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Abstract: This article addresses the problem of classification method based on

both labeled and unlabeled data, where we assume that a density function for labeled

data is different from that for unlabeled data. We propose a semi-supervised logistic

regression model for classification problem along with the technique of covariate

shift adaptation. Unknown parameters involved in proposed models are estimated

by regularization with EM algorithm. A crucial issue in the modeling process is the

choices of tuning parameters in our semi-supervised logistic models. In order to select

the parameters, a model selection criterion is derived from an information-theoretic

approach. Some numerical studies show that our modeling procedure performs well

in various cases.

Key Words and Phrases: Covariate shift; EM algorithm; Model selection; Reg-

ularization; Semi-supervised learning.

1 Introduction

In recent years, with the wide availability of fast and high-powered computers, high-

throughput data of unexampled size and complexity have frequently been seen in the

contemporary statistics and machine learning. Examples involve data from genomics,

proteomics, natural language processing, and signal processing. For the huge amount of

data, it is difficult to label data by a human operator, since its work requires vast times and

efforts. Only small labeled data set may, therefore, be available, while an unlabeled data

set can be more easily obtained. Under such a circumstance, a classification method that
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combines both labeled and unlabeled data, called semi-supervised learning, has received

an enormous amount of attention in the late machine learning and statistical literature

(see, e.g., Chapelle et al., 2006; Liang et al., 2007). For overviews of semi-supervised

learning methods, we refer to Zhu (2008), and references given therein.

Many classification techniques for semi-supervised learning have been proposed by

various researchers, e.g., Amini and Gallinari (2002), Basu et al. (2004), Bennett and

Demiriz (1998), Chen and Wang (2007), Dean et al. (2006), Kawano and Konishi (2011),

Kawano et al. (2012), Lafferty and Wasserman (2007), and Zhou et al. (2004). Most of

these semi-supervised methods implicitly assumes that a density function for labeled data

is the same as that for unlabeled data. On the other hand, we, here, consider the case

that the densities for labeled data and unlabeled data are different, since the densities

are not always same in practical situations. In such a case, several semi-supervised meth-

ods have been presented, e.g., Jiang and Zhai (2007), Wu et al. (2009), and Zadrozny

(2004). However, for these methods, there remains a problem of evaluating constructed

semi-supervised models, which is a crucial issue in the model building process. Cross

validation (CV) is often used in evaluating models constructed by semi-supervised pro-

cedures. An advantage of CV lies in its independence from probabilistic assumptions.

The computational time of the procedures is, however, very large, and the high variabil-

ity and tendency to undersmooth in CV are not negligible in the analysis of complex or

high-dimensional data, since the selectors are repeatedly applied.

In this paper, we propose a logistic model for the semi-supervised classification prob-

lem by using statistical methods under covariate shift (Shimodaira, 2000) in the case

that the density function for labeled data is different from that for unlabeled data. The

unknown parameters in the model are estimated by the regularization method with the

help of EM algorithm. A crucial issue in our modeling strategy is to choose values of

some tuning parameters included in semi-supervised logistic models, which corresponds

to evaluating models determined by our proposed procedures. In order to objectively

select optimal values of tuning parameters, we then introduce a model selection criterion

based on an information-theoretic approach (Konishi and Kitagawa, 1996) that evalu-

2



ates the semi-supervised logistic models estimated by the regularization method. Some

numerical examples demonstrate that the proposed procedure works well and performs

better than competing methods.

This paper is organized as follows. In Section 2, we present a semi-supervised logistic

model for classification problem based on covariate shift adaptation and its estimation

procedure by the regularization method. Section 3 provides a model selection criterion

derived from an information-theoretic viewpoint to select some tuning parameters in semi-

supervised logistic models. In Section 4, Monte Carlo simulations and benchmark data

analysis are given to assess the performances of our proposed semi-supervised logistic

discrimination. Some concluding remarks are given in Section 5.

2 Semi-supervised logistic modeling from different

sampling distributions

2.1 Linear logistic modeling for semi-supervised learning

We review here semi-supervised linear logistic models developed by early researchers (e.g.,

Amini and Gallinari, 2002; Vittaut et al., 2002). Suppose that we have an n1 labeled data

set {(xα, yα);α = 1, . . . , n1} and an (n− n1) unlabeled data set {xα;α = n1 + 1, . . . , n},

where xα = (xα1, . . . , xαp)
T denotes a p-dimensional explanatory variable and Yα is a

random variable taking values 0 or 1 with probabilities

Pr(Yα = 1|xα) = π(xα), Pr(Yα = 0|xα) = 1− π(xα). (1)

Note that logistic models are first constructed by only labeled data set, while the unlabeled

data set is used in estimating the parameters involved in the logistic models.

