := MatchAbove(A, x′, s′,R, p)

18. trans := {(q, ℓ → φ) ∈ δ | ∃i ∈ {1, 2}, ∃q′ ∈ dom(Ri), ↓i q
′ occurs in φ, Tag(p) ∈ ℓ}

19. R′ := {q 7→ R | R1,R2, p ⊢A φ = (⊤, R), (q, ℓ → φ) ∈ trans}

20. Return MatchAbove(A, p, s′, R′, stop)

Figure 6: Bottom-up evaluation function.

then moves up to the root, using the Parent function and checks that the automaton arrives at the
root node in a top state q ∈ T . Note that, if naively done, such a bottom-up run will visit many
nodes repeatedly: if a node is the common ancestor of m potential match nodes, then it would be
visited m times. Instead, we move bottom-up left-to-right, and only move upwards from the left-
most potential match until we reach its lowest common ancestor with the next potential match. This
technique is similar in spirit to shift-reduce parsing (see [1]). Our bottom-up matching algorithm is
given in Figure 6.

The behaviour of this algorithm is explained in detail on an example in Figure 7 (in this figure,
vertical lines denote FirstChild edges, horizontal lines denote NextSibling edges, and dashed lines
represent skipped subtrees). Intuitively, it takes as input a sequence of potential matches. For
each of them it runs first the TopDownRun function to verify the downward context of the query

18

keyword x8

x3

listitem x1

x2

keyword x4

emph

x7

listitem x5

x6

emph

Initial call to BottomUpRun(A, [x4, x8]).
TopDownRun(A, x4,Q) (Line 5) computes
the part of the query after keyword (here
child::emph).
MatchAbove(A, x4, [x8],R, Nil) (Line 6)

x3

listitem x1

x2

keyword x4

emph

x7

listitem x5

x6

keyword x8

emph

x3 = Parent(x4) (Line 8)
x3 is not Nil (Line 9)
x8 is not a descendant of x3 (Line 12)
Transitions and mapping for x3 (Lines 18–19)
MatchAbove(A, x3, [x8],R

′, Nil) (Line 20)
Proceeds similarly for x2

x8 is a descendant of x1 = Parent(x2) (Line 12)
TopDownRun(A, x8,Q) (Line 16)
MatchAbove(A, x8, [],R

′, x1) (Line 17)

x3

listitem x1

x2

keyword x4

emph

x7

listitem x5

x6

keyword x8

emph

MatchAbove up to x5, since
Parent(x5) = x1 = stop (Line 9)
Return results for x5 (Line 10) to the previous
recursive call (Line 17)
Results for x2 and x5 are known, compute results
for x1 (Lines 18–19)
MatchAbove(A, x1, [],R

′, Nil) (Line 20)

Figure 7: Illustration of the bottom-up run.

(Lines 5 and 16). It then proceeds to walk upward (using Parent(_)) from a potential match node but
stops (shift) when it reaches an ancestor of the next match. The following matches are recursively
handled and the algorithm can restart (reduce) when all the descendants of the current node have
been treated.

For our algorithm to be sound, we need to be sure that the subtrees that are not visited (e.g. left
subtree of x2 and x6 right subtrees of x3, x5 and x7 in Figure 7) can safely be ignored. This is the
case if the query at issue has the form

/axis :: step/ . . . /axis :: step[pred]

(as in our previous example). Indeed, if a query has predicates in intermediate steps e.g.:

/descendant::listitem[descendant::bold]/descendant::keyword[child::emph]

then we might need to explore the whole subtree of a listitem if no bold node is found on the
path between a keyword node and its listitem ancestor. We chose not to explore such extensions
to the BottomUpRun algorithm since it would, in our opinion not yield a significant speed-up with
respect to the TopDownRun algorithm. On the contrary the speed-ups provided by the version
of BottomUpRun we presented in this section were sufficient to justify the use of a dedicated
procedure for low-selectivity queries of a particular shape.

5.5 General Optimizations, On-the-fly Determinization

While the optimizations presented in the previous sections give the most important speed-up
we describe hereafter a series of implementation techniques used for the efficient evaluation of
automata.

19

5.5.1 Hash consing of data-structures

We use hash consing for all critical data-structures: sets of states, formulas, sets of transitions, sets
of labels and so on. Hash consed values have the following two properties. First, structurally equal
values share the same representation in memory. Therefore testing for equality of such values (e.g.,
testing that two sets of transitions are equal) consists in comparing their memory address (which is
cheap). Second, to each such value we can associate a unique integer id (this can be its memory
address, e.g., but more interestingly a small integer assigned at the creation of the value). These two
properties —especially the second one— are instrumental to the other optimizations. Indeed, as
described in [19], we can memoize (or cache) the results of expensive computations and reuse them
when needed instead of recomputing them. We can associate to each function a table, indexed by the
argument’s id. While the first computation might be expensive, its result is stored once and for all
in the table and can be retrieved with one pointer indirection later on, when the same computation
is requested. We explain now how this generic technique comes into play for automata evaluation.

5.5.2 Just-in-time compilation of automata

In the TopDownRun algorithm (Figure 5) the most expensive operations are in Lines 4, 5, and 8.
By expensive we mean that they take time O(m) where m is the number of steps in the original
query. At Line 4, we gather all the transitions that can be selected from the current label ℓ and
set of states Qtd. From these we compute, at Line 5, the new set of states Q1

td and Q2
td onto which

we will launch the recursive call. As explained in Section 5.4, from the set of states Q1
td (resp.

Q2
td) we compute the “jump” moves that the automaton will do to reach the next node in the left

(resp. right) subtree. If none of the formulas requires the evaluation of a value predicate (such
as contains, for instance) then we can see that this whole computation of Lines 4 and 5 can be
cached in a 2-dimensional array, using only ℓ (the current label, identified by a small integer) and
Qtd (a hash-consed set of states with a unique small id) as a key. In practice we store in this table
a small sequence of instructions that are computed at run time and which represent the behaviour
of the automaton for the next step (e.g., “jump to the next keyword label in state {q0, q1}”). This
just-in-time compilation scheme absorbs in practice most of the overhead caused by the automaton
machinery and makes running an automaton almost as fast as executing a hand-written, precompiled
function. In the same fashion, the computation of the judgment ⊢A can be memoized, this time in
two parts. First, the sets of states (that is the domain of the resulting mapping) is stored once and
for all, and second, a sequence of instructions telling how to propagate the results from the left and
right subtrees is stored and evaluated for each node.

5.5.3 Handling of result sets

Maintaining sets of (result) nodes can be expensive. Our efficient management of sets of nodes
relies on the following two observations. First, note that only the states outside of filters actually
accumulate nodes. All other states always yield empty bindings. Thus we can split the set of states
into marking and regular states. This reduces the number of > and ? operations on result sets. Note
also that given a transition qi, ℓ →↓1 qj∧ ↓2 qk where qi, qj , and qk are marking states, all nodes
accumulated in qj are in the left subtree of the current node. Likewise, all the nodes accumulated
in qk are subtrees of the right subtree of the current node. Thus both sets of nodes are disjoint
and we do not need to keep sorted sets of nodes but only need sequences which support O(1)
concatenation. Computing the union of two result sets Rj and Rk can therefore be done in constant
time and consequently > and ? can be implemented in constant time. Furthermore, if we are only
interested in getting the number of results of a query, these sets can be replaced by integer counters.
Marking a node corresponds to incrementing a counter and merging two sets (that is performing
> or ?) corresponds to adding two counters. The evaluation of formulas as well as the pre-order
traversal we perform guarantees that marked node are not counted twice (that is, in our algorithms
the results R becomes mapping from states to integers rather than mapping from states to sets of
nodes).

20

5.5.4 Lazy result sets

Another way to leverage the speed and jumping capabilities of our tree index is by making use of
a lazy result set. Consider the query /descendant::listitem/descendant::keyword . When
reaching a listitem node, the automaton is in a state which encodes the following behaviour:
“accumulate all keyword nodes below this node”. Therefore instead of having the automaton
jump through the subtree to individually put each keyword node in the result set, we only store
the listitem node (i.e., the current node during evaluation) and a flag to remember that during
serialization, it is not the listitem node which should be printed but rather all its keyword

descendants. Since our tree index allows us to reach each such node using a constant time jump
operation, we delay the process of getting all the final result nodes until serialization, therefore
speeding up the marking process. This not only saves time but also memory since the full
set of nodes does not have to be materialized. When evaluating the query in counting mode
(as described in the previous point), then we replace the lazy result set by a single call to e.g.
SubtreeTags(_, keyword) which returns in constant time the number of keyword-labeled nodes.
This number is then added to the counter of the corresponding state.

