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Abstract
Identifying genetic variants associated with complex disease in high-dimensional data is a
challenging problem, and complicated etiologies such as gene-gene interactions are often ignored
in analyses. The data-mining method Random Forests (RF) can handle high-dimensions; however,
in high-dimensional data, RF is not an effective filter for identifying risk factors associated with
the disease trait via complex genetic models such as gene-gene interactions without strong
marginal components. Here we propose an extension called Weighted Random Forests (wRF),
which incorporates tree-level weights to emphasize more accurate trees in prediction and
calculation of variable importance. We demonstrate through simulation and application to data
from a genetic study of addiction that wRF can outperform RF in high-dimensional data, although
the improvements are modest and limited to situations with effect sizes that are larger than what is
realistic in genetics of complex disease. Thus, the current implementation of wRF is unlikely to
improve detection of relevant predictors in high-dimensional genetic data, but may be applicable
in other situations where larger effect sizes are anticipated.

Keywords
Random Forests; genome wide association; high-dimensional data; genetic data; gene-gene
interactions; weighting

Introduction
In traditional genome-wide association studies, data collected at hundreds of thousands to
millions of genetic variants are analyzed univariately in order to determine association with
a disease. These tests of association do not account for the effects of other genetic variants,
ignore complex models such as gene-gene interactions, and have low power to detect most
genetic effects. Thus, identified variants account for a very small proportion of variation in
complex traits [1, 2].

To circumvent these issues, data-mining and machine learning methods such as Random
Forests [3] are rising in popularity for genome-wide data analysis due to their ability to
handle high-dimensional data, and to consider multiple predictor variables simultaneously.
Random Forests (RF) trains an ensemble of multiple classification or regression trees on
many bootstrap samples of subjects, handling high-dimensional data because only random
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subsets of predictors are considered at each node of the tree. Predictions are aggregated, or
bagged, across all trees in the forest, and the prediction model is evaluated using measures
of prediction error (misclassification rate) or area under the receiver operating characteristic
curve (AUC) in the out-of-bag subjects. Additionally, RF can be used to calculate variable
importance measures, which assess a variable’s overall influence on prediction and can be
used to rank predictors. These measures have been shown to work well in low-dimensional
genetic data to capture complex effects such as interactions among predictor variables [4],
and they have been proposed as filtering or screening tools in high-dimensional data [5].

However, we previously evaluated the performance of RF with increasing numbers of
genetic variants, and observed that the probability of detection of the causal variants (i.e. the
proportion of times the causal variants were highly ranked) decreases more rapidly for
interactions than for variants with marginal effects [6]. In fact, in high-dimensional data,
both the detection probability and prediction error depend primarily on the marginal effect
size, suggesting little advantage over univariate methods in high-dimensional data,
particularly as a filter for the detection of interacting factors. This is because as the
dimension grows, interacting variants will rarely appear in a tree together (especially if those
variants do not exhibit strong marginal effects), and therefore the interaction is rarely
modeled. Based on this observation, we aimed to develop an improved RF-based method for
capturing complex models, Weighted Random Forests (wRF). The original RF gives each
tree in the forest equal weight during aggregation. However, up-weighing the class votes
from the better performing trees may have the potential to improve the overall predictive
performance, assuming that the better performing trees are more likely to contain the causal
variables.

Previously, other weighting methods have been proposed with ensemble classification
methods such as RF. For example, because the RF classifier tends to be biased towards the
majority class, weights can be assigned to each class in order to deal with the issue of
imbalance [7]; these class weights are applied to the node splitting criterion and the
aggregation procedure in order to ensure that the minority class is weighted equally. This
method is currently available in the R package ‘randomForest’. In addition to class weights,
random weighting of variables/attributes within each node during the construction of
decision trees has been implemented in the Random Feature Weights (RFW) method [8].
The method is similar to RF; however, rather than considering a random subset of predictors
at each node, RFW considers all variables with those with higher weights being more likely
to be used in tree construction. Similarly, Enriched RF alters the tree-fitting procedure by
using weighted random sampling to choose the subset of variables to be considered at each
node; rather than being random, variable weights are assigned based on marginal q-values
[9].

