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Abstract

In the last two decades we are witnessing a huge increase of valuable big data
structured in the form of graphs or networks. To apply traditional machine
learning and data analytic techniques to such data it is necessary to trans-
form graphs into vector-based representations that preserve the most essential
structural properties of graphs. For this purpose, a large number of graph
embedding methods have been proposed in the literature. Most of them pro-
duce general-purpose embeddings suitable for a variety of applications such as
node clustering, node classification, graph visualisation and link prediction. In
this paper, we propose two novel graph embedding algorithms based on random
walks that are specifically designed for the node classification problem. Random
walk sampling strategies of the proposed algorithms have been designed to pay
special attention to hubs – high-degree nodes that have the most critical role
for the overall connectedness in large-scale graphs. The proposed methods are
experimentally evaluated by analyzing the classification performance of three
classification algorithms trained on embeddings of real-world networks. The
obtained results indicate that our methods considerably improve the predictive
power of examined classifiers compared to currently the most popular random
walk method for generating general-purpose graph embeddings (node2vec).

Keywords: graphs, networks, hubs, random walks, graph embeddings,
node2vec, node classification

1. Introduction

Many complex systems can be naturally represented by graphs or networks
showing interactions among constituent elements [1]. Typical examples include
engineered systems (e.g., Internet, power grids, transportation systems, IoT
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systems), biological systems (e.g., metabolic networks, protein interactions, ge-
netic regulatory networks, brain networks, food webs), knowledge and informa-
tion systems (e.g., WWW, semantic web taxonomies, citations among scientific
papers, recommender networks, linguistic networks) and social systems (e.g.,
collaboration in science, industry and other forms of social organizations; in-
teractions at online social networks). In the past two decades, motivated by
the seminal papers of Watts and Strogatz [2] and Barabasi and Albert [3], re-
searchers have analyzed structure, function and evolution of many large-scale
complex networks from various domains indicating common properties such as
heavy-tailed distributions of node connectedness and centrality metrics, assorta-
tive and disassortative mixing patterns, dense ego-networks, core-periphery and
community structures, evolution governed by some form of preferential attach-
ment, small-world properties, evolutionary densification and shrinking diame-
ters, etc. Those empirical studies initiated a new interdisciplinary research field
known as network science whose focus is on exploratory data analysis methods
and predictive modeling tools for graph-structured data.

For many networks labels indicating categories or classes could be assigned
to nodes [4, 5]. For example, in paper citation networks node labels indicate re-
search fields, in scientific co-authorship networks node labels correspond to the
institutional affiliation of researchers, in the WWW network node labels could
denote topics of WWW pages, etc. In the case of large-scale networks, due to
a large number of nodes, label assignments are typically partially given, which
means that we have both labeled and unlabeled nodes. The task of inferring
labels for unlabelled nodes relying on labelled nodes and the network structure
is known as the node classification problem. This problem, together with the
problem of identifying community structures and the problem of predicting fu-
ture links, is one of the most important algorithmic problems in the network
science.

The problem of node classification can be approached in several ways. The
three most dominant approaches in the literature are collective classification [6],
node classification based on graph embeddings [7, 8, 9] and graph neural net-
works [10, 11]. A collective classification algorithm consists of three components:
a local classifier, a relational classifier and a collective inference scheme. The
local classifier estimates initial labels (or the distribution of label probabilities)
of unlabeled nodes. The role of the relational classifier is to assign the label (or
the distribution of label probabilities) to an individual unlabeled node consid-
ering the known labels in its neighborhood. The iterative classification scheme
defines how the relational classifier is iteratively applied to obtain labels of all
unlabeled nodes.

The problem of node classification can be reduced to the problem of tradi-
tional classification by machine learning algorithms designed for tabular data.
This reduction is enabled by graph embedding algorithms. Graph embedding al-
gorithms learn numerical representation of nodes typically by preserving graph-
based distances in an Euclidean space of an arbitrarily given dimension. Then,
some traditional classification learning algorithm is applied to the table com-
posed of feature vectors of all labeled nodes to obtain the classification model
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able to infer labels of unlabeled nodes.
Graph neural networks (GNNs) are node classification methods suitable for

attributed networks (networks in which each node is represented by a local fea-
ture vector independent of the network structure). They typically employ a
message passing scheme in which each node aggregates feature vectors of its
neighbors to derive the feature vector for the next iteration. After k message
passing iterations, a node is represented by its transformed feature vectors cap-
turing the structural information of all nodes at the shortest-path distance equal
to k. The weights controlling feature vector aggregation can be learned to min-
imize a loss function considering labeled nodes (e.g., categorical cross-entropy)
in order to obtain the classification model for unlabelled nodes.