5.5.5 Early evaluation of formulas

Another optimization consists in evaluating the Boolean formulas of the automaton as early as
possible. First, remark that in the TopDownRun algorithm, a node is “visited” three times. Once
when the automaton enters the node, during the top-down phase (Line 1). Here, we only know
that at most all states in Qtd yield a successful run. Then when returning from the left subtree
(Line 6), we know R1 that is, the states which yield an accepting run for the left subtree. The
idea now is to perform a partial evaluation of formulas using only R1. If this happens to be
sufficient to prove or disprove the states in Qtd, then the right subtree can be skipped altogether.
This optimization is very important for filters as it insures that, for instance, in a query such as
/descendant::listitem[./descendant::keyword] the run function only tests for the presence
of the left-most keyword node below a listitem node.

5.5.6 Relative Tag position tables

As explained earlier, the transitions for the query .../descendant::keyword/... would be (just-
in-time) compiled into a piece of code performing a subtree traversal using TaggedDesc(_, keyword)
and TaggedFoll(_ , keyword) instead of FirstChild and NextSibling. This is already optimal for
documents where keyword nodes may appear arbitrarily. However, it is often the case that labels
are not recursive (that is, nodes with a label l do not occur below other l-labeled nodes). To further
optimize the compilation of the automaton, we build –while indexing the document– four relative
position tables, telling for each label l in the document the sets of labels that occur respectively
in child position, descendant position, following-sibling position and following position. When
compiling at run time the automaton and generating a call to TaggedDescendant for a label l, we
check that this l label can indeed appear as descendant of the label of the current node (and similarly
for other jumping functions). If the label does not occur, then the TaggedDescendant call is replaced
by a constant function returning directly the correct sets of states for the left subtree as well as an
empty result set, as if the automaton had made a full run on this subtree.

6 Experimental Results

This section presents our experimental results and is organized as follows. We first describe
our experimental settings, test machine, and benchmark data. We then provide a first round of
experiments illustrating the raw performances of the tree and text index: indexing time and resulting
index size, direct querying of the text index, and performing full pre-order traversal using FirstChild
and NextSibling moves. A third subsection illustrates how the tree index and automata-based engine

21

work together to achieve very fast tree-oriented query evaluation (in particular using the jumping
moves described in Section 4.1.2). We then show how the automaton machinery can leverage the
speed of both the text and tree index by evaluating queries containing both text and tree predicates.
Lastly we illustrate the versatility of our approach: our engine is easily extended to support querying
of XML document storing bio-genetic data as well as natural language.

We have implemented a prototype XPath evaluator based on the data structures and algorithms
presented in the previous sections. Both the tree structure and the FM-index were developed in C++,
while the XPath engine was written using the OCaml language.

6.1 Protocol

To validate our approach we benchmark our implementation against two well established XQuery
implementations, MonetDB/XQuery and Qizx/DB. We describe our experimental settings hereafter.

Test machine Our test machine features an Intel Core i5 platform featuring eight 3.33Ghz
cores, 16 GB of RAM and a S-ATA hard drive. The OS is a 64-bit version of Ubuntu Linux (11.04).
The kernel version is 3.0 and the file system used to store the various files is ext4, with default
settings. All tests are run on a minimal environment where only the tested program and essential
services were running. We use the standard compiler and libraries available on this distribution
(namely g++ 4.6.1, libxml2 2.7.8 for document parsing and OCaml 3.12.1).

Qizx/DB We use version 4.1 of Qizx/DB engine (free edition), running on top of the 64-bit
version of the JVM (with the -server flag set as recommended in the Qizx user manual). The
maximal amount of memory of the JVM is set to the maximal amount of physical memory (using
the -Xmx flag). We also use the flag -r of the Qizx/DB command line interface, which allows us
to re-run the same query without restarting the whole program (this ensures that the JVM’s garbage
collector and thread machinery do not impact the performances). We use the timing provided by
Qizx debugging flags, and report the serialization time (which actually includes the materialization
of the results in memory and the serialization).

MonetDB/XQuery We use version Oct2010-SP1 of MonetDB, and in particular, version 4.40.3
of MonetDB4 server and version 0.40.3 of the XQuery module (pathfinder). We use the timing
reported by the “-t” flag of MonetDB client program, mclient. We keep the materialization time
and the serialization time separate.

Running times and memory reporting Each query is executed eleven times in a row within the
same program instance (using “-r 11” for Qizx and by evaluating the same query eleven times for
MonetDB without restarting the server). Of these eleven runs, we discard the first and average the
remaining ten, which we report as “running time” in the subsequent experiments. For all engines
and all queries, the first run is always much slower (due to cold cache issues, garbage collector
adjustments and so on). The running time does not take into account query parsing or the query
optimization phases that take place before the actual query evaluation. We found these times to
always be negligible for all queries and engines tested (around 1ms or less). We monitor the
resident set size of each process, which corresponds to the amount of process memory actually
mapped in physical memory. For the tests in which serialization is involved we serialize to the
/dev/null device (that is, all the results are discarded without causing any output operation). We
also ascertained that for all queries, all engines give the same node count and serialize roughly the
same amount of data (small variations exist since, e.g., empty elements can be rendered <a/> or
<a>).

22

Document Size (MB) 116 223 335 447 559

Index construction:
time (min) 5’10 10’40 17’00 23’00 29’40
memory. use (MB) 296 568 844 1,085 1,387

Index loading time (s) 0.5 1.5 2.0 2.4 2.5

Figure 8: Indexing of XMark documents.

Test data Our test data is comprised of XMark documents [62] of various sizes (between
116MB and 1GB), a 83MB treebank document2 and a 122MB Medline document3. In Section 6.6
which investigates XPath text-oriented queries, we also experiment using a word-based FM-index
within SXSI, and do this over a 2.3GB mediawiki document (part of the English “wiktionary”).
Last, in Section 6.7 we experiment with a 132MB XML document composed of gene annotations
and their DNA sequences.

Remarks We also compared with Tauro [64]. Yet, as it uses a tailored query language, we
could not produce comparable results.

6.2 Indexing

Our implementation features a versatile index. It is divided into three parts. First, the tree
representation composed of the parenthesis structure, as well as the tag structure. Second, the FM-
index encoding the text collection. Third, the auxiliary text representation allowing fast extraction
of text content.

It is easy to determine from the query which parts of the index are needed in order to solve it, and
thus load only those into main memory. For instance, if a query only involves tree navigation, then
having the FM-index in memory is unnecessary. On the other hand, if we are interested in very
selective text-oriented queries, then only the tree part and FM-index are needed (both for counting
and serializing the results). In this case, serialization is a bit slower (due to the cost of text extraction
from the FM-index) but remains acceptable since the number of results is low; see Table 2.

Figure 8 reports the construction time and memory consumption of the indexing process, the
loading time from disk into main memory of a constructed index, and a comparison between the
size of the original document and the size of our in-memory structures.

For these indexes, a sampling factor l = 64 (cf. Section 3) was chosen. It should be noted that
the size of the tree index plus the size of the FM-index is always less than the size of the original
document.

It should further be noted that although loading time is acceptable, it dominates query answering
time. This is however not a problem for the use case we have targeted: a main memory query engine
where the same large document is queried many times. As mentioned in the Introduction, systems
such as MonetDB load their indexes only partially; this gives superior performance in a cold-cache
scenario when compared with our system.