Rather than weighting either classes or attributes/variables, the Weight-Adjusted Voting for
Ensembles (WAVE) method uses iterative weights for both samples and trees, as an
extension of both bagging and boosting for ensemble methods [10]. Trees/classifiers that
perform best on the hard-to-classify instances receive the strongest weight. Other tree-
weighting methods that have been incorporated into RF include an approach that weighs
trees based on the average margin of similar instances in the OOB data [11]. The Tree-
Weighting Random Forests (TWRF) proposed by Li et al implements weighted voting with
weights based on tree accuracy in the OOB data [12]. Both of these methods construct and
test their weights on the OOB data, which is expected to bias PE estimates. Additionally,
different weighting schemes have not been compared and weighted measures of variable
importance have not been developed.
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In the current study, we introduce and describe the weighted Random Forest (wRF) method,
which incorporates tree-level weights into the usual RF algorithm to emphasize more
accurate trees in prediction and calculation of variable importance. We consider different
tree-weights, and present simulations to compare the performance of wRF to the traditional
RF algorithm both in terms of prediction accuracy and performance of variable importance
measures. The simulations assess performance of wRF over a range of effect sizes and
complex genetic models involving interactions. Lastly, we apply wRF to data from a gene-
set from the Study of Addiction: Genetic and Environment (SAGE)[13].

Methods
Weighted Random Forests

Assume that the data consist of a binary response variable coded 0 or 1, and p predictor
variables collected on N samples. The traditional Random Forests (RF) method would build
an ensemble of ntree classification trees to predict the outcome from the predictors, with
each tree trained on a different bootstrap sample of N subjects, and a random subset of mtry
predictors considered at each node of the tree. The original implementation of RF then
aggregates tree-level results equally across trees. We implement the usual RF algorithm to
build the trees of the forest; however, we utilize performance-based weights for tree
aggregation. In particular, we consider weighting class ‘votes’ from each tree in the forest
such that better performing trees are weighted more heavily.

Because weights are performance-based, applying the weights to the same dataset from
which the weights were calculated (as was done in [11, 12]) would bias prediction error
assessment. To avoid this bias, we first split the data into training and testing sets, and use
the training data to implement the usual RF algorithm, with trees constructed on ntree
bootstrap samples. Using the out-of-bag (OOB) individuals, estimates of the predictive
ability of each tree are calculated (such as tree-level prediction error), which can be used to
compute weights, wj, for each tree j=1,…,ntree. In our implementation of wRF, the training
data included ¾ of the original sample (M1 individuals); thus, for each tree, approximately ½
of the full sample was in-bag and was used to build the tree, and ¼ was out-of-bag and was
used to assess tree performance and calculate tree weights.

After the tree-weights are computed in the training data, we use the ntree trees to obtain
votes for the ¼ observations in the independent test data, and aggregate the votes (predicted
classifications) across trees by applying the weights wj to the votes. Let vtest,ij be the vote for
tree j for subject i in the independent test data, where i=1,…, M2=N/4. Then the weighted
prediction for subject i based on all trees is:

(1)

Using the weighted predictions in (1), we can compute performance measures of the
weighting procedure in the independent test set, such as the prediction error (PEwRF) and
AUC (AUCwRF) of the Weighted Random Forest. If yi is the true class of subject i, then the
prediction error PEwRF can be computed based on the weighted classifications wCi:

(2)
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Similarly, we can use the weighted predictions wPi (Equation 1) to calculate the weighted
AUC (AUCwRF).

Note that setting wj=1/ntree gives the usual aggregate prediction in the traditional
implementation of RF, and then PEwRF is equivalent to the usual estimate of PE computed
on the test set.

In addition to prediction and PE assessment, the usual RF algorithm can be used to estimate
the importance of each variable used in construction of the classifier. The most commonly-
used estimate of variable importance is permutation importance, or mean decrease in
accuracy (MDA)—the increase in prediction error (or reduction in prediction accuracy) after
the data for the variable of interest are permuted across all individuals within each tree [14].
Based on (1), we can also compute a weighted version of the MDA variable importance:

(3)

If wj=1/ntree, VIwRF is equivalent to the usual MDA variable importance.