Using conditional probabilities in Equation (1) and the labeled data set, a linear

logistic model (see, e.g., Hastie et al., 2009) is formulated by

log

{

π(xα)

1− π(xα)

}

= w0 +

p
∑

j=1

wjxαj = w
Tx∗

α, α = 1, . . . , n1, (2)

where w = (w0, w1, . . . , wp)
T is an unknown parameter vector and x∗

α = (1,xT
α)

T . Here-

after, we denote conditional probabilities by π(xα;w), since the conditional probabilities
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depend on the parameter vector w. It follows from Equation (2) that conditional proba-

bilities can be rewritten as

π(xα;w) =
exp(wTx∗

α)

1 + exp(wTx∗
α)
. (3)

Also, a probability function of the random variable Yα is the Bernoulli distribution in the

form

f(yα|xα;w) = π(xα;w)yα{1− π(xα;w)}1−yα, yα = 0, 1. (4)

Under the linear logistic model, the log-likelihood function for yα in terms of w is induced

into

ℓ(w) =

n1
∑

α=1

log f(yα|xα;w)

=

n1
∑

α=1

[yα log π(xα;w) + (1− yα) log{1− π(xα;w)}]

=

n1
∑

α=1

[

yαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

. (5)

The unknown parameter w included in the logistic model is usually estimated by

maximizing the log-likelihood function with respect to the parameter. The procedure

is known as the supervised learning, i.e., the parameter is determined by using only

labeled data set. Since we have an additional unlabeled data set, the parameter should

be estimated by both labeled and unlabeled data set, which is called the semi-supervised

learning. Thereby, Amini and Gallinari (2002) proposed a log-likelihood function with

additional unlabeled data given by

ℓ∗(w) =

n1
∑

α=1

[

yαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

+

n
∑

α=n1+1

[

tαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

, (6)

where tα (α = n1 + 1, . . . , n) is a latent variable coded as 0 or 1. Amini and Gallinari

(2002) estimated the parameter by maximizing the Equation (6) with the technique of

EM algorithm, while Kawano and Konishi (2011) employed the Equation (6) with a
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regularization term in estimating the parameter in the context of nonlinear logistic models

based on basis expansions.

Given the estimate ŵ, we assign a future observation xf into class j (j = 0, 1) that

has the maximum conditional probability in the Equation (3).

2.2 Semi-supervised logistic model for different distributions

Logistic models for semi-supervised learning described in Section 2.1 usually assumes that

a density function for the labeled data set is the same as that for the unlabeled data set,

i.e., when we denote that qlabel(x) is a probability density function of explanatory variables

for the labeled data and qunlabel(x) is that for the unlabeled data, qlabel(x) = qunlabel(x).

Our aim in this section is to construct logistic models under the situation that a density

for the labeled data set is different from that for the unlabeled data set, i.e., qlabel(x) 6=

qunlabel(x).

We recall the log-likelihood function for logistic models with unlabeled data in Equa-

tion (6). For the log-likelihood function, we propose a weighted log-likelihood function

with unlabeled data in the form

ℓ∗(w; γ1, γ2) =

n1
∑

α=1

{

qunlabel(xα)

qlabel(xα)

}γ1
[

yαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

+
n

∑

α=n1+1

{

qlabel(xα)

qunlabel(xα)

}γ2
[

tαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

, (7)

where γ1, γ2 ∈ [0, 1] are tuning parameters. If both γ1 and γ2 are 0, the log-likelihood

function in Equation (7) coincides with that in Equation (6). Note that the weight on the

first term, qunlabel(x)/qlabel(x), is bigger near high densities of unlabeled data compared

to those of labeled data, while that on the second term, qlabel(x)/qunlabel(x), is strengthen

near high densities of labeled data compared to those of unlabeled data. Hence, the log-

likelihood function on the first term is highly weighted near high densities of unlabeled

data compared to those of labeled data, while that on the second term has high weighting

near high densities of labeled data compared to those of unlabeled data. An idea of

the weight, the ratio of qlabel(x) and qunlabel(x), arises from a statistical inference under

covariate shift (Shimodaira, 2000). In the semi-supervised learning, employing a ratio of
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densities in log-likelihood functions is not new. For example, Kawakita and Kanamori

(2012), Sokolovska et al. (2008), and Zou et al. (2007) use a ratio of densities in the

semi-supervised inference. However, the Equation (7) is a novel formulation in the semi-

supervised context.