6.3 Raw Performance of Text Index

Here we give a short overview of the performance of our implementation of the FM-index. We
present the search times for different versions of contains-queries:

2http://www.cs.washington.edu/research/xmldatasets
3http://www.ncbi.nlm.nih.gov/pubmed

23

Table 2: Search times of FM-index (in ms), sampling factor l = 64.
GlobalCount ContainsCount Report- mem

Query Pattern number time number time Contains (MB)
1 Bakst 1 .004 1 0.04 0.012 61
2 ruminants 22 .009 19 2.3 1.6 61
3 morphine 392 .009 144 4.6 4.5 61
4 AUSTRALIA 438 .009 438 29.9 32.7 61
5 molecule 1,472 .008 966 128.3 122.0 61
6 brain 2,685 .005 1,493 218.5 215.2 61
7 human 6,897 .005 4,690 553.5 548.0 62
8 blood 10,402 .005 8,534 401.2 399.7 62
9 from 20,859 .004 12,073 1,723 1,718 62

10 with 63,332 .004 22,974 5,084 5,084 63
11 in 238,638 .003 42,586 19,642 19,630 64
12 a 2,932,251 .001 595,716 189,299 188,377 93
13 \n 9,730,750 .001 5,870,474 132,780 132,241 86

Table 3: Search times of FM-index (in ms), sampling factor l = 4.
GlobalCount ContainsCount Report- mem

Query number time number time Contains (MB)
1 Bakst 1 .005 1 0.049 0.013 100
2 ruminants 22 .010 19 0.156 0.086 100
3 morphine 392 .009 144 1.7 1.4 100
4 AUSTRALIA 438 .009 438 4.1 3.9 100
5 molecule 1,472 .009 966 6.2 5.9 101
6 brain 2,685 .006 1,493 12.2 11.6 101
7 human 6,897 .005 4,690 25.4 27.3 101
8 blood 10,402 .005 8,534 77.2 73.6 101
9 from 20,859 .003 12,073 84.0 78.7 101

10 with 63,332 .004 22,974 242.8 235.0 102
11 in 238,638 .002 42,586 1,105 1,091 103
12 b 411,409 .001 135,307 1,779 1,762 108
13 g 748,326 .001 320,440 3,412 3,379 119
14 a 2,932,251 001 595,716 13,183 13,173 133
15 \n 9,730,750 .001 5,870,474 87,771 88,230 126

1. GlobalCount(P): returns the global number of occurrences of the pattern P in all texts.

2. ContainsCount(P): returns the number of texts that contain P ,

3. ContainsReport(P): returns the positions of all occurrences of P in the texts.

Our experiments are over the text collection obtained from a 122MB Medline XML document.
The size of this text is around 82MB (if stored in one-byte per character ASCII format). Our
“plain” alternative to the FM-index is a naive (byte-wise) string buffer (using precisely 82MB of
memory). To search over the plain buffer, we use OCaml’s regular string expression library. The
naive search time is constant for all our queries at around 2,700ms. For both the naive and the
FM-index, the result positions (32 bit integers) for ContainsReport queries are materialized in an
array. Consider now the performance of our FM-index in comparison. First, at sampling factor
l = 64, shown in Table 2. As can be seen, the times for ContainsCount and ContainsReport for
the word “from” are at around 1,720ms. Thus, in this case it is still faster to search over the FM-
index. On the other hand, for the word “with” the search time is over 5,000ms, thus, here the plain
search becomes faster. Hence, somewhere between 20,859 and 63,332 occurrences lies the cut-off
point from which on searching over the plain text is faster than over the FM-index. Table 3 shows
timings obtained with sampling factor l = 4. As can be seen the cut-off point is now much later,
at a global count somewhere between 411,409 and 748,326. The last columns of Tables 2 and 3
show the maximal memory consumption for these queries over the FM-index. As mentioned in the

24

Table 4: Construction times (in ms) for pointer versus SXSI tree store.
file parse pointers parentheses tags tag-tabs
XMark116M 89,446 373 504 4,682 1,324
XMark223M 220,143 716 976 9,051 2,544
XMark559M 620,479 7,923 2,415 22,857 6,283
Treebank83M 67,412 465 615 14,067 18,867
medline122M 67,935 537 760 6,933 2,036

Table 5: Traversal times (in ms), #nodes (in millions).
recursive, all nodes element nodes, SXSI

file #nodes pointer SXSI #nodes rec. //*
XMark116M 6 33 109 1.7 71 153
XMark223M 12 63 209 3.3 137 296
XMark559M 30 164 535 8.4 345 756
Treebank83M 7 57 184 2.4 136 292
medline122M 9 48 164 2.9 112 244

beginning of this section, we measure the maximum memory used by the process, as report by the
operating system (this is a slight over-approximation of the actual memory). The memory overhead
for queries with large cardinality, such as the last queries (q13 and q15), is explained by the size of
the result array: for both sampling factors this is around 25MB. This query has around 6 million
results (ContainsCount-number), each result is stored as a 4 Byte integer. Thus, 23MB are needed.
However, additional memory overhead occurs when results are removed from the GlobalCount

(because they occur in the same XML text node). For instance, in the second to last query (q12/q14)
the ratio of GlobalCount-number to ContainsCount-number is much larger than for the last query
(4.9 versus 1.7). This means that on average there are around 5 “a”-characters per text node, while
there are only around 1.7 return-characters per text node. Correspondingly, the maximum memory
consumption is much higher too.

6.4 Raw Performance of Tree Index

The performance of some low-level features of our tree index is compared with the corresponding
performance of a standard pointer-based implementation of a tree. The latter provides for each tree
node two 64-bit pointers to its first child and next sibling nodes (and does not store labels). We first
compare construction times. Then we compare times for a full depth-first left-to-right tree traversal
on the different structures. Finally, we test the speed of the taggedDesc and taggedFoll functions.
We compare different traversals through all nodes with a given label: (i) using a pure C++ function,
(ii) using our automata in counting mode, and (iii) using our automata in materialization mode.

Construction As Table 4 shows, the construction of the parentheses structure takes roughly
1.5-times the amount of time of allocation a pointer structure for the tree. Constructing the tag
sequence is considerably slower, about ten times as much as building the parentheses structure.
This is because, for each opening and for each closing tag, a separate sarray is constructed (see
bottom left of Figure 1). The last column shows the time for building the four tag-to-tag tables
described in Section 5.5.6. We also show the XML parsing time in the first column of the table,
which dominates the rest of construction times.

Full Traversals The left part of Table 5 shows that a full tree traversal through all nodes is
between 3.2 and 3.4 times slower with SXSI, than with a pointer tree data structure. Note that the
pointers are allocated in pre-order too, giving optimal performance for pre-order traversal. As a
comparison, if the pointers are allocated in post-order, then traversal time for the pre-order traversal
is almost twice as slow as the numbers reported, and if pointers are allocated in in-order, then the
times are a bit over twice as slow; see [3] for a discussion of the phenomenon. It should also be noted

25

Table 6: Times (in ms) for tagged traversals over XMark116M.
tag #nodes jump(C++) //(cou) //(mat)
category 1,040 1.2 1.6 1.7
price 10,141 2.3 2.9 3.1
listitem 63,179 16 22 24
keyword 73,070 11 12 14

that for other access patterns, such as random root-to-leaf traversals, the time difference between
pointer and succinct trees is much larger, factors of up to 100 are measured in [3].

In the right part of Table 5 we see the number of element nodes in these trees, and the time it
takes for SXSI to recurse through those nodes: either using a small recursive C-function (column
“rec.”), or using the automaton for the XPath query //*, and executing in counting mode.

Tagged Traversals Here the speed of the TaggedDesc and TaggedFoll functions is investigated.
Using these two functions, three different traversal through all nodes with a given label are
considered: first, by a small C++ function, and second and third by our automata through a
//label query in counting and materializing modes, respectively. For instance, Figure 6 shows that
iterating through all keyword-nodes of the 116MB Xmark document takes essentially the same
time for all three methods (11–14ms). This is in contrast to some other labels: for listitem, for
instance, the count-automaton traversal is 1.5-times slower than the C++ traversal. This can be
explained by the fact that listitem is a recursive tag: there are in fact 23,298 listitem nodes that
appear as descendants of listitem nodes. Hence, at each listitem node the automaton issues a
taggedDescendant to search for further nodes. The other labels such as keyword and category do not
appear recursively. Since this information is part of our tree index (cf. Section 5.5.6), the automaton
run function avoids all these taggedDesc calls, which brings the speed almost up to the one of the
C++ function.