Choice of Weights
To up-weigh better performing trees, weights wj should be chosen based on some measure
of predictive ability at the tree-level. Intuitively, weights inversely related to tree-level
prediction error in the OOB training data are appropriate. In the OOB training data, define
vtrain,ij as the vote for subject i in tree j and let oobij be an indicator for the out-of-bag status
of subject i in tree j. We define tree-level prediction error for tree j as:

(5)

In our proposed wRF implementation, we utilize weights of the form , such

that . To implement the usual RF aggregation, let xj = 1; however, weights such

as xj = 1 − tPEj or  will allow for a higher weight for more accurate trees.
Additionally, we may wish to further up-weigh the best performing trees by utilizing

weights with a right skewed distribution, such as  or  for
some λ. In fact, this strategy is supported by previous work [8], which showed that skewed
weights improved performance. Alternatively, it may be advantageous to increase variability
across weights by considering weights with a uniform distribution, such as

.

In addition to weights based on tPEj, other measures of tree-level performance could be
used. For instance, to capture the correlation between tree-level predictions and observed
responses, we consider regression-based weights constructed from the estimated regression

coefficient  from the following linear model fit to the OOB subjects from tree j:
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(6)

Intuitively,  will be larger if the predicted votes for tree j are close to the true responses,
and close to 0 or less than 0 if the predicted votes are either uncorrelated or negatively

correlated with the true responses. This suggests a weight such as , shifted
such that all xj>0.

Simulation Study
In order to compare the predictive performance of wRF to RF with equal tree-weights and to
evaluate various choices of tree-weights, we conducted a simulation study. Because the goal
of this work was to explore the potential improvement of wRF over RF for the analysis of
high-dimensional genetic data, we simulated datasets consisting of p=1000 predictors
representing genotypes at single nucleotide polymorphisms (SNPs), with the genotypes
(predictors) coded as (0,1,2) representing the number of copies of the variant allele that a
person carries at the SNP. Datasets were designed to reflect a case/control study with
N=1000 subjects, including 500 cases and 500 controls. For simplicity, SNP genotypes were
generated assuming a fixed minor allele frequency of 0.3 and independence across predictor
variables, in order to avoid confounding effects of varying predictor frequencies or
correlation among predictors. Conditional on the genetic variants, an intermediate
quantitative response variable Q was generated to reflect an underlying quantitative trait,
caused by a series of m causal pairs of SNPs with possible pairwise interactions. We
assumed that Q is actually unobserved, and instead we observe the binary manifestation Y.
Q was simulated under the following Gaussian model:

(7)

where ε ~ N(0, σ) and Xi,k refers to the genotype (0,1,2) for ith SNP of the kth SNP pair. Our
model for Q represents a flexible class of models, where the number of causal pairs, effect
sizes, and strength or presence of interactions can vary to reflect different genetic scenarios
depending on parameter choices. In our simulations, m=2 or 10 causal SNP pairs, yielding
2m causal predictor variables and p-2m variants that are not associated with the underlying
quantitative trait Q. The binary response Y, representing disease status, was generated based
on a threshold model, where Y=I(Q > median(Q)).

The parameter β=[β1, β2, β3] controls the effect sizes for the genetic model, and was chosen
to achieve a desired total broad sense heritability (H2), the proportion of trait variation that
can be explained by genetic variation [6, 15]. Broad sense heritability (H2) was utilized to
quantify the overall effect size of a particular genetic model and the contribution of a
variable due to both marginal and interaction components. Suppose a binary disease trait is
controlled by two genetic variants A and B. Then the total heritability due to the two variants
(H2

AB) can be partitioned into the marginal effect of each variable (H2
M,A, H2

M,B) and the
interaction effect (H2

I,AB), representing the deviation from additivity:

In this study, β was chosen such that H2 ranged from 0 to 20%, with equal effects H2/m per
pair of causal variants, and the ratio between the marginal effects (H2

M) and the interaction
effects (H2

I) of each pair of causal variants was 0.5, 1, or 2. As a baseline comparison, we
also simulated data with only marginal effects (i.e. H2

I,AB=0 and β3=0) for the scenarios
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with m=10 causal loci. Specific values of β and H2 are shown in Tables 1 and 2, giving the
range of simulated scenarios for the class of models investigated in this study.