The most fundamental metric reflecting the importance of nodes is node
degree – the number of links attached to a node or the number its nearest
neighbors. Real world large-scale graphs have power-law [12] or some other
long-tailed distribution [13] of node degrees. Such distributions imply the pres-
ence of so-called hubs: nodes with an exceptionally large degree, much larger
than the average degree. Although hubs have a vital role for the overall connect-
edness of complex networks (the so-called “robust yet fragile” property stating
that the removal of a small fraction of hubs leads to an extremely fragmented
network without a giant connected component [14]), they have not been seri-
ously considered when designing algorithms for the node classification problem.
Additionally, in labeled graphs we can distinguish “good” and “bad” hubs [15]:
good hub tends to be dominantly surrounded by nodes having the same la-
bel, whereas the label of a “bad” hub is different than the most frequent label
in its neighborhood. In this paper we propose two novel graph embedding
methods tailored for the node classification problem that are based on biased
random walking strategies taking into account node labels and hubness prop-
erties. The proposed methods are experimentally analyzed by evaluating tra-
ditional classifiers (support vector machines, näıve Bayes and random forests)
on obtained graph embeddings. As the baseline method for comparison we take
node2vec [16], which is the state-of-the-art graph embedding algorithm based
on the most general biased random walking strategy.

The rest of the paper is structured as follows. Section 2 gives an overview of
existing approaches for the node classification problem. The next section (Sec-
tion 3) outlines the motivation for this work and its contributions. The proposed
hub-based graph embedding methods for node classification are described in Sec-
tion 4. The obtained experimental results are presented in Section 5. The last
section concludes the paper and gives directions for possible future work.

2. Related Work

2.1. Collective Classification

Traditional classification algorithms assume that the data instances in a
training dataset are independent of each other. However, in networks we have
connected data instances (nodes connected by links). Moreover, the presence of
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homophily (i.e., the tendency that similar nodes tend to be connected among
themselves) in many complex networks implies that there is a strong correlation
between labels of connected nodes [6]. To effectively take this correlation into
account, collective classification methods make a first-order Markov dependency
assumption stating that the label of a node depends on the labels present in its
neighborhood [17].

The most general framework for collective classification was proposed by
Macskassy and Provost [17]. They have been formalized collective classification
as a composition of three models:

1. Non-relational or local model. This model set initial node labels in iso-
lation using only local node attributes. Such models can be trained by
traditional machine learning algorithms. If nodes do not have any addi-
tional attributes except single labels, the local model either assumes an
equal probability for each label or assigns label probabilities proportionally
to label frequencies.

2. Relational model. The main objective of the relational model is to infer
the label or the distribution of label probabilities for a given node con-
sidering the known labels in its neighborhood. The most commonly used
relational models are the weighted vote relational neighbour classifier, the
class-distribution relational neighbour classifier and network-only Bayes
classifier [17].

3. Collective inference model. This model controls how the relational model
is applied to simultaneously infer labels of all unlabeled nodes. Typical
collective inference models are Gibbs sampling, relaxation labeling, itera-
tive classification and loopy belief propagation [17, 6].

It has been demonstrated that the injection of unobserved (non-existent)
links can improve the performance of collective classification. Galagher et al. [18]
designed a scheme in which “ghost” edges are added for unlabeled nodes en-
tirely surrounded with other unlabeled nodes. Such nodes are by ghost edges
artificially connected to nearest labeled nodes (nearest by the shortest path dis-
tance). The collective inference algorithm proposed in [19] combines collective
inference with link prediction, i.e., links indicated by a link prediction algorithm
are injected into a network prior to collective inference.

Collective inference methods can be also generalized for the multi-class set-
ting in which nodes could have multiple labels [20, 21]. Cautious inference [22],
active inference [23] and label regularization [24] were also considered as addi-
tional corrective mechanisms increasing robustness of collective classification.

2.2. Classification based on Graph Embeddings

Graph embedding algorithms enable the application of traditional machine
learning techniques designed for tabular data on graphs. The main idea of graph
embedding algorithms is to learn a latent node representation in an Euclidean
space of an arbitrary dimension n. This means that each node is represented
as an n-dimensional real-valued vector. The representation learning process is
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based on the following principle: nodes close or similar in the graph (by a graph-
based similarity or distance function) should be also close in the embedding (by
a distance defined in the Euclidean space). The embedding produced from a
graph together with known node labels can be treated as an ordinary data table
for traditional machine learning algorithms training classifiers (e.g., support
vector machines, näıve Bayes, random forests, etc.).