6.5 XPath Tree Queries

We benchmark tree queries using the queries given in Figure 9. Queries X01 to X12 are taken

T01 //NP
T02 //S[.//VP and .//NP]/VP/PP[IN]/NP/VBN
T03 //NP[.//JJ or .//CC]
T04 //CC[not(.//JJ)]
T05 //NN[.//VBZ or .//IN]/*[.//NN or .//_QUOTE_]

X01 /site/regions
X02 /site/regions/*/item
X03 /site/closed_auctions/closed_auction/annotation/description/text/keyword
X04 //listitem//keyword
X05 /site/closed_auctions/closed_auction[annotation/description/text/keyword]/date
X06 /site/closed_auctions/closed_auction[.//keyword]/date
X07 /site/people/person[profile/gender and profile/age]/name
X08 /site/people/person[phone or homepage]/name
X09 /site/people/person[address and (phone or homepage) and (creditcard or profile)]/name
X10 //listitem[not(.//keyword/emph)]//parlist
X11 //listitem[(.//keyword or .//emph) and (.//emph or .//bold)]/parlist
X12 //people[.//person[not(address)] and .//person[not(watches)]]/person[watches]
X13 /*[.//*]
X14 //*
X15 //*//*
X16 //*//*//*
X17 //*//*//*//*

Figure 9: Tree oriented queries based on Treebank (T01–T05) and XMark (X01–X17).

from the XPathMark benchmark [27], derived from the XMark XQuery benchmark suite. X13 to

26

X17 are “crash tests” that are either simple (X13 selects only the root since it always has at least one
descendant in our files) or generate roughly the same amount of results but with various intermediate
result sizes. Queries T01 to T05 work on the Treebank file.

Query answering time For this experiment we use the Treebank document (83MB) and XMark
documents (116MB and 1GB). In the cases of MonetDB and Qizx, the files were indexed using the
default settings. Let us first describe in detail Figure 10, which summarizes the running time for
XMark queries. Each of the six graphs should be read as follows. For each query (X01 to X17), the
graph reports as vertical bars the relative running time of the three engines with respect to SXSI’s
running time (therefore SXSI’s score is always 100%). In these graphs a higher bar means that the
engine was slower. We also give at the top of each bar the average running time for the query in
milliseconds (or seconds, if the number is suffixed with an “s”). For instance, in the first graph —
labelled “116 MB (counting)”— we can see that for query X01, SXSI evaluates the query in 1.8ms,
MonetDB 7.4ms (or roughly 400% of SXSI’s time) and QizX 3.6 ms (or roughly 200% of SXSI’s
time). For count queries, the timing for all three engines are given side by side (SXSI, MonetDB and
QizX in that order). For full reporting queries however, we want to gauge precisely the amount of
time spent during materialization and during serialization. The definition of materialization seems
to fit the evaluation model of both MonetDB and SXSI: create a data structure in memory which
holds the resulting nodes in order and without duplicates such that access of the first result in pre-
order can be done in constant time, and accessing the next resulting node from the current one in
pre-order can also be done in constant time. The timing for both SXSI and MonetDB are given in the
graphs labelled “(materialization)”. Since Qizx interleaves evaluation of the query and serialization,
we only compared it to SXSI and MonetDB in the “(materialization+serialization)” series. We also
checked that all three engines generated in the end the same amount of data while in serialization
mode and that they generated valid XML documents (in particular, special characters were replaced
by their corresponding XML entities —for instance “&” is rendered as“&”—).

From the results of Figure 10, we see how the different components of SXSI contribute to the
efficient evaluation model. Fully qualified paths, such as queries X01–03 and X5 illustrate the sheer
speed of the tree structure and in particular the efficiency of its basic operations (such as FirstChild
and NextSibling, which are used for the child axis), as well as the efficient execution scheme
provided by the automaton. The descendant axes (used, e.g., in X04, X06, X10–12) show the impact
of the jumping primitives and the computation of relevant nodes. Complex filters (X06–12) show
how the alternating automata can efficiently evaluate complex Boolean formulas corresponding
to structural conditions over subtrees of a given node, including negations of paths and nested
predicates. Finally, X12 to X17 illustrate the robustness of our automaton model. Indeed while
such queries might seem unrealistic, the good performances that we obtain are the combination of
(i) using an automata based evaluator (which factors in the states of the automaton all the necessary
computation and thus do not materialize unneeded intermediate results) and (ii) our implementation
of lazy result sets, which shifts the burden of walking through the document as much as possible to
the serialization process.

As for Treebank queries, the results are reported in Figure 11. As one can see, SXSI behaves
well for simple queries (such as T01) and for more complex ones (T02, T04 and T05). An important
point is also the following one: the running times for all queries and for all engines are much worse
than the ones obtained for larger XMark documents. It seems that, despite using three different
approaches (tree automata+jump, staircase join or Qizx’s proprietary one), a high number of distinct
paths and labels impact query results much more than the final node count.

Jumping and memoization of computations As the experiments of the previous section show,
SXSI often outperforms MonetDB and Qizx. To better highlight how the optimizations described in
Sections 5.4 and 5.5 impact the running time of Algorithm 5, we selectively disabled some of them
and executed queries X01 to X17 on a 116MB XMark document. The results are shown in Figure 12.
The first bar of each cluster gives the running time of a naive version of the TopDownRun algorithm,
where each node of the document is traversed and the computation of the next transitions to evaluate

27

116MB (counting)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

1.8

6.5

11.2

16.1

12.9

18.5

21.5

18.7

24.2

35.5

94.5

29.9

2.3

1.5

2.2

2.8

122.9

7.4

13.1

18.8

16.8

22.3

17.8

24.6

38.1

48.9

34.7

130.4

+++

126.5

41.2

149.6

254.3

345.2

3.6

13.8

35.6

86.8

31.6

30.8

85.4

177.4

96.0

129.2

300.0

27.6

4.8

1.6s

11.3s

41.8s

71.1s

116MB (materialization)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

1.8

6.7

11.2

16.5

13.0

19.1

22.1

19.3

25.0

35.9

95.7

30.6

2.3

1.5

2.2

2.6

123.9

7.0

12.7

17.8

16.0

21.6

17.0

23.9

37.0

48.1

35.3

127.7

+++

124.6

38.2

148.1

253.5

344.6

116MB (mat. + serialization)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

256.0

277.0

15.0

54.0

15.0

23.0

25.0

32.0

30.0

101.0

166.0

80.0

555.0

3.9s

4.1s

3.3s

2.9s

480.0

486.0

27.0

85.0

28.0

27.0

31.0

60.0

59.0

139.0

234.0

+++

1.3s

6.6s

5.9s

5.2s

3.6s

1.2s

1.3s

111.0

6.6s

91.6

131.2

154.2

151.8

171.4

482.6

622.6

276.4

2.7s

28.4s

+++

+++

+++

1GB (counting)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

1.8

44.6

85.1

144.5

100.0

161.2

185.5

159.1

203.5

315.4

745.8

230.9

2.3

1.5

1.9

2.7

1.2s

38.8

632.2

235.6

1.0s

303.1

285.5

556.9

682.9

707.0

1.2s

2.1s

+++

2.2s

1.4s

2.3s

3.2s

4.3s

5.8

36.2

185.0

186.8

127.6

180.8

234.2

502.4

491.4

340.2

86.3s

308.4

7.0

+++

+++

+++

+++

1GB (materialization)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

1.8

45.4

86.0

144.3

99.6

160.7

185.7

160.5

210.1

311.9

759.5

237.4

2.3

1.5

1.9

2.7

1.2s

81.4

633.6

269.6

1.0s

318.2

294.9

544.3

659.8

695.1

1.2s

2.1s

+++

2.2s

+++

+++

3.3s

4.2s

1GB (mat. + serialization)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

X
0

1
X

0
2

X
0

3
X

0
4

X
0

5
X

0
6

X
0

7
X

0
8

X
0

9
X

1
0

X
1

1
X

1
2

X
1

3
X

1
4

X
1

5
X

1
6

X
1

7

%
o

f
S

X
S

I

2.5s

2.6s

125.0

504.0

120.0

200.0

211.0

284.0

266.0

944.0

1.4s

702.0

5.3s

37.3s

37.4s

31.9s

28.2s

9.6s

8.2s

2.3s

13.4s

2.3s

2.3s

1.9s

1.9s

2.0s

13.8s

14.7s

+++

19.7s

+++

+++

47.6s

37.3s

94.4s

11.9s

549.6

+++

433.4

77.6s

502.8

927.4

687.2

5.3s

+++

2.1s

+++

+++

+++

+++

+++

S
X

S
I

q
u

ery
tim

e
S

X
S

I
serializatio

n
tim

e
M

o
n

etD
B

q
u

ery
tim

e
M

o
n

etD
B

serializatio
n

tim
e

Q
izx

q
u

ery
tim

e
Q

izx
q

u
ery

+
serializatio

n
tim

e

+
+

+
:

q
u

ery
co

u
ld

n
o

t
b

e
ru

n
o

r
to

o
k

m
o

re
th

an
1

5
m

in
u

tes

F
ig

u
re

1
0
:

R
u
n
n
in

g
tim

es
fo

r
X

M
ark

q
u
eries,

in
m

illiseco
n
d
s

o
r

seco
n
d
s

an
d

as
p
ercen

t
o
f

S
X

S
I’s

sp
eed

.
L

o
w

er
b
ars

are
b
etter.

is
re-co

m
p
u
ted

fo
r

each
n
o
d
e.