For each combination of m, H2 and ratio H2
M/H2

I (resulting in 34 simulation scenarios), 100
datasets were generated and analyzed using wRF with ntree=5000 and mtry=sqrt(p), the
default value for the number of predictor variables to be considered at each node. Each
dataset was analyzed with the previously described weights:

xj=1 (which yields the original RF without weighting),

1 − tPEj,

,

, where λ=1,2,3,4,5

,

, based on Equation 6.

For each simulation replicate, M1=750 of the 1000 subjects made up the training set, and
M2=250 made up the test set. Rather than using the usual OOB predictions to assess
unweighted PE from the standard RF approach, weights xj=1 were used to represent RF
analysis without weighting, so that all results were obtained from the same forest and
evaluated on the same test set under the wRF framework, making the weighted and
unweighted results more comparable. Performance was measured in terms of PEwRF,
AUCwRF, and ranks based on VIwRF of the causal variants. All analyses were performed in R
statistical software.

Real Data Application
To assess the performance of wRF in a real dataset, we applied both the traditional RF
method along with wRF to a candidate gene-set from a genome-wide association study of
alcoholism, the Study of Addiction: Genetic and Environment (SAGE)[13], available on
Database of Genotypes and Phenotypes (dbGaP)[16]. We investigated associations with
SNPs from the NMDA-dependent AMPA trafficking cascade pathway. Previously, using
traditional regression-based methods, we showed that this gene-set was significantly
associated with alcohol dependence (p<0.01) [17]. Because RF requires complete data, we
utilized an imputed dataset, and excluded SNPs from the X chromosome to avoid
confounding with sex. Thus, after quality control, the analyzed dataset consisted of
genotypes of 1149 cases and 1357 controls at 711 SNPs in 8 genes, including: GRIN1,
GRIN2A, GRIN2B, CAMK2A, CAMK2B, GRIA1, GRIA2, and GRIA4.

We ran wRF with all weights discussed here, including equal weights (equivalent to
traditional RF with an independent test set used for evaluation of prediction). Data were split
75% for training and 25% for testing, as in our simulations. We present results for a single
data-split, as well as 4-fold cross-validation results to assess the sensitivity of the weighted
analysis to a particular random split. For comparability, we assess analysis with wRF with
and without the use of equal tree-weights. We also conducted a traditional RF analysis
(using the usual OOB estimates) and compare the results to wRF, although it should be
noted that the usual OOB prediction estimate is biased [18, 19].
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Results
Simulation Study

For the simulation study with two causal pairs of SNPs, performance in terms of both PEwRF
and AUCwRF improved as H2 (i.e. overall genetic effect size) increased. Results are plotted
in Figure 1A and B for the weights xj=1,(1/tPEj)2, (1/tPEj)5, and rank(1/tPEj); results for the
other weights followed a similar pattern and can be seen in Supporting Information
(Supporting File 1). For low H2, performance was poor with PEwRF and AUCwRF both near
0.5, and all weighting methods were nearly identical. As H2 increased, PEwRF decreased and
the various types of weights displayed more variation in performance. For high heritability
and for all ratios of marginal to interacting effects (H2

M/H2
I), equal tree-weights yielded the

largest PEwRF estimates, while the lowest estimates of PEwRF were observed for the most

extreme tree-weights, such as  and . However, the
advantage was not substantial; the largest improvement was observed in the case of stronger
interaction effects (H2

M/H2
I=0.5) for H2=15%, where there was approximately a 2.5%

improvement in PEwRF by use of  compared to equal tree-weights (Figure
1A). When AUCwRF was used to measure performance, a similar pattern was observed as H2

increased (Figure 1B).

For the simulations involving 10 causal interacting SNP pairs, we observed similar results,
although because the same total effect size is dispersed across more pairs of SNPs, the
predictive ability was generally lower. Results are plotted in Figure 2A and B for weights
xj=1,(1/tPEj)2, (1/tPEj)5, and rank(1/tPEj); results for the other weights were in the same
range and are shown in the Supporting Information (Supporting File 2). When H2=5%,
performance with PEwRF and AUCwRF was nearly identical for all weighting methods.
Performance became more differentiated as H2 increased (Figure 2A and B), with the
estimated PEwRF being consistently highest for xj=1, although the difference between results
with different weights was very small. For scenarios with high total heritability (and all
values of H2