Most of the graph embedding algorithms can be, roughly speaking, divided
into the following 3 broad categories [9]:

1. methods based on matrix factorization,

2. methods based on random walks, and

3. methods based on deep learning techniques.

Methods from the all three indicated categories could be abstracted into an
encoder-decoder schema: the encoder transforms a node into its embedding
vector, whereas the decoder reconstructs the neighborhood of the node from
the embedding vector [25].

Let A denote the adjacency matrix of a graph, a matrix derived from the
adjacency matrix or some other matrix reflecting similarity of all node pairs.
Lower-dimensional representations ofA (node embedding vectors) can be learned
by matrix factorization methods that decompose A into a product of two or
more matrices. The main property of matrix factorization methods is that the
product decomposition is obtained by optimizing a stated loss function. For
example, in the Laplacian eigenmap method [26], A is the graph Laplacian ma-
trix and its factorization is obtained by optimizing a loss function taking into
account the L2 distance of node embedding vectors for non-zero values in A.
A comprehensive overview of matrix factorization methods for producing graph
embeddings can be found in [8].

Graph embedding methods based on random walks reduce the problem of
generating graph embeddings to the problem of generating text embeddings.
More specifically, a certain number of random walks is sampled for each node.
The sampled random walks are then treated as ordinary sentences in which
words are node identifiers. Since random walks are transitions from a node
to one of its randomly selected neighbors, nodes close in the graph will be
also close in the text. Random walk graph embedding algorithms typically use
word2vec [27] to form embeddings from sampled random walks. DeepWalk [28]
is the first proposed graph embedding algorithm based on random walks. Its
main characteristic is that it samples unbiased random walks: each neighbor of
the node at which the random walk is currently residing has an equal probabil-
ity to be selected as the next node. Node2vec is the most general algorithm of
this kind [16]. It has two hyper-parameters for controlling biased random walk
sampling that interpolates between BFS and DFS random walking strategies.
Savić et al. [29] proposed two node2vec extensions that personalize node2vec
hyper-parameters per nodes and edges according to a measure based on the no-
tion of local intrinsic dimensionality. More specific random sampling techniques
could also be designed to preserve some higher-order graph properties such as
structural roles [30].
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Graph embedding methods based on deep learning techniques produce graph
embeddings by forming autoencoders. Autoencoders are neural networks trained
to reproduce input values at the output layer through an architecture composed
of an encoder and a decoder. The encoder is a sequence of layers where each
next layer contains less neurons than the previous layer. The last layer in the
encoder is the middle layer encoding the latent lower-dimensional representa-
tion of the training dataset. The decoder starts after the middle layer and its
structure is inversed to the encoder. Autoencoders for graphs can by formed ei-
ther to reproduce adjacency matrices [31] or matrices containing values of node
similarity metrics [32].

2.3. Classification based on Graph Neural Networks

Node classification models can be obtained by training graph neural net-
works (GNNs). The main feature of GNNs is that they use message passing
in which vector representations of nodes are exchanged among neighbors in a
graph and updated using deep learning techniques [33]. In each message pass-
ing iteration, a node aggregates vector representations of its neighbors and then
updates its own representation. As the message passing procedure advances
the node aggregates more information from more distant nodes in the graph.
The functions for aggregating and updating vector representations are arbitrary
differentiable functions, so K iterations of the message passing procedure can
be viewed as a neural network of K layers. The last iteration produces the final
vector representations of nodes. Therefore, a GNN can be trained to minimize
a loss function defined with respect to the known labels in the graph in order
to obtain the node classification model.

Graph convolutional networks (GCNs) are the most dominant graph neural
network models [34]. Mathematically speaking, a GCN is a chain of matrix
multiplications involving a normalized adjacency matrix, node feature matrix
(labels and other node attributes) and trainable weight matrix, where matrix
multiplications at the end of each iteration are followed by an activation function
(e.g., the ReLU function). Weight matrices (one per layer/iteration) are trained
to minimize the cross-entropy error over all labeled nodes. It was demonstrated
that the performance of GCNs could be improved by importance sampling [35],
localized spectral filtering [36] and attention mechanisms [37]. A comprehensive
review of GCNs can be found in [38].