In
o
th

er
w

o
rd

s,
in

th
is

ru
n
,

th
e
|D

|
(size

o
f

th
e

d
o
cu

m
en

t)
an

d
|Q

|

2
8

0

200

400

600

800

1000

T01 T02 T03 T04 T05

% of
SXSI 2

.3

3
5

6
.2

2
2

8
.5

9
.8

5
6

.3

1
1

.3

4
4

4
.0

2
9

8
.0

1
6

.4

1
4

3
.5

3
5

.8

3
4

0
.4

5
4

7
.1

1
6

.7

7
3

.9

0

200

400

600

800

1000

T01 T02 T03 T04 T05

% of
SXSI 2

.3

3
5

7
.4

2
2

8
.0

9
.9

5
6

.6

1
1

.1

4
4

4
.6

3
3

2
.6

1
6

.5

1
4

3
.8

0

200

400

600

800

1000

T01 T02 T03 T04 T05

% of
SXSI 9

6
6

.0

3
5

8
.0

7
1

0
.0

3
6

.0

5
7

.0

1
.7

s

4
4

6
.0

1
.3

s

7
7

.0

1
4

5
.0

3
.5

s

3
5

0
.8

2
.2

s

+
+

+

7
4

.8

SXSI query time
SXSI serialization time

MonetDB query time
MonetDB serialization time

Qizx query time
Qizx query + serialization time

+++ : query could not be run or took more than 15 minutes

Figure 11: Running times for Treebank queries, in milliseconds or seconds and as percent of SXSI’s
speed. From left to right, counting, materialization, and serialization times. Lower bars are better.

runtime in ms

1

10

102

103

104

105 1
.7

s

1
.8

s

3
5

0
.4

8
.5

s

5
2

9
.2

8
7

0
.3

1
.6

s

1
.4

s

3
.6

s

1
1

.2
s

1
6

.8
s

1
.8

4
5

.8

8
6

.0

1
0

8
.4

1
1

8
.0

4
7

9
.3

3
1

0
.7

3
3

3
.7

1
.0

s

1
.1

s

6
.0

s

1
2

9
.1

1
3

0
.4

2
3

.5

4
0

6
.4

2
4

.8

5
0

.6

4
1

.5

3
3

.2

7
2

.8

4
0

7
.1

4
2

6
.1

1
.8

7
.0

1
1

.6

1
6

.6

1
3

.5

1
9

.3

2
2

.6

1
9

.9

2
5

.5

3
7

.6

9
9

.9

runtime in ms

1

10

102

103

104

105 3
2

.5
s

3
8

.0
s

2
4

.7
s

4
7

.0
s

8
3

.2
s

1
0

4
.4

s

8
.4

s

2
.4

1
.5

1
.9

2
.8

8
1

1
.7

3
9

6
.1

3
9

1
.6

4
9

0
.8

5
2

2
.4

5
4

5
.9

5
5

1
.9

3
1

.1

2
.4

1
.5

1
.9

2
.8

1
2

1
.6

Naive execution
Jumping to relevant nodes, with no caching
Caching of computations, with no jumping
All optimization enabled

Figure 12: Impact of jumping and hash-consing on the running time of TopDownRun (Figure 5).
Logarithmic scale, lower bars are better.

(size of the automaton/query) factors are paid in full. Here we can see that query answering time
depends on both the size of the query (which increases from X01 to X12) but also the number of
selected nodes (e.g., X14 is a short query but selects all nodes, causing memory allocations and
result sets book-keeping —which are expensive operations— for each node in the document).

The second bar in each cluster reports query answering time when computation and jumping to
relevant nodes are performed (but these computations are not memoized). This includes not only
jumping to relevant nodes, but also discarding whole subtrees and using the constant-time subtree
counting function of the tree interface (Section 5.5.4). It comes to no surprise that skiping nodes
aggressively yields important speed-ups in query answering time (some queries being translated
into a single low-level function call). However queries such as X17 show the limit of the approach.
For these queries (//*//*//* and //*//*//*//* resp.) the engine reaches all the element nodes
at depth 3 (resp. 4) and select in constant time the set of elements in their subtrees. Because of
the shape of the document, there are much more nodes at depth 4 than at depth 3, and therefore the
automaton has to traverse more nodes to touch all those at depth 4. This explains why the inpact of
jumping is much lower for query X17 than it is for X16.

The third bar in each cluster reports query answering time of a version of the TopDownRun

that traverses the whole document, but memoizes the computations of Line 4, 5 and 8 in Figure 5
in look-up tables. This also decreases the query answering time greatly. Furthermore since this

29

0
5

10
15
20
25
30
35
40

X01
X02

X03
X04

X05
X06

X07
X08

X09
X10

X11
X12

X13
X14

X15
X16

X17

Memory use in MB (without index)

1

10

102

103

104

105

106

107

X01X02X03X04X05X06X07X08X09X10X11X12X13X14X15X16X17

Number of nodes

\\\\\ Result nodes Visited nodes Marked

nodes Number of element nodes

Figure 13: On the left, memory use in MB for XMark 116MB documents (excluding the index). On
the right, comparison of visited, marked and result nodes for each query (logarithmic scale).

technique does not rely on a particular index, it shows that it would also benefit more traditional
“DOM-based” query engines which lack the low-level jumping primitives.

Lastly, the fourth bar reports query answering time with both optimizations enabled. Here we
see that the jumping optimization is further improved by the memoization: the somewhat expensive
process that computes the next relevant node and the corresponding jump function, is stored in a
look-up table and can be accessed in constant time when the automaton reaches again the same
configuration.

Memory use and precision While it is straightforward to predict the memory consumption of our
engine with respect to the index part (the full index is mapped in memory excluding the auxiliary
text, see Figure 8), the behaviour of the automaton evaluation function is unclear. Indeed, to speed-
up the computation we create memoization tables, we handle partial result sets, and we perform
recursive procedures that might be as deep as the binary encoding of the XML document (since we
recurse on FirstChild and NextSibling move) thus increasing the size of the call stack.

We report in Figure 13 (left) the memory consumption for the automata evaluation of
materialization queries. This includes the size of the recursive call stack, the size of OCaml’s heap
(which is grown dynamically by OCaml’s garbage collector to accommodate the memory need). On
the heap are allocated the memoization tables, intermediary structures and final result sets. As one
can see, the memory use is very modest, peaking at 32 MB for query Q11. While we do not compare
directly with MonetDB or QizX for memory consumption (since these engines try to maximize the
memory used to achieve better speed) we see that we can reach comparable (if not greater) speed
while being very conservative memory wise.

To gauge the precision of our automata based approach, we report in Figure 13 (right) for each
query:

• the number of visited nodes (that is, the number of nodes onto wich the TopDownRun

function is called);

• the number of marked nodes (that is, the number of nodes that are marked as potential results
during the evaluation);

• and finally the number of result nodes for the query.

A first observation is that the number of marked nodes is almost always the same as the number
of result nodes. In particular, for queries of the form:

/axis::step/. . ./axis::step[pred]

we only mark nodes that are part of the final result (the first part of the path is resolved during
the top-down phase, while the filter is validated during the bottom-up phase. Thus once reaching a
potential result the automaton has recognized its path to the root as well as its subtree and can decide
whether to select it or not). For general queries, the experimental results show that early evaluation

30

of Boolean formulas, helps to decide early during query evaluation whether a node is indeed a result
or not (even though some nodes are still selected and discarded later on). Another point of interest
is that for several queries (X02, X04, X14–X17) we only visit result nodes. While this might be
expected for queries X14–X17, for which virtually every node is a result, queries such as X02 or
X04 are very selective. However, these queries provide enough information for the runtime analysis
of relevant nodes to be exact and therefore only touch result nodes. In general of course, the number
of traversed node is larger than the number of resulting nodes but always far less than the whole
document. Queries X14 to X17 show the impact of lazy result sets where we mark several nodes
(whole subtrees actually) in one function call, and therefore manage to return more nodes than we
have actually visited.