M/H2
I, including scenarios with H2

I=0), the lowest PEwRF estimates were

observed for the uniformly-distributed tree-weights, , although the largest
gain over the currently implemented equal weighting was only about 0.5% (Figure 2A).
Results in terms of AUCwRF were consistent with those of PEwRF; an improvement observed
via weighting was very small (Figure 2B). Furthermore, the ratio of marginal to interacting
effect sizes (H2

M/H2
I) seemed to have little impact on performance; the pattern of results

was similar for scenarios with only marginal effects (H2
I=0) as for scenarios with stronger

interactions (H2
M/H2

I=0.5); see Supporting Information, Supporting File 2. Rather, the total
genetic effect size (H2), as well as the per SNP effect size, seemed to be the driving factor
on performance of wRF.

For both sets of simulation studies with either m=2 or 10 causal pairs of SNPs, there was
very little change amongst weighted variable importance measures for the causal factors
(Supporting Information, Supporting Files 1 and 2). Variable importance measures are
typically used to rank variables, therefore we expected that the causal SNPs would rank
highly out of all p=1000 predictor variables. To compare VIwRF measures across all causal
SNPs, we computed the average ranks across all 2*m causal variants. For each scenario,
average ranks were almost indistinguishable across choice of weights, with the exception of
the uniform-weights which produced slightly lower VIwRF average ranks, as can be seen in
Supporting Information. Median ranks demonstrated similar results.

Winham et al. Page 7

Stat Anal Data Min. Author manuscript; available in PMC 2014 February 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Real Data Application
Weighted RF was fit to the 711 SNPs in the NMDA-dependent AMPA trafficking cascade
pathway, with the same set of weights that were investigated in the simulation study,
including xj=1 representing an unweighted RF. Overall, the SNPs were not highly predictive
of alcohol dependence; PE ranged from 0.476-0.483 and AUC ranged from 0.503-0.521.
Results of the traditional analysis using RF with the OOB estimates yielded PE and AUC
very similar to those seen with all of the weights. Variable importance measures differed
slightly between the different methods, with rs980272 near CAMK2A and rs2267779 and
rs2267780 in GRIN2A consistently ranking near the top of the results in the wRF analyses;
rs1421109 and rs12322168 in GRIN2B ranked at the top of the traditional RF analyses.
Results for wRF were similar between the single split of the data and cross-validation for
PE/AUC, although some differences are observed for VIwRF; however, estimates of variable
importance are known to be unstable[20]. Results are shown for weights xj=1,(1/tPEj)2, (1/
tPEj)5, and rank(1/tPEj) (Table 3; Figure 3; Supporting Information, Supporting File 3).

Discussion
In this study, we proposed Weighted Random Forests, an extension of Random Forests
motivated by the poor performance of RF to detect interactions in high-dimensional genetic
data. The wRF method weighs better performing trees more heavily during aggregation. Our
simulation studies demonstrated that the performance of wRF (as measured by PEwRF and
AUCwRF) is at least as good as RF with equal tree-weights, and in some situations the
predictive capability is slightly improved. For instance, when the effect size of the causal
variants is large (i.e. high H2 per causal SNP pair) then wRF has lower prediction error. The
improvement in prediction is greater for the strongest weights with the greatest variability

(i.e.  and ). This is in agreement with previous results
showing that skewed weights of the form wλ improved performance [8].

However, the gain in predictive ability is quite modest, particularly for data with strong
interactions among predictor effects. We only observe meaningful improvements in
prediction accuracy when effect sizes are large (i.e. H2>15%)—sizes that are rarely
observed in genetic epidemiologic studies. In scenarios with weak effects, the results of
wRF are essentially the same as RF; aggregation with equal weighting across trees produces
similar results as aggregation with weights with a high degree of variability (such as highly
skewed weights or weights with a uniform distribution). Although performance of wRF is
slightly better in situations where the interaction effects are stronger than the marginal
effects (H2

M/H2
I<1), the gain in predictive accuracy is small in these situations. Overall, the

wRF method performs similarly to the traditional RF method, and there is little advantage
given the added complexity of introducing performance-based weights.