Hamilton et al. introduced GraphSAGE – a framework for inductive repre-
sentation learning on large graphs [39]. The main idea of GraphSAGE is not to
learn vector representations of nodes, but a function that performs sampling and
aggregation of features from a node’s local neighborhood. This work inspired
many researchers to investigate generalized neighborhood aggregation mecha-
nisms in GNNs, including skip connections, the Janossy pooling, gated updates
inspired by recurrent neural networks and jumping knowledge connections [33].
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3. Motivation and Contributions

Collective classification methods and graph neural networks can be consid-
ered as “direct” methods for the node classification problem. In general, graph
neural networks are more powerful than collective classification algorithms due
to more sophisticated neighborhood aggregation mechanisms, especially in the
case of nodes enriched with discriminative attributes (attributes that correlate
with class labels). However, graph neural networks demand more time to train
and their performance strongly depends on a large space of hyper-parameters
whose tuning is also non-trivial task requiring considerable time.

In contrast to collective classification and graph neural networks, classifica-
tion based graph embeddings is an “indirect” approach to infer unknown labels
providing a valuable flexibility regarding the final classification model: any tra-
ditional classification model designed for tabular data, including also modern
deep learning models, can be trained on the top of a graph embedding. Since
good graph embeddings preserve nodes’ neighborhoods, classification models
trained on them are able to achieve at least the same level of performance as
collective classification methods. Moreover, graph embeddings based on ran-
dom walks capture broader neighborhoods of nodes since random walks are not
strictly restricted to ego networks (direct neighbors of a node) making their
performance comparable to graph neural networks in case when nodes have
sparse attributes or do not have attributes at all. On the other hand, classifica-
tion based on graph embeddings could be significantly more time efficient than
tuning and training graph neural networks. Consequently, it can be said that
this approach provides a good trade-off between classification performance and
training time.

The focus of this paper is on node classification based on graph embeddings
obtained via random walks. To the best of our knowledge, the previous research
works have not considered random walk graph embedding algorithms specifically
tailored for the node classification problem, but they dealt with methods for
obtaining general purpose graph embeddings that can be used in a variety of
applications (besides node classification, node clustering and link prediction are
the most considered applications of graph embeddings). This means that labels
of nodes have to be explicitly taken into account when performing random
walks. In this paper we propose two novel graph embedding methods based
on biased random walks that are guided according to known node labels. To
design appropriate random walk strategies we start from the “good-bad” hubs
perspective indicated by Radovanović et al. [15]. The main idea is that the
random walk prefers visiting good hubs and avoiding bad hubs. The proposed
methods are evaluated by training widely used classification models on obtained
embeddings. To demonstrate effectiveness of our methods we analyze the same
classification models trained on node2vec embeddings. The node2vec algorithm
is selected as the baseline since it is the most general-purpose graph embedding
method based on biased random walks. The obtained results indicate that the
designed random walking schemes significantly improve the performance of final
classification models.
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4. Hub-based Random Walk Graph Embedding Methods

Let G be a partially labeled graph, i.e., in G a certain fraction of nodes is
labeled and we want to infer labels of unlabeled nodes. Let L(x) denote the
label of an arbitrary node x (if x is labeled). A high-degree labeled node h is
called a good hub if∣∣{n ∈ N l(h) : L(n) = L(h)}

∣∣ >
∣∣{m ∈ N l(h) : L(m) ̸= L(h)}

∣∣ ,
where N l(h) is the set of the labeled neighbours of h and |·| is the set cardinality
operator. If the previously stated condition is not satisfied then h is a bad hub.
In other words, a good hub shares the same label with a majority of nodes in its
neighborhood. Such property guaranties that its label can be correctly derived
from the most frequent label of surrounding nodes, which is not the case for bad
hubs.

In this Section we present two novel hub-based random walk graph embed-
ding methods based on the principle of favoring good hubs and avoiding bad
hubs during random walks. As in other similar methods, a certain number of
random walks is sampled starting from each node in the graph and each ran-
dom walk has a fixed length. A general form of random walk graph embedding
methods is shown in Algorithm 1. Each random walk is treated as a sentence
(s in Algorithm 1) composed of identifiers of nodes visited during the walk. All
sampled random walks then form a text (denoted by T in Algorithm 1) which is
substituted to a word embedding algorithm W . Our methods, similarly to other
random walk graph embedding algorithms, use word2vec [27] as the underly-
ing word embedding algorithm. We assume that G does not contain isolated
nodes, so each node c in G has a non-empty neighborhood 1 (denoted as N c in
Algorithm 1).