Lastly, we can see that the shapes of the “Visited Nodes” curve in Figure 13 (right) and the
memory use (Figure 13 left) are quite similar (the former being flattened by the logarithmic scale).
This (quite expectedly) shows that the number of visited nodes (and not the number of result nodes
or intermediary results) impacts directly the memory consumption of our query engine.

6.6 XPath Text Queries

In this section we illustrate how our approach can leverage the speed of the underlying text engine.
Evaluation of text queries is performed as follows:

1. we determine during parsing whether the query can be run using the BottomUp algorithm
(Section 5.4.2)

2. we determine whether the text predicates (starts-with, ends-with, contains, . . .) is
applied to a single text node; for example if the context node in the XPath expression is
reached using “axis::text()” or if the content of a selected element is known to be PCDATA
(this information is kept in the index). If that is the case we use the FMIndex and run the
query bottom-up. Otherwise we revert to using the naive text representation to ensure that the
semantics of the XPath text function is preserved, and run the query using the TopDownRun

algorithm.

Here, the check in Step 2 is necessary to implement the semantics of XPath’s text predicates over
mixed content. Indeed, for such elements (containing both text and other elements) the semantics is
to first create a text node resulting in the concatenation of all text elements and only then to perform
the text predicate. For instance, on the document

<a>012345

the following query returns the root node as a result (i.e., the predicate evaluates to true):
/child::a[contains(. , "1234")] .

Since the text value of “.” (that is, the root node) is the concatenated string “012345” which indeed
contains the substring “1234”. While this “feature” of text predicates is rarely used in practice, its
presence in the XPath specification can hinder the efficiency of “normal” text queries.

6.6.1 FM-Index

For this experiment, we compared the generic version of XPath text searching function (such as
contains, ends-with and start-with) for all three engines on a 659MB Medline document (used
to store biblographic data about medical publications). The queries we used for this experiment are
given in Figure 14. In queries M01, M03 and M04, SXSI can use the FM-Index but cannot run
bottom-up, since they feature complex filters. On the other hand, queries M02 and M05–M09 can
be run purely bottom-up. Lastly, queries M10 and M11 need to use the “naive” text collection since
the string that is searched for could overlap several text elements of the TextCollection (for M10,
the MedlineCitation element has mixed content while for M11 it is not known at query compile
time which element will be searched for the text).

The timings for these queries for all three engines are given in Figure 15.

31

M01 //Article[.//AbstractText[contains (., "foot") or contains(. , "feet")]] ↓,N
M02 //Article[.//AbstractText[contains (. , "plus")]] ↑,N
M03 //Article[.//AbstractText[contains (. , "plus") or contains (. , "for")]] ↓,N
M04 //Article[.//AbstractText[contains (. , "plus") and not(contains (. , "for"))]] ↓,N
M05 //MedlineCitation/Article/AuthorList/Author[./LastName[starts-with(. , "Bar")]] ↑,N
M06 //*[.//LastName[contains(., "Nguyen")]] ↑,N
M07 //*//AbstractText[contains(., "epididymis")] ↑,N
M08 //*[.//PublicationType[ends-with(., "Article")]] ↑,N
M09 //MedlineCitation[.//Country[contains(. , "AUSTRALIA")]] ↑,N
M10 //MedlineCitation[contains(. , "blood cell")] ↓, ◦

M11 //*/*[contains(. , "1999\n11\n26")] ↓, ◦

↓: can be evaluated using the TopDownRun Alg. only

↑: can be evaluated using the BottomUpRun Alg.

N: can use the FM-Index

◦: can only use the naive index

Figure 14: Text oriented XPath queries over Medline and their evaluation strategies

The interpretation of the histograms is the same as for the tree oriented queries. For queries
M01–M09, for which the FM-index can be used, we also give a table with the details of the amount
of time spent querying the whole text collection for matches and the amount of time spent traversing
the tree with the automaton. We also give the number of matches of the query.

As expected, in the case where queries can be evaluated in a bottom-up fashion the improvement
in running time is of several orders of magnitude. Even when this is not the case, the improvement
of using the FM-Index over the naive substring search completely justifies the somewhat longer
indexing time and memory use. Lastly, for queries where the naive text representation must be
used, the fact that our tree representation alows to return in constant time the set of texts that occurs
as descendant of a given node allows us to avoid costly materialisation of large temporary text
elements (as we can see in query M11, Qizx seems to also manage to avoid allocations, yielding a
query answering time close to ours, while MonetDB seems to allocate large amounts of temporary
character buffers, which impacts query answering time).

6.6.2 Word-based text index

The loose coupling of SXSI’s components (automata based query engine, succinct tree index and
text index) allows us to readily plug other sorts of tree structures or text indices. The text collection
presented in Section 3 achieves exact symbol-based text pattern-matching at the cost of indexing
time and query time for large results. We show in this section how one can choose another trade-
off, by pluging in the simple word-based text index of [20]. This index achieves high indexing
and querying speed, with little memory by limiting queries at a word boundary. In this index,
distinct words are treated as distinct symbols and the text collection is therefore viewed as a suffix
array over a very large alphabet (the alphabet size is the number of distinct words in the original
text). We compare SXSI equipped with this index to the full-text extension of Qixz. This extension
implements the XQuery Full-Text facility [68] which allows to perform token-based (essentially
word-based) queries. We used the queries in Figure 16 to test both indexes. While in this figure
we used the “contains” function for conciseness, Qizx queries are implemented using the special
“ftcontains” operator (which performs word based queries).

We tested queries for both Qizx and SXSI on the 122MB Medline document and for SXSI only4

on a 2.3GB mediawiki document (a snapshot of the english “wiktionary” [66]). The results of the
experiment are given in Table 7. As we can see, even when both SXSI and Qizx are allowed to make
use of an efficient index, SXSI’s bottom-up evaluation strategy clearly improves query answering

4Unfortunately only the standard version of Qizx hits a hard-limit of around 2GB for a single document (while the
commercial “XL” version of the engine supports documents of 1TB).

32

Counting

0

200

400

600

800

1000

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11

% of
SXSI 1

6
5

.8

1
5

.4

4
7

1
.4

4
7

1
.1

3
0

.1

6
.6

6
.4

1
.1

s

1
0

.7

7
4

3
.3

1
3

.6
s

7
.2

s

6
.7

s

7
.2

s

6
.7

s

7
.0

s

9
.3

s

7
.2

s

8
.7

s

6
.7

s

2
7

.7
s

1
2

1
.5

s

4
.5

s

4
.3

s

4
.4

s

4
.4

s

1
.5

s

8
.8

s

1
1

.8
s

7
.6

s

4
.8

s

5
.9

s

1
5

.0
s

Materialisation

0

200

400

600

800

1000

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11

% of
SXSI 1

6
5

.9

1
5

.4

5
0

0
.3

4
7

4
.4

3
0

.8

6
.6

6
.2

1
.3

s

1
0

.7

7
4

0
.7

1
3

.7
s

7
.1

s

6
.5

s

7
.0

s

6
.5

s

6
.8

s

9
.1

s

7
.1

s

8
.5

s

6
.7

s

2
7

.9
s

1
1

4
.4

s

Materialisation + Serialization

0

200

400

600

800

1000

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11

% of
SXSI 1

7
2

.0

3
1

.0

1
.1

s

4
7

8
.0

3
6

.0

2
.7

s

7
.0

8
.1

s

2
2

.0

7
5

4
.0

1
3

.7
s

7
.1

s

6
.6

s

8
.7

s

6
.5

s

6
.8

s

1
7

.8
s

7
.1

s

2
8

.9
s

6
.7

s

2
8

.0
s

1
1

4
.4

s

4
.6

s

4
.5

s

8
.0

s

4
.4

s

1
.6

s

2
5

.0
s

1
1

.9
s

4
7

.3
s

4
.9

s

6
.0

s

1
5

.0
s

Detail of SXSI’s running time

Query # results Text Auto. Total
M01 422 7.0 169.2 176.2
M02 1,009 6.2 9.7 15.9
M03 50,305 278.6 214.6 493.2
M04 219 272.3 210.0 482.3
M05 2,432 4.5 25.1 29.6

Query # results Text Auto. Total
M06 412 4.8 2.2 7.0
M07 48 2.8 5.3 8.1
M08 516,577 195.1 1,116 1,311
M09 832 3.2 7.1 7.3

SXSI query time
SXSI serialization time

MonetDB query time
MonetDB serialization time

Qizx query time
Qizx query + serialization time

+++ : query could not be run or took more than 15 minutes

Figure 15: Running times for Medline queries, in milliseconds or seconds and as percent of SXSI’s
speed. Lower bars are better.