We applied the wRF method to a real genetic dataset similar in size to those evaluated in the
simulation studies. The performance of wRF on this dataset is consistent with the results of
the simulation studies. Generally, the analyzed SNPs were not highly predictive of alcohol
dependence, generating high PE estimates. In this situation, analysis with wRF with and
without equal weights produces similar predictive performance; likewise, the traditional
analysis using RF with the usual OOB did not yield better predictions. On the other hand,
variable importance measures differ across methods. The wRF method identified rs980272
in CAMK2A as being one of the most important SNPs, which is consistent with previously
published results [17]. Top ranking SNPs based on the traditional RF analysis were not
consistent with the previously reported single SNP results.
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Given our intuitive motivation for the method, it may seem surprising that we do not
observe a greater improvement with wRF. In genetic association studies, the expected effect
sizes are modest, as complex genetic traits are influenced by a large number of causal
variants with very small effect (i.e. H2<1% per variant). Because the effect sizes are very
small, even the most predictive trees within the forest are still not very accurate, and
variation in predictive performance from tree to tree is low. However, the performance of
wRF may be improved for other applications outside of genetics, where larger effect sizes
that induce greater tree variability can be expected.

The advantages of wRF are possibly limited by the need to split the sample to avoid biased
estimates of PE and variable importance. In particular, splitting the full sample into
independent training and testing sets may be disadvantageous due to the reduction in sample
size used for tree-building. This is of particular concern for small datasets, which will be
sensitive to the particular split into training and testing sets. To circumvent this limitation,
other internal validation techniques could be considered. One possibility is k-fold cross-
validation, where wRF is fit to k subsets of the data. We implemented this strategy in the
analysis of the addiction dataset; our real dataset, like our simulated datasets, was large with
711 variables on 2506 subjects. The use of cross-validation yielded similar results to a single
split in this case, although this is not likely to be true for a small dataset.

To evaluate the effect on RF and wRF performance due to the reduced sample size used for
training, for a subset of our simulation scenarios we compared the results of wRF trained on
750 samples to RF trained on 1000 samples, with prediction evaluated on the same
independent set of 250 individuals. The use of 1000 (as opposed to 750) samples for training
improved PE and AUC estimates by about 1%. In traditional RF analysis OOB error
estimates are usually used for assessment of PE, rather than an independent test set.
However, OOB estimates of PE are biased in classification problems [18, 19], which
complicates a direct comparison of wRF to the traditional RF implementation. Our
simulations showed that this bias is conservative (~2-3% worsening of PE) and is largest for
datasets with higher predictive accuracy, which is also when we see the largest improvement
with the use of weighting. Although an extremely important issue, further examination of
this bias is beyond the scope of this study.

Our results are consistent with those observed in the comparison of RF to the WAVE
algorithm [10], which applies weights to both tree classifiers and hard-to-classify
individuals, and was shown to have similar performance to Random Forest. On the other
hand, the weighted voting method that computes tree-weights based on margin of similar
instances [11] and the TWRF method [12] showed improved performance over traditional
RF with the use of weighting. However, both of these methods were tested on low
dimensional real datasets with high RF prediction accuracy, rather than high-dimensional
data. Furthermore, both methods computed and tested the weights on OOB data; therefore
the observed improvement was likely (at least partly) due to bias from over-fitting. We
eliminated this bias from our assessment of wRF by reserving an independent test set for
predictive evaluation.

The current study was designed to compare wRF with the traditional RF implementation
under scenarios that reflect genetic association data with multiple, and possibly interacting,
causal variants. Although beyond the scope of this study, a direct comparison with other
weighting methods (such as WAVE, TWRF, etc.) would be useful. While wRF did not yield
improved predictions for the weights examined here, other weighting schemes may improve
performance of wRF. An important consideration in any RF analysis is the optimization of
the parameters mtry and ntree. Because the focus of this study was on a comparison of the
same RF algorithm under different weighting schemes, the values of mtry=sqrt(p) and
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ntree=5000 were used for each run to aid in comparability. Adaptively tuning these
parameters to each dataset, may lead to improved predictive ability of wRF.