The most crucial part of random walk graph embedding algorithms is the
sampling strategy (S in Algorithm 1). S determines the next node (n in Algo-
rithm 1) in the random walk considering the node at which the random walk
is currently located (current node, denoted by c in Algorithm 1) and eventu-
ally the node from which the random walk started (start node, denoted by v
in Algorithm 1). S is an unbiased sampling strategy if each node from N c has
an equal probability to be selected as the next node. An important property of
the unbiased sampling strategy is that it actually favors selecting hubs: a high
degree node has a higher probability to be in N c than a low degree node. This
property actually inspired a class of mathematical models for generating net-
works with hubs that are also known as copying models [40, 41]. Consequently,
to design a biased sampling strategy preferring visiting good hubs we should
include a degree of uniformity when selecting the next node. In our methods,
this is achieved in two ways:

1Isolated nodes in random walk graph embedding methods are typically handled by adding
self-loops. In this way, a random walk sampled from an isolated node o is a sentence composed
entirely of o.
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Algorithm 1: General form of random walk graph embedding
algorithms

input : G = (V,E) – input graph (V – the set of nodes, E – the set of edges)
t – the number of random walks per node
l – the length of each random walk
S – sampling strategy
W – word embedding algorithm

output: Ê – an embedding of G

T = []
for v ∈ V do

for i = 1 to t do
s = []
c = v
for j = 1 to l do

append id of c to s
Nc = the set of neighbors of c
n = select a node from Nc according to S
c = n

end
append s to T

end

end

Ê = apply W to T
return Ê

1. with a certain probability q we always select a node from N c uniformly at
random, and

2. the next node is selected from a subset of N c containing good nodes (nodes
having the same label as the start node), either uniformly at random or
by higher probabilities for good hubs.

If the current node c is unlabeled then it can not be determined if it is good or
bad hub, thus the next node n is selected uniformly at random from the set of
c’s neighbors.

The probability q actually controls to what extent our sampling strategies
deviate from being unbiased (higher q values imply more unbiased sampling).
The unbiased sampling is also applied if the subset of N c containing good nodes
is an empty set. With p we denote the probability of biased sampling (p = 1−q)
which is one of parameters of our graph embedding methods.

Our first method is called SCWalk (same class walk). Its sampling strategy
is shown in Algorithm 2. The main idea of SCWalk is to direct random walks
towards nodes that have the same label as the start node. With the probability
of biased sampling, the sampling strategy selects the next node uniformly at
random from the set of good nodes (S in Algorithm 2). If the set of good nodes
is empty then the next node is selected uniformly at random from the set of bad
nodes. In this way, sentences sampled for the start node dominantly contains
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Algorithm 2: The sampling strategy for the SCWalk algorithm

input : v – start node
c – current node
Nc – neighbors of c
p – the probability of biased sampling

output: n – next node

r = random real number between 0 and 1
if c and v are labeled and r <= p then

S = {x ∈ Nc : L(x) = L(v)}
D = {y ∈ Nc : L(y) ̸= L(v)}
if |S| > 0 then

n = select a node from S uniformly at random
else

n = select a node from D uniformly at random
end

else
n = select a node from Nc uniformly at random

end
return n

good nodes (and good hubs due to uniform sampling) from its neighborhood,
consequently making the corresponding label more compact in the produced
embedding and with less noise caused by bad nodes (and bad hubs).

Our second hub-based random walk graph embedding method is called Hub-

WalkDistribution. The sampling strategy of this method is given in Al-
gorithm 3. Compared to SCWalk, HubWalkDistribution considers not only
neighbors of the current node, but also their neighbors. Additionally, it puts
more bias towards good hubs and at the same time penalizes bad hubs more.
HubWalkDistribution utilizes a measure of good hubness to form the probabil-
ity distribution for selecting the next node. More specifically, for each neighbor
x of current node c we compute H(x) reflecting the degree of good hubness of
x. H(x) is the number of neighbors of x having the same label as the start node
divided by the total number of x’s neighbors. Higher values of H(x) imply good
hubness, whereas lower value close to 0 indicate bad hubness. The next node is
then selected according to the probability proportional to its H value.

As can be seen from the given algorithmic descriptions of the proposed ran-
dom walk sampling strategies: (1) random walks are sampled for both labeled
and unlabeled nodes, (2) random walk transitions for unlabeled nodes are al-
ways unbiased (each neighbor of an unlabeled node has an equal probability to
be selected as the next node in the walk) since their labels are unknown, and
(3) unlabeled nodes are not discarded from biased random walks starting from
labeled nodes (biased according to our label-based sampling strategies). Thus,
we can distinguish between three types of random walks sampled according to
our schemes:

• completely-unbiased random walks that are sampled starting from unla-
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Algorithm 3: The sampling strategy for the HubWalk-

Distribution algorithm

input : v – start node
c – current node
Nc – neighbors of c
p – the probability of biased sampling

output: n – next node

r = random real number between 0 and 1
if c and v are labeled and r <= p then

H = a dictionary mapping nodes to their good hubness values
for x ∈ Nc do

Nx = the set of neighbors of x
H[x] = |{y ∈ Nx : L(y) = L(v)}| /|Nx|

end
P = normalize H values to a probability distribution
n = randomly select a node from Nc according to P

else
n = select a node from Nc uniformly at random

end
return n

beled nodes,

• partially-biased random walks that are sampled starting from labeled nodes
and may contain unlabeled nodes, and

• completely-biased random walks that are sampled starting from labeled
nodes and contain only labeled nodes.