W01 //Article[.//AbstractText[contains (., "blood sample")]]
W02 //Article[.//AbstractText[contains (., "is such that")]]
W03 //Article[.//AbstractText[contains(., "various types of") and contains(., "immune cells")]]
W04 //Article[.//AbstractText[contains(., "of the bone marrow")]]
W05 //Article[.//AbstractText[contains(., "cell") and not(contains(., "blood"))]]

W06 //text[contains (., "dark horse")]
W07 //text[contains (., "horse") and contains(., "princess")]
W08 //page/child::title[contains (., "crude oil")]
W09 //page[.//text[contains(., "played on a board")]]/title
W10 //page[.//text[contains(., "whether accidentally or purposefully")]]/title

Figure 16: Word-based queries on Medline (W01–W05) and Wikimedia (W06–W10) documents

33

Table 7: Experimental results for word-based text queries
Query W01 W02 W03 W04 W05 W06 W07 W08 W09 W10

SXSI (ms) 5.7 4.9 136.8 5.7 143.5 10.5 1600 10.6 7.8 10.2
Qizx (ms) 86.3 78.3 137.3 158.0 150.7 – – – – –

<!ELEMENT chromosome (name, gene*) >
<!ELEMENT name #PCDATA >
<!ELEMENT gene (name, strand, biotype, status,

description?, promoter, sequence, transcript*) >
<!ELEMENT strand #PCDATA >
<!ELEMENT biotype #PCDATA >
<!ELEMENT status #PCDATA >
<!ELEMENT description #PCDATA >
<!ELEMENT promoter #PCDATA >
<!ELEMENT sequence #PCDATA >
<!ELEMENT transcript (name, start, end, exon*,

sequence, protein?) >
<!ELEMENT start #PCDATA >
<!ELEMENT end #PCDATA >
<!ELEMENT exon (name, start, end, sequence) >

Figure 17: DTD for bio-genetic data

time (all queries but W03, W05 and W06 can be answered in 10ms or less). For queries that involve
several text predicates (i.e., that need to be evaluated in a top-down fashion) SXSI and Qizx performs
similarly (and efficiently, even for large documents).

6.7 Biological Sequence Queries

As a last experiment we demonstrate the versatility of SXSI by showing that it can be used as a very
efficient biological database manager, answering queries which make use of both the tree structure
and a tailored text index. More precisely, we create XML files that combine gene annotations
with their DNA sequences. A sample DTD for these files is given in Figure 17. In this DTD, the
elements promoter and sequence are of particular interest: they store the DNA represented as long
sequences of A, T, C, G characters. The other #PCDATA elements store the gene annotation data such
as positions, names and so on.

Our experiment data is composed from human chromosome five5 which contains 2,719 genes
having in total 8,330 different transcripts. For each gene we include 1,000 base pairs of its upstream
promoter sequence, the gene sequence itself (all exons and introns included), and annotation
information such as gene’s biotype and description. Additionally, we include all known transcripts
of each gene, that is, sequences of the exons they contain as well as the concatenation of these
exons. The resulting textual content is highly repetitive since each one of the exon sequences can
appear in many transcripts. Highly repetitive data has been shown to compress well using certain
run-length encoded text indexes [48], thus, here the text index implementation is switched to use
RLCSA [48] instead of the FM-index. In this example, the final XML file6 is 132 MB while the text
index requires only 63 MB of memory plus 59 MB for the samples array. The full index, including
tree and text, is around 135 MB, that is only as big as the original document. The resulting XML
document contains 323,318 elements, of which 65,286 are either promoter or sequence nodes
containing genetic data.

To do biologically relevant XML queries, we extend our engine to support PSSM queries
(Position Specific Scoring Matrix) which allow us to search for transcription factor binding sites

5Ensemble Human genome release 59, August 2010.
6http://www.cs.helsinki.fi/group/suds/sxsi/data/

34

query # results Text Auto Total
//promoter[PSSM(., M1)] 134 85.1 7.40 92.5
//promoter[PSSM(., M2)] 4 4.4 1.15 5.5
//promoter[PSSM(., M3)] 1 6.5 0.38 7.0
//exon[.//sequence[PSSM(., M1)]] 434 85.5 7.50 92.6
//exon[.//sequence[PSSM(., M2)]] 25 4.3 1.28 5.6
//exon[.//sequence[PSSM(., M3)]] 9 6.4 0.62 7.0
//*[PSSM(., M1)] 1,875 85.0 7.60 92.6
//*[PSSM(., M2)] 184 4.3 1.19 5.5
//*[PSSM(., M3)] 51 6.4 0.58 6.9

M1 : Jaspar ID =
MA0031.1, length = 8,
threshold = 5,000

M2 : Jaspar ID =
MA0050.1, length = 12,
threshold = 100,000

M3 : Jaspar ID =
MA0017.1, length = 14,
threshold = 300,000

Figure 18: Running times for PSSM queries (in ms).

from genes’ promoter regions. The input for this query is a Position Frequency Matrix (PFM) and a
minimum threshold for a valid match. The matrices can be found from the Jaspar database [37].

In a nutshell, PFMs have one row for each symbol of the alphabet (in our case 4 rows A, T, C, G)
and one column for each position in the pattern to search. For instance, the PFM:

A 0 20 10 1
T 30 10 0 0
C 0 0 10 20
G 18 6 6 6

denotes patterns of length four, and the substring AGCT would get the score 0 + 6 + 10 + 10 =
26. To form the PSSM query, the PFM matrix is first converted into log-odds form to take into
account the uneven background distribution of nucleotide frequences. Then the PSSM query takes
such a matrix as well as a threshold and returns all text elements whose content scores more than
the given threshold. Figure 18 gives the running times for XPath queries using the PSSM predicates
and RLCSA, with block size 128 and sample rate 16, as the text index. The table summarizes also
the number of results, the length of the search pattern and the value of the threshold.

It is interesting to remark that since the document has a very flat and shallow structure, the
automaton/tree part of the query evaluates always very quickly (7ms or under). The PSSM scheme
also allows us to write biologically meaningful queries that would otherwise be impossible or very
hard to write with regular expressions or a regular full-text extension. Yet, we did not have to
modify our core engine, only the text index was modified in isolation to add PSSM capabilities; the
automata and tree machinery remained unchanged.

7 Conclusions and Future Work

We have presented SXSI, a system for compact in-memory representation of an XML collection and
for fast indexed XPath queries over the representation. Even in its current prototype stage, SXSI is
already competitive with well-known efficient systems such as MonetDB and Qizx. A number of
avenues for future work are open. We mention the broadest ones.

Handling updates to the collections is possible in principle, as there are dynamic data structures
for sequences, trees, and text collections [16, 47, 61, 13, 56]. However, their practicality has not
yet been established, nor how they relate to classical schemes that maintain a log of changes and
reindex periodically.

The compact data structures used in SXSI support several fancy operations beyond those actually
used by our XPath evaluator. A matter of future work is to explore other evaluation strategies that
take advantage of those nonstandard capabilities. As an example, the current XPath evaluator does
not use the range search capabilities of the structure Doc of Section 3. This could be useful in the
case of top-down evaluation of queries that contain non-selective text searches; after a top-down
phase the search on Doc could be restricted to the range of a particular subtree.

35

An interesting challenge is to support XPath string-value semantics, where strings spanning more
than one text node can be searched for. This, at least at a rough level, is not hard to achieve with our
FM-index, by removing the $-terminators and marking them on a separate bitmap instead.

We would like to extend our implementation to full XPath 1.0, and to add core functionalities of
XQuery. A first step here is to add backward axes to our XPath fragment. Ideally, we would like
to extend the lazy on-the-fly determinzation procedure of our automata, to a lazy remove-backward
procedure which removes backward axes during the run of the automaton. We do however need to
execute automata with backward axes too, because not every query can be rewritten into a forward
one (see Section 3.2 of [7]). Even with backward axes and with the semi-joins of XPath, evaluation
can be done in linear time (cf. [10]) and should be fast and predictable in SXSI. This efficiency will
have to be given up in general, when we want to support more complex features such as numerical
operations and loops of XQuery.