The Equation (7) includes unknown values of ratios, qunlabel(x)/qlabel(x) and qlabel(x)/qunlabel(x),

which are to be estimated. Various researchers address the problem of estimating the ra-

tios by using several methods of statistics or machine learning (Bickel et al., 2009; Huang

et al., 2007; Kanamori et al., 2009; Sugiyama et al., 2008; Sugiyama and Kawanabe,

2012; Sugiyama et al., 2012). In this paper, we employ a uLSIF method proposed by

Kanamori et al. (2009) in determining values of the ratios, where the determination is

performed before estimating the parameter w. Also, a source code of the method uLSIF

is available in http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF. We do

not follow details of the density ratio estimation procedure by the uLSIF method, since

these are not our focus in this paper. For readers that are interested in the topics, we

refer to Kanamori et al. (2009), and Sugiyama and Kawanabe (2012).

2.3 Parameter estimation via regularization

In estimating parameters in logistic models, the log-likelihood function often diverges to

infinity when the maximum likelihood method is applied (Konishi and Kitagawa, 2008).

Hence, the parameter vector w in Equation (7) is estimated by the regularization method.

The regularization method is to maximize a following regularized log-likelihood function

ℓ∗λ(w; γ1, γ2) = ℓ∗(w; γ1, γ2)−
n1λ

2
wTKw, (8)

where λ is a regularization parameter that has positive values and K = diag(0, Ip) is a

(p+ 1)× (p+ 1) matrix. Here, the matrix Ip is a p-dimensional identity matrix.

It is not easy to optimize the parameter involved in Equation (8), since the latent

variables tα (α = n1+1, . . . , n) are unobserved. Hence, we employ an EM-based algorithm

developed by Kawano and Konishi (2011) as follows:

Step1 Estimate the parameter vector w by maximizing the regularized log-likelihood
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function using only labeled data set {(xα, yα);α = 1, . . . , n1} along with the tech-

nique of Newton-Raphson method.

Step2 Construct a classification rule π(xα; ŵ).

Step3 (E-step) According to the classification rule in Step2, compute the conditional

probabilities π(xα; ŵ) for unlabeled data xα (α = n1 + 1, . . . , n). By using the

conditional probabilities, estimate tα in the form t̂α = π(xα; ŵ).

Step4 (M-step) Replace tα into t̂α in the regularized log-likelihood function (8), and then

determine the parameter vector w through the maximization of the log-likelihood

function in Equation (8) with the help of Newton-Raphson method.

Step5 Repeat the Step2 to the Step4 until the following condition

|ℓ∗λ(ŵ
(k+1); γ1, γ2)− ℓ∗λ(ŵ

(k); γ1, γ2)| < ε (9)

is satisfied, where ŵ(k) is the value of w after the k-th EM iteration and ε is an

arbitrary small number (e.g., 10−5).

It follows from these procedures that we obtain a statistical model in the form

f(y|x; ŵ) = π(x; ŵ)y{1− π(x; ŵ)}1−y. (10)

Note that the statistical model is constructed by using both labeled data and unlabeled

data.

3 Model selection criterion

The statistical model in Equation (10) contains some adjusted parameters including two

tuning parameters γ1, γ2 in the weighted log-likelihood function and the regularization

parameter λ. Regarding the selection of these adjusted parameters as that of candidate

models, we introduce a model selection criterion from an information-theoretic approach.

Let y1, . . . , yn1
be n1 observations drawn randomly from an unknown probability dis-

tribution function G(y|x) having a density function g(y|x). On the other hand, we as-

sume that n1 observations for explanatory variables x1, . . . ,xn1
are non-random; i.e.,
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x1, . . . ,xn1
are fixed (for details of this assumption, we refer to Konishi and Kitagawa,

2008). Under these settings, we derive a model selection criterion from the viewpoint of

information theory.