The main principle of graph embedding methods based on random walks is
that all node embedding vectors are learnt from all sampled random walks
by training exactly one language model (Word2Vec in our case) from which
node embedding vectors are formed. Consequently, node embedding vectors of
unlabeled nodes are affected not only by completely-unbiased random walks, but
also by partially-biased random walks. The number of partially-biased random
walks increases with the fraction of labeled nodes, producing a stronger impact
on node embedding vectors of unlabeled nodes.

5. Experiments and Results

The experimental evaluation of our hub-aware graph embedding methods
is conducted on datasets listed in Table 1. The experimental set of graphs
contains both undirected and directed graphs. Directed graphs are converted
to their undirected projections (by ignoring link directions) since random walks
should not be restricted and biased to out-neighborhoods of nodes (i.e., by
allowing random walks to follow only out-going links we capture neighborhoods
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partially; additionally, if a directed graph is not strongly connected then random
walks cannot be continued when they enter a node without out-going links).

Graph N E C d̄ std(d) max(d) L

Zachary karate club 34 78 1 4.59 3.88 17 2
CORAML 2995 8158 61 5.45 8.25 246 7
CITESEER 4230 5337 515 2.52 3.75 85 6
AE photo 7650 119081 136 31.13 47.28 1434 8
PUBMED 19717 44324 1 4.50 7.43 171 3
CORA 19793 63421 364 6.41 8.79 297 70
DBLP 17716 52867 589 5.97 9.35 339 4

Table 1: Experimental datasets.

All examined graphs have entirely labeled nodes (where the number of dis-
tinct labels varies from 2 to 70, column L in Table 1). The experimental corpus
contains one small social network (Zachary karate club), five medium to large
citation networks (CORAML, CITESEER, PUBMED, CORA and DBLP) and
one large co-purchase network of Amazon photo-related products (AE photo).
The Zachary karate club network depicts social interactions among members
of a university karate club that were documented and firstly investigated by
anthropologist Wayne W. Zachary [42]. The labels in this graph correspond
correspond to two karate clubs formed after a conflict between two members
of the original karate club. Thus, on this graph we analyze the performance
of binary classification models. In all other graphs, the number of labels is
higher than 2, which means that we train and analyze multi-class predictive
models. The nodes in a citation network represent scientific papers, while links
are citations among them. Names of citation networks indicate bibliographical
databases from which those networks are formed. Labels in citation networks
denote broad or more narrow scientific fields (depending on the network). Links
in co-purchase networks connect products that were bought in same transac-
tions, while labels represent product categories.

Besides the total number of labels, Table 1 shows for each graph the number
of nodes (N), the number of edges (E), the number of connected components
(C), the average node degree (d̄), the standard deviation of node degrees (std(d))
and the maximal degree (max(d)). It can be noticed that graphs are sparse
(d̄ ≪ N − 1; N − 1 is the maximal number of links that could emanate from
any node). Zachary karate club and PUBMED are connected graphs (there
is a path connecting any pair of nodes). Other networks contains a relatively
large number of connected components. However, except CITESEER, all of
them have a giant connected component encompassing more than 90% of nodes
(the largest connected component in CITESEER contains approximately 40%
of nodes). It is also important to observe that in all graphs, except the smallest
one, we have that std(d) > d̄ implying that the degree distributions of networks
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are long-tailed. This means that all examined medium and large graphs from
our experimental corpus contain hubs. This is also evident from the maximal
degree values where we have that max(d) ≫ d̄.