Acknowledgements

We would like to thank Schloss Dagstuhl for the very pleasant and stimulating research environment
it provides; the work of this paper was initiated during the Dagstuhl seminar “Structure-Based
Compression of Complex Massive Data” (Number 08261). In particular, the idea of sorting
according to endmarkers came alive during the meeting, as briefly sketched in the report [12],
and was then independently developed in different directions [4, 13]. We are grateful to Kunihiko
Sadakane for making available to us his implementation of parentheses structure for succinct trees,
and to Juha Karjalainen for composing the BioXML data. Diego Arroyuelo and Francisco Claude
were partially funded by NICTA, Australia. Francisco Claude was partially funded by NSERC
of Canada and the Go-Bell Scholarships Program. Diego Arroyuelo and Gonzalo Navarro were
partially funded by Fondecyt Grant 1-110066, Chile. Gonzalo Navarro was partially funded
by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F,
Mideplan, Chile. Veli Mäkinen and Jouni Sirén were partially funded by the Academy of Finland
under grant 1140727. Niko Välimäki was partially funded by the Helsinki Graduate School in
Computer Science and Engineering.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison
Wesley, 1986.

[2] D. Arroyuelo. An improved succinct representation for dynamic k-ary trees. In CPM, pages
277–289, 2008.

[3] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice. In
ALENEX, pages 84–97, 2010.

[4] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro, K. Nguyen, J. Sirén, and
N. Välimäki. Fast in-memory XPath search using compressed indexes. In ICDE, pages 417–
428, 2010.

[5] D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-index. In
CPM, pages 319–330, 2006.

[6] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for compressed
rank/select and applications. In ISAAC (2), pages 315–326, 2010.

[7] M. Benedikt and C. Koch. XPath leashed. ACM Comput. Surv., 41(1), 2008.

36

[8] D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing trees
of higher degree. Algorithmica, 43(4):275–292, 2005.

[9] H. Björklund, W. Gelade, M. Marquardt, and W. Martens. Incremental XPath evaluation. In
ICDT, pages 162–173, 2009.

[10] M. Bojanczyk and P. Parys. Xpath evaluation in linear time. J. ACM, 58(4):17, 2011.

[11] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In SIGMOD,
pages 479–490, 2006.

[12] A. Bonifati, G. Leighton, V. Makinen, S. Maneth, G. Navarro, and A. Pugliese. An in-
memory XQuery/XPath engine over a compressed structured text representation. In Structure-

Based Compression of Complex Massive Data. Dagstuhl Seminar Proceedings 08261. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

[13] S. Böttcher, A. Bültmann, and R. Hartel. Search and modification in compressed texts. In
DCC, pages 403–412, 2011.

[14] S. Böttcher, R. Hartel, and C. Heinzemann. BSBC: Towards a succinct data format for XML
streams. In WEBIST, pages 13–21 (vol. 1), 2008.

[15] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[16] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dynamic text
collections. ACM Trans. Algorithms, 3(2), 2007.

[17] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In SPIRE,
pages 176–187, 2008.

[18] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. http://www.grappa.univ-
lille3.fr/tata, 2007.

[19] S. Conchon and J.-C. Filliâtre. Type-Safe Modular Hash-Consing. In Proc. ACM SIGPLAN

Workshop on ML, 2006. http://www.lri.fr/∼filliatr/ftp/publis/hash-consing2.ps.

[20] A. Fariña, N. Brisaboa, G. Navarro, F. Claude, A. Places, and E. Rodríguez. Word-based
self-indexes for natural language text. ACM Trans. Inform. Syst., 30(1), 2012.

[21] M. F. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing XQuery 1.0: The
Galax experience. In VLDB, pages 1077–1080, 2003.

[22] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In FOCS, pages 184–196, 2005.

[23] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and searching XML
data via two zips. In WWW, pages 751–760, 2006.

[24] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 54(4):552–581, 2005.

[25] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Trans. Algorithms, 3(2), 2007.

37

[26] M. Franceschet. XPathMark: An XPath benchmark for the XMark generated data. In XSym,
pages 129–143, 2005.

[27] M. Franceschet. XPathMark: Functional and performance tests for XPath. In XQuery

Implementation Paradigms, 2007. http://drops.dagstuhl.de/opus/volltexte/2007/892.

[28] R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for balanced
parentheses. In CPM, pages 159–172, 2004.

[29] P. Genevès and N. Layaïda. XML reasoning made practical. In ICDE, pages 1169–1172,
2010.

[30] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool for text
indexing. In SODA, pages 368–373, 2006.

[31] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM

Trans. Database Syst., 30(2):444–491, 2005.

[32] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata and stream indexes. ACM Trans. Database Syst., 29:752–788, 2004.

[33] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In SODA,
pages 841–850, 2003.

[34] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a relational DBMS to watch its
(axis) steps. In VLDB, pages 524–525, 2003.

[35] H. Hosoya. Foundations of XML Processing: The Tree Automata Approach. Cambridge
University Press, 2010.

[36] G. Jacobson. Space-efficient static trees and graphs. In FOCS, pages 549–554, 1989.

[37] JASPAR database. http://jaspar.genereg.net.

[38] M. Kay. Ten reasons why Saxon XQuery is fast. IEEE Data Eng. Bull., 31(4):65–74, 2008.

[39] C. Koch. Efficient processing of expressive node-selecting queries on XML data in secondary
storage: a tree automata-based approach. In VLDB, pages 249–260, 2003.

[40] C. Koch, S. Scherzinger, and M. Schmidt. The GCX system: Dynamic buffer minimization in
streaming xquery evaluation. In VLDB, pages 1378–1381, 2007.

[41] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu. Compressed indexing and
local alignment of DNA. Bioinformatics, 24(6):791–797, 2008.

[42] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10(3), 2009.
R25.

[43] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[44] L. Libkin and C. Sirangelo. Reasoning about XML with temporal logics and automata. J.

Applied Logic, 8:210–232, 2010.

[45] V. Mäkinen and G. Navarro. Implicit compression boosting with applications to self-indexing.
In SPIRE, pages 229–241, 2007.

38

[46] V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theor. Comput. Sci.,
387(3):332–347, 2007.

[47] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text indexes.
ACM Trans. Algorithms, 4(3), 2008.

[48] V. Mäkinen, G. Navarro, J. Siren, and N. Välimäki. Storage and retrieval of highly repetitive
sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

[49] S. Maneth and K. Nguyen. XPath whole query optimization. PVLDB, 3(1):882–893, 2010.

[50] S. Maneth and T. Sebastian. Fast and tiny structural self-indexes for XML. CoRR,
abs/1012.5696, 2010.

[51] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430, 2001.

[52] J. McHugh and J. Widom. Query optimization for xml. In VLDB, pages 315–326, 1999.

[53] I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees and
planar graphs. In FOCS, pages 118–126, 1997.

[54] J. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM J. Comp., 31:762–776, 2001.

[55] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv., 39(1), 2007.

[56] G. Navarro and Y. Nekrich. Optimal dynamic sequence representations. In SODA, pages
865–876, 2013.

[57] F. Neven. Automata theory for XML researchers. SIGMOD Record, 31:39–46, 2002.

[58] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In
ALENEX, 2007.

[59] D. Olteanu. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans. Knowl. Data

Eng., 19(7):934–949, 2007.

[60] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In SODA, pages 233–242, 2002.

[61] K. Sadakane and G. Navarro. Fully-functional static and dynamic succinct trees. In SODA,
pages 134–149, 2010.

[62] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A
benchmark for XML data management. In VLDB, pages 974–985, 2002.

[63] T. Schwentick. Automata for XML - a survey. J. Comput. Syst. Sci., 73:289–315, 2007.

[64] Signum. Tauro. http://tauro.signum.sns.it/, 2008.

[65] J. Sirén. Compressed suffix arrays for massive data. In SPIRE, pages 63–74, 2009.

[66] English Wiktionary. http://en.wiktionary.org/.

[67] XML Mind products. Qizx XML query engine. http://www.xmlmind.com/qizx, 2007.

[68] XQuery and XPath Full Text 1.0. http://www.w3.org/TR/xpath-full-text-10.

39