In summary, the wRF method, which incorporates tree-level weights, does not dramatically
improve predictive ability in high-dimensional genetic data, but it may improve performance
in other domains that exhibit stronger effects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Simulation Results (wPE and wAUC), m=2 causal pairs.
Weighted Prediction Error (top row) and AUC (bottom row) plotted against total heritability
for models with 2 causal interacting pairs. Results are only displayed for a subset of weights
and for H2

M/H2
I = 0.5, 2.0; for the full results, see Supporting Information. The results for

weights that are not plotted are similar and in the same range.
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Figure 2.
Simulation Results (wPE and wAUC), m=10 causal pairs.
Weighted Prediction Error (top row) and AUC (bottom row) plotted against total heritability
for models with 10 causal interacting pairs. Results are only displayed for a subset of
weights and for H2

M/H2
I = 0.5, 2.0; for the full results, see Supporting Information. The

results for weights that are not plotted are similar and in the same range.
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Figure 3.
Variable importance results from real data analysis of the NMDA-dependent AMPA
trafficking cascade pathway.
Importance is plotted for each SNP by chromosomal location for A: traditional RF using
OOB estimates, and wRF with cross-validation and weights of B: x=1, C: x=(1/tPE)2, D:
x=(1/tPE)5, and E: x=rank(1/tPE). Colors indicate gene membership, as specified on the x-
axis. Only SNPs with importance > 0 are plotted.
Importance is plotted for each SNP by chromosomal location for A: traditional RF using
OOB estimates, and wRF with a single data split and weights of B: x=1, C: x=(1/tPE)2, D:
x=(1/tPE)5, and E: x=rank(1/tPE). Colors indicate gene membership, as specified on the x-
axis. Only SNPs with importance > 0 are plotted.
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Table 1

Simulated effect sizes for m=2 causal pairs.

H2 H2
pair H2

M / H2
I H2

M H2
I β 1 β 2 β 3

0.5 0.25

2 0.167 0.083 0.495 0.495 0.395

1 0.125 0.125 0.520 0.520 0.490

0.5 0.083 0.167 0.505 0.505 0.545

1.0 0.50

2 0.333 0.167 0.710 0.710 0.570

1 0.250 0.250 0.720 0.720 0.680

0.5 0.167 0.333 0.720 0.720 0.780

2.5 1.25

2 0.833 0.417 1.102 1.102 0.885

1 0.625 0.625 1.113 1.113 1.071

0.5 0.417 0.833 1.151 1.151 1.250

5.0 2.50

2 1.667 0.833 1.583 1.583 1.276

1 1.250 1.250 1.652 1.652 1.562

0.5 0.833 1.667 1.662 1.662 1.802

10.0 5.00

2 3.333 1.667 2.342 2.342 1.899

1 2.500 2.500 2.447 2.447 2.317

0.5 1.667 3.333 2.467 2.467 2.682

15.0 7.50

2 5.000 2.500 3.022 3.022 2.468

1 3.750 3.750 3.180 3.180 3.016

0.5 2.500 5.000 3.198 3.198 3.484
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Table 2

Simulated effect sizes for m=10 causal pairs.

H2 H2
pair H2

M / H2
I H2

M H2
I β 1 β 2 β 3

5.0 0.5

Inf 0.5 0 0.307 0.307 0

2 0.333 0.167 0.482 0.482 0.386

1 0.250 0.250 0.502 0.502 0.474

0.5 0.167 0.333 0.506 0.506 0.548

10.0 1.0

Inf 1.0 0 0.436 0.436 0

2 0.667 0.333 0.686 0.686 0.550

1 0.500 0.500 0.714 0.714 0.673

0.5 0.333 0.667 0.718 0.718 0.777

15.0 1.5

Inf 1.5 0 0.536 0.536 0

2 1.000 0.500 0.842 0.842 0.675

1 0.750 0.750 0.876 0.876 0.827

0.5 0.500 1.000 0.883 0.883 0.956

20.0 2.0

Inf 2.0 0 0.622 0.622 0

2 1.333 0.667 0.978 0.978 0.785

1 1.000 1.000 1.016 1.016 0.960

0.5 0.667 1.333 1.024 1.024 1.109
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Table 3

Real data analysis of the NMDA-dependent AMPA trafficking cascade pathway, PE and AUC

RF OOB x=1 x=(1/tPE)2 x=(1/tPE)5 x=rank(1/tPE)

PE, 1 split 0.472 0.467 0.470 0.475 0.483

PE, CV 0.479 0.467 0.468 0.467 0.465

AUC, 1 split 0.505 0.507 0.506 0.505 0.503

AUC, CV 0.512 0.521 0.521 0.522 0.520
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