In the experimental evaluation we compute classification performance of
three traditional classification models, support vector machines (SVM), näıve
Bayes (NB) and random forests (RF) on embeddings obtained from node2vec
and our two methods. For each dataset and each method we generate graph
embeddings in the following five dimensions: 10, 25, 50, 100 and 200. Node2vec
was tuned by finding values of its hyper-parameters p (return-back parameter)
and q (in-out parameter) that give embeddings with the lowest graph recon-
struction error by the procedure described in [29]. As suggested in [16], for p
and q of node2vec we consider values in {0.25, 0.50, 1, 2, 4}, while the number
of random walks per node and the length of each random walk were fixed to
10 and 80, respectively. The same number of random walks per node and the
length of each random walk are used for our methods. The probability of biased
sampling (p hyper-parametar of our two methods) is varied in {0.15, 0.5, 0.85},
which means that our experimental analysis covers three different cases: the
first one is when our methods incline to unbiased random walks (p = 0.15), the
second one in which unbiased sampling occurs at the same frequency as biased
sampling (p = 0.5), and the last one is when biased sampling dominates over
unbiased sampling (p = 0.85).

Trained classification models are evaluated by the 10-fold cross-validation
procedure [43] in which we compute the macro-averaged values of precision,
recall and F1 scores from confusion matrices obtained in each cross-validation
step. Since we use 10-fold cross-validation, in each cross-validation step labels
of 10% of nodes are ignored and inferred from the labels of the rest of the
nodes. This means that in our experimental setting the probability that a node
is unlabeled is equal to 0.1, which is lower than the probability 1−p of unbiased
sampling in all experimental cases (please recall that p takes values in {0.15, 0.5,
0.85}). This ensures that label information in biased random walk sampling is
used to an extent that does not overfit SVM, NB and RF classification models
derived from sampled random walks. For example, when p is equal to 0.85 (the
case with the most strongest biased random walk sampling in our experiments),
labels of 15% of nodes are ignored by our graph embedding methods, while
labels of 10% of nodes are ignored during the cross-validation procedure for
training and evaluating the classification models.

Let C denote the set of classes (labels) and let e be the confusion matrix
obtained in an arbitrary cross-validation step, where ei,j is the number of test
examples (nodes from the test dataset) belonging to class i that were classified
into class j. Then, the accuracy of a classification model is defined as the number
of correctly classified test examples:

Accuracy =

∑
i∈C

ei,i∑
(i,j)∈C×C

ei,j
.
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Contrary to accuracy, precision and recall are computed per class and then
averaged into single scores. The precision for class i is the fraction of test
examples assigned to class i that actually belong to class i:

Precision(i) =
ei,i∑

j∈C

ej,i
.

Recall quantifies to what extent members of class i have been classified correctly:

Recall(i) =
ei,i∑

j∈C

ei,j
.

Since precision and recall reflects two different aspects of classification models
it is useful to merge them into a single score reflecting the overall classification
performance. For this purpose, F1 score, defined as the harmonic mean of
averaged precision and recall, is typically used:

F1 =
2 · P ·R
P +R

,

where P and R denote the average precision and recall, respectively.
The rest of this section is divided into several subsections, where each subsec-

tion presents obtained experimental results for one of considered classification
models.

5.1. SVM Evaluation

In this subsection we present evaluation results for SVM classifiers. The aver-
age values of classification performance metrics across all experimental datasets
for SVMs trained on node2vec embeddings are shown in Table 2. It can be
observed that SVM on node2vec embeddings has a relatively good predictive
power with all performance metrics being higher than 0.6. Table 3 shows the
average performance of SVM trained on embeddings produced by our methods
for different values of the probability of biased sampling (p). It can be seen
that regardless of p our graph embedding methods outperform node2vec. Addi-
tionally, the predictive power increases with p implying that a higher degree of
hub-based biases in our sampling strategies gradually improves SVM classifiers.

Accuracy Precision Recall F1

0.7494 0.6802 0.6272 0.6419

Table 2: Average values of performance metrics for SVM classification on node2vec embed-
dings.

Now, we are going to present performance improvements (or deterioration)
when p is equal to 0.85 (the case with the biggest average improvements over
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p Accuracy Precision Recall F1

0.15 0.7677 0.6833 0.6378 0.6515
0.5 0.7919 0.7027 0.6587 0.6721
0.85 0.8148 0.7228 0.6804 0.6940

Table 3: Average values of performance metrics for SVM classification on all embeddings
generated by SCWalk and HubWalkDistribution.

node2vec) for each graph and each of our graph embedding methods, individu-
ally. Let us denote differences in accuracy, precision, recall and F1 by Acc-diff,
Prec-diff, Rec-diff and F1-diff, respectively. Differences between SCWalk and
node2vec are shown in Table 4 (a positive value indicates that SCWalk performs
better). It can be seen that there are considerable improvements in performance
metrics on almost all graphs (no negative values in Table 4). SVM trained on
SCWalk embeddings of the Zachary karate club graph has exactly the same
values of performance metrics as SVM trained on node2vec embeddings. Due
to a small set of nodes, SVM models on this graph achieve perfect performance
without false predictions for both node2vec and our methods. For other graphs,
accuracy, recall and F1 of SCWalk is better compared to node2vec. Precision
also strongly tend to be improved with SCWalk: we can seen positive differences
in precision for all graphs except CITESEER where the difference is equal to
zero. Significant improvements (improvements higher than 0.1) in all perfor-
mance metrics are present for two graphs (CORA and CORAML).