Suppose that z = (z1, . . . , zn1
)T are future observations for the response variable

generated from g(y|x). Let f(z|x; ŵG)
η(x) =

∏n1

α=1 f(zα|xα; ŵG)
η(xα) and g(z|x) =

∏n1

α=1 g(zα|xα), where ŵG is an estimator of the parameter by any estimation procedures,

η(x) = η(x1)+· · ·+η(xn1
), and η(xα) (α = 1, . . . , n1) are weights that depend on explana-

tory variables xα, which satisfy η(xα) > 0. Note that the weights η(xα) (α = 1, . . . , n1)

are fixed, since we assume that x1, . . . ,xn1
are non-random. Then Irizarry (2001) implic-

itly proposes a following Kullback–Leibler information in order to measure the divergence

of the statistical model with weights from the true distribution:

I{g; f} = EG(z|x)

[

log
g(z|x)

f(z|x; ŵG)η(x)

]

= EG(z|x) [log g(z|x)]−EG(z|x)

[

log f(z|x; ŵG)
η(x)

]

= EG(z|x) [log g(z|x)]−EG(z|x) [η(x) log f(z|x; ŵG)] . (11)

The best model can be regarded as the best minimizer of the Kullback–Leibler information

(Irizarry, 2001). Since the first term of Equation (11) does not depend on the models with

the estimator ŵG, we have only to consider the second term of Equation (11). Therefore,

we focus on maximizing the second term of Equation (11) which leads to the minimization

of the Kullback–Leibler information.

By introducing an estimator of the second term of Equation (11), a model selection

criterion is, generally, given by

IC = −2
n1
∑

α=1

η(xα) log f(yα|xα; ŵG) + 2b̂(G), (12)

where IC stands for information criterion and b̂(G) is an estimator of the bias b(G) in the

following:

b(G) = EG(y|x)

[

n1
∑

α=1

η(xα) log f(yα|xα; ŵG)− EG(z|x) [η(x) log f(z|x; ŵG)]

]

. (13)

Suppose that the estimator ŵM of the parameter is an M-estimator defined as the
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solution of the following implicit equation:
n1
∑

α=1

ψ(yα|xα; ŵM) = 0 (14)

with ψ being referred to as ψ–function (e.g., see, Huber, 2004). Using the idea of Konishi

and Kitagawa (1996), we derive a model selection criterion for the statistical models with

the M-estimator ŵM in the form

ICM = −2

n1
∑

α=1

η(xα) log f(yα|xα; ŵM) + 2tr
{

Q(ŵM)R−1(ŵM)
}

, (15)

where Q(ŵM) and R(ŵM) are given by

Q(ŵM) =
1

n1

n1
∑

α=1

ψ(yα|xα;w)
η(xα)∂ log f(yα|xα;w)

∂wT

∣

∣

∣

∣

w=ŵM

, (16)

R(ŵM) = −
1

n1

n1
∑

α=1

∂ψ(yα|xα;w)T

∂w

∣

∣

∣

∣

w=ŵM

. (17)

In our models, the estimator ŵ, which maximizes the regularized log-likelihood func-

tion in Equation (8), can be regarded as an M-estimator. Here, we set the ψ–function of

the estimator into

ψ(yα|xα;w) =
∂

∂w

[{

qunlabel(xα)

qlabel(xα)

}γ1
[

yαw
Tx∗

α − log{1 + exp(wTx∗
α)}

]

−
λ

2
wTKw

]

.

(18)

Note that the ψ–function in Equation (18) is actually incorrect since the estimator ŵ is

obtained by maximizing the Equation (8) with respect to the parameter; i.e., the estimator

are constructed by using both labeled and unlabeled data. However, ψ–functions in the

context of model selection criteria must be given by a regularized or non-regularized

log-likelihood function with incomplete data; i.e., the functions does not include latent

variables (for details, see, Hirose et al., 2008). Hence, we employ the ψ–function in

Equation (18) in order to derive a model selection criterion.

By using the ψ–function in Equation (18) and substituting {qunlabel(xα)/qlabel(xα)}
γ1

for the weights η(xα) (α = 1, . . . , n1), we introduce a generalized information criterion

(GIC) for evaluating our proposed semi-supervised logistic models estimated by the reg-

ularization method. The model selection criterion is given by

GIC = −2

n1
∑

α=1

{

qunlabel(xα)

qlabel(xα)

}γ1

log f(yα|xα; ŵ) + 2tr
{

Q(ŵ)R−1(ŵ)
}

, (19)
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where the matrices Q(ŵ) and R(ŵ) are

Q(ŵ) =
1

n1

{

XTŴ 2Λ̂2X − λKŵ1T
n1
Ŵ Λ̂X

}

, (20)

R(ŵ) =
1

n1
XΠ̂Ŵ (In1

− Π̂)X + λK. (21)

Here, 1n1
is an n1-dimensional vector of which the elements are all one, and In1

is an

n1-dimensional identity matrix. Also, X, Ŵ , Λ̂, and Π̂ are, respectively, given by

X = (x∗
1, . . . ,x

∗
n1
)T ,

Ŵ = diag

[{

qunlabel(x1)

qlabel(x1)

}γ1

, . . . ,

{

qunlabel(xn1
)

qlabel(xn1
)

}γ1
]

,

Λ̂ = diag [y1 − π(x1; ŵ), . . . , yn1
− π(xn1

; ŵ)] ,

Π̂ = diag [π(x1; ŵ), . . . , π(xn1
; ŵ)] .

Note that the GIC in Equation (19) seemingly appears not to depend on all adjusted

parameters (in particular, γ2). However, the GIC implicitly includes the adjusted param-

eters (λ, γ1, γ2), since the estimator ŵ depends on all adjusted parameters.

We choose the adjusted parameters from the minimizer of the GIC in Equation (19).

4 Numerical studies

We studied some numerical examples to show the efficiency of our proposed modeling

strategy. Two types of Monte Carlo simulations and benchmark data analysis are given

to illustrate the proposed semi-supervised logistic discrimination.

4.1 Simulation 1

We investigated the effectiveness of the proposed modeling procedures through Monte

Carlo simulations. In this simulation study, we generated data sets {(x1α, x2α, yα);α =

1, . . . , n} as labeled data and {(x1α, x2α);α = 1, . . . , 500} as unlabeled data. In labeled

data, (x1α, x2α) were generated by a normal distributionN((−0.9, 1−sin(sin(0.92π)))T , diag

(0.0015, 2)), and yα was generated according to a following conditional probability

Pr(Y = 1|x1, x2) = 1/
[

1 + exp
{

− sin(2πx2
1)− x2 + 1

}]

. (22)
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Table 1: Comparison of prediction error rates (%) and values of selected parameters for

several number of labeled data points.

Method \ # of labeled data 25 50 100 150 200 250

SSLRCS PE 33.3 33.3 33.9 34.8 35.5 35.0

log10(λ) –2.20 –3.00 –3.18 –3.54 –3.80 –3.72

γ1 0.10 0.10 0.10 0.10 0.10 0.10

γ2 0.61 0.71 0.74 0.82 0.86 0.82

LSSLR PE 34.3 34.4 34.2 35.3 35.9 35.6

log10(ξ1) –2.72 –3.36 –3.38 –3.72 –3.88 –3.92

SLR PE 35.6 34.3 34.3 35.2 35.8 35.6

log10(ξ2) –2.06 –2.32 –2.80 –3.10 –3.50 –3.68

Meanwhile, unlabeled data (x1α, x2α) were obtained by a normal distribution N((−0.4, 1−

sin(sin(0.42π)))T , diag(0.05, 1)). Test data {(x1α, x2α, yα);α = 1, . . . , 1000} were gener-

ated as follows. First, (x1α, x2α) were derived by a mixture of labeled and unlabeled data,

where the mixing rate is equal (that is, 0.5). Second, for the (x1α, x2α), yα was obtained

according to the conditional probability in Equation (22). We assumed that labeled data

sizes (n) were 25, 50, 100, 150, 200, and 250.

We fitted our semi-supervised logistic regression model to the data sets. Note that

the density ratio estimation procedure by the uLSIF method described in Section 2.2

is not performed in these simulation trials, since the density ratio is exactly calculated.

The simulation results were obtained by averaging over 50 repeated Monte Carlo trials.

For each data set, we computed averages of prediction error rates (PE) for 50 iterations.

The tuning parameters in our models were selected by using the GIC in Equation (19).

For 50 trials, we computed averages of selected adjusted parameters. The results are

summarized in Table 1. From the table, in the selection of adjusted parameters, the

values of the tuning parameter γ1 are 0.10 in all cases, while those of the parameter γ2

increase with the increasing numbers of labeled data. The regularization parameter λ

takes smaller values according to the increasing numbers of labeled data.
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We compared the performances of the proposed semi-supervised methodologies (SSLRCS:

semi-supervised logistic regression under covariate shift) with those of semi-supervised

method proposed by Amini and Gallinari (2002) (LSSLR: linear semi-supervised logistic

regression), which is developed under the condition that density functions for labeled and

unlabeled data are same, and supervised linear logistic discriminant analysis (SLR: super-

vised logistic regression). Note that the SLR is constructed by using only labeled data.

Semi-supervised and supervised logistic modeling strategies were applied into the data

sets. The LSSLR and the SLR include a tuning parameter, respectively, where we denote

the tuning parameters as ξ1 and ξ2, respectively. The parameter is determined by the GIC,

where the GIC for LSSLR is obtained by setting qunlabel(xα)/qlabel(xα) = 1 (α = 1, . . . , n1)

in Equation (19) and that for SLR is given by Ando et al. (2008). For these methods, we

also computed averages of prediction error rates and selected tuning parameters. It may

be seen from Table 1 that SSLRCS is superior to other methods (LSSLR and SLR) in all

cases in the sense that the proposed method gives smaller prediction error rates.

4.2 Simulation 2

We simulated three data sets given in Chakraborty (2011) to examine the performances

of our proposed modeling strategy. For each of the simulation cases, we generated 100

data points in the labeled data set, 1000 data points in the unlabeled data set, and 1000

data points in the test data set. Using the data sets, we constructed the SSLRCS, the

LSSLR, and the SLR. We repeated the procedure 50 times. Our simulation settings are

given as follows (for details, see, Chakraborty (2011, p. 76)):

• Case 1 : In the labeled data set, generate x = (x1, x2)
T given by xi ∼ N(2, 1) (i =

1, 2) for Class 1 and xi ∼ N(−2, 1) (i = 1, 2) for Class 2. In the unlabeled data

set, xi ∼ N(2, 2) (i = 1, 2) for Class 1 and xi ∼ N(−2, 2) (i = 1, 2) for Class

2. In the test data set, xi ∼ 0.5N(2, 1) + 0.5N(2, 2) (i = 1, 2) for Class 1 and

xi ∼ 0.5N(−2, 1) + 0.5N(−2, 2) (i = 1, 2) for Class 2.

• Case 2 : Generate x = (x1, . . . , x10)
T given by xi ∼ N(1, 3) (i = 1, . . . , 10) for Class

1 and xi ∼ N(−1, 3) (i = 1, . . . , 10) for Class 2.

12



Table 2: Comparison of prediction error rates (%) and values of selected parameters for

several cases.

Method \ Data sets Case 1 Case 2 Case 3

SSLRCS PE 1.28 3.65 9.72

log10(λ) –2.50 –1.98 –1.98

γ1 1.00 1.00 1.00

γ2 0.102 0.106 0.106

LSSLR PE 1.36 4.19 11.6

log10(ξ1) –2.50 –2.00 –3.00

SLR PE 1.43 5.05 11.7

log10(ξ2) –2.50 –1.96 –2.18

• Case 3 : Generate x = (x1, x2)
T given by xi ∼ N(5, 2) (i = 1, 2) for Class 1

and xi ∼ N(8, 2) (i = 1, 2) for Class 2 in the labeled data set. In the unlabeled

data set, xi ∼ N(6, 2) (i = 1, 2) for Class 1 and xi ∼ N(9, 2) (i = 1, 2) for Class

2. In the test data set, xi ∼ 0.5N(5, 2) + 0.5N(6, 2) (i = 1, 2) for Class 1 and

xi ∼ 0.5N(8, 2) + 0.5N(9, 2) (i = 1, 2) for Class 2.

The results from the simulation studies are in Table 2. We obtained the values in the

table by averaging over 50 trials. The optimal tuning parameters selected by our model

selection criterion were 1.00 for γ1 in all situations, 0.102 and 0.106 for γ2 in Case 1 and

Case 2, 3, respectively, and 10−2.50 and 10−1.98 for λ Case 1 and Case 2, 3, respectively.

From the simulation results, we observe that our proposed procedure performs well in all

cases with respect to minimizing prediction error rates even though Case 2 is an ordinary

setting of semi-supervised learning, i.e., the density function for labeled data is same as

that for unlabeled data. Hence, we conclude that our proposed method may be useful

even if the densities for labeled and unlabeled data are same.
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4.3 Benchmark data analysis

Thorough analyzing the g10 data set (Chapelle and Zien, 2005), the ionosphere data set

(Sigillito et al., 1989), and the pima data set (Ripley, 1996), we illustrated the effectiveness

of the proposed semi-supervised methodology. The g10 data set includes 550 data points

with 10 predictors, and we prepared 250 training data points and 300 test data points.

The ionosphere data set consists of 356 data points with 33 predictors, and we split the

whole 356 data points into 150 training data points and 206 test data points. The pima

data set, which consists of 300 training data points and 232 test data points, is a binary

classification with 7 predictors. In order to implement the semi-supervised procedure, the

training data points were randomly split into two halves with labeled data points and

unlabeled data points, where labeled data points were assigned as 5%, 10%, 20%, 30%,

40%, and 50% for training data points, respectively. We repeated the random splitting

50 times. We also compared our proposed method (SSLRCS) with the LSSLR and the

SLR, which are described in Section 4.1.

Table 3 shows the summary of the prediction errors and selected adjusted parameters

for the benchmark data sets. The values in the table were averaged over 50 repetitions.

From the results, we observe that the tuning parameter γ1 provides the largest values

(i.e., 1.00) in almost all cases, while the parameter γ2 gives relatively smaller values (i.e.,

from 0.10 to 0.40). We also find that our proposed procedure outperforms the previously

proposed methods in almost all situations, although it is unclear that whether densities

for labeled and unlabeled data are different. In particular, the proposed method seems to

work well when the number of labeled data points is small.

5 Concluding remarks

We proposed a semi-supervised logistic classification methodology for different density

functions of labeled and unlabeled data along with the technique of covariate shift adap-

tation and regularization. A crucial point for our semi-supervised modeling processes

includes the choices of some tuning parameters in our proposed models. We introduced a

14



Table 3: Comparison of prediction error rates (%) and values of selected parameters for

some data sets.

Method \ % 5 10 20 30 40 50

g10

SSLRCS PE 3.40 3.47 3.85 4.06 4.66 5.42

log10(λ) –3.20 –2.97 –2.99 –3.00 –3.00 –3.00

γ1 1.00 1.00 1.00 1.00 1.00 1.00

γ2 0.15 0.10 0.10 0.10 0.10 0.10

LSSLR PE 26.6 16.2 9.94 7.04 5.66 4.77

log10(ξ1) –3.50 –3.00 –3.00 –3.00 –3.00 –3.00

SLR PE 26.4 16.4 9.30 6.85 5.45 4.62

log10(ξ2) –3.50 –3.00 –3.00 –3.00 –3.00 –3.00

Ionosphere

SSLRCS PE 18.2 17.3 16.9 16.4 17.3 16.8

log10(λ) –2.89 –2.86 –2.70 –2.44 –2.61 –2.66

γ1 0.99 0.99 1.00 1.00 1.00 1.00

γ2 0.50 0.46 0.37 0.27 0.37 0.35

LSSLR PE 29.0 22.8 18.9 17.4 16.2 15.4

log10(ξ1) –3.92 –3.50 –3.50 –3.00 –3.00 –3.00

SLR PE 28.9 23.1 19.5 18.0 16.7 15.7

log10(ξ2) –3.92 –3.50 –3.50 –3.00 –3.00 –3.00

Pima

SSLRCS PE 26.6 26.9 26.6 26.8 26.7 26.7

log10(λ) 1.41 1.53 1.35 1.30 1.27 1.36

γ1 1.00 1.00 1.00 1.00 1.00 1.00

γ2 0.30 0.28 0.26 0.23 0.24 0.23

LSSLR PE 30.1 27.0 27.0 27.0 26.9 26.7

log10(ξ1) 1.27 1.41 1.53 1.72 1.71 1.61

SLR PE 29.3 26.9 26.9 27.0 26.8 26.7

log10(ξ2) 2.46 2.37 2.34 2.23 2.16 2.10
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model selection criterion from the viewpoint of information theory in order to select the

values of the adjusted parameters. Through Monte Carlo simulations and the benchmark

data analysis, we showed that our modeling strategy is effectiveness in practical situations

in the viewpoints of yielding relatively lower prediction errors than previously developed

methods. Our modeling procedure may be applied into the problem of constructing a

nonlinear semi-supervised classification method based on basis expansions, which will be

discussed in another paper.
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