Graph Acc-diff Prec-diff Rec-diff F1-diff

AE photo 0.0473 0.055 0.0488 0.052
CITESEER 0.0572 0 0.0095 0.0079
CORA 0.1462 0.1687 0.1571 0.1658
CORAML 0.1016 0.1382 0.1313 0.1383
DBLP 0.1863 0.0046 0.1152 0.0876
Zachary karate club 0 0 0 0
PUBMED 0.0867 0.0892 0.094 0.092

Table 4: Differences in SVM classification performance between SCWalk (p = 0.85) and
node2vec.

The differences between HubWalkDistribution and node2vec are shown in
Table 5. The improvements are present for all datasets except AE photo on
which node2vec preforms slightly better than our algorithm. On the Zachary
karate club graph we again obtain equal values of performance metrics. On
other datasets, HubWalkDistribution achieves higher values of precision, recall
and F1 than node2vec, but with smaller improvements compared to SCWalk.
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The accuracy of SVM models trained on embeddings produced by all three
graph embedding methods for all datasets are shown in Figure 1. It can be seen
that SVM models trained after SCWalk considerably outperform SVM models
trained after HubWalkDistribution and node2vec on medium and large graphs.

Graph Acc-diff Prec-diff Rec-diff F1-diff

AE photo 0.0007 -0.0013 -0.0033 -0.0023
CITESEER 0.0539 0.0066 0.0129 0.01283
CORA 0.0424 0.0598 0.0495 0.0553
CORAML 0.0461 0.057 0.0476 0.0518
DBLP 0.1321 0.0023 0.0668 0.0532
Zachary karate club 0 0 0 0
PUBMED 0.0144 0.0151 0.0151 0.0152

Table 5: Differences in SVM classification performance between HubWalkDistribution (p =
0.85) and node2vec.

Graph
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1.0
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CITESEER
CORA

CORAML
DBLP

Zachary karate club 

PUBMED

Tuned Node2Vec SCWalk (p=0.85) HubWalkDistribution (p=0.85)

Figure 1: Accuracy of SVM classification for all datasets and all three graph embedding
algorithms.

5.2. Random Forest Evaluation

In the evaluation of RF classifiers we experiment with the number of estima-
tors (the number of decision trees in a random forest model) to see how results
depend on this hyper-parameter. The number of estimators is varied to be 10,
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25, 50 and 100. The obtained results for node2vec are summarized in Table 6.
As expected, the predictive performance of RF improves as the number of esti-
mator grows, but not by a big margin. It can be also seen that RF on node2vec
performs similarly to SVM on node2vec.

Estimators Accuracy Precision Recall F1

10 0.7002 0.6757 0.6078 0.6219
25 0.7224 0.697 0.6259 0.6405
50 0.7286 0.7047 0.6308 0.6467
100 0.7315 0.7084 0.634 0.6495

Table 6: Average values of performance metrics for RF classification on node2vec embeddings.

The average values of performance metrics for RF models trained on SCWalk
and HubWalkDistribution embeddings when p = 0.85 are given in Table 7.
Again we can see that the predictive ability of RF increases with the number
of estimators. The obtained values of accuracy, precision, recall and F1 of
our graph embeddings methods are higher than the same values for node2vec.
Consequently, our graph embedding algorithms are able to also improve the
predictive power of RF classifiers.

Estimators Accuracy Precision Recall F1

10 0.7588 0.6922 0.6412 0.6544
25 0.7805 0.7106 0.6579 0.6735
50 0.7901 0.7181 0.6672 0.6825
100 0.7927 0.7215 0.6696 0.6857

Table 7: Average values of performance metrics for RF classification on all embeddings gen-
erated by SCWalk and HubWalkDistribution (p = 0.85).

RF classifiers provide the best results on our datasets when the number
of estimators is equal to 100. Figure 2 shows a comparison of classification
accuracy of RF for all three graph embedding methods on all graphs from our
experimental corpus for the previously mentioned number of estimators. It can
be seen that RF in combination with node2vec performs badly (accuracy just
above 20%) for DBLP. For that graph we see that our graph embedding methods
significantly outperform node2vec with the increase of accuracy by almost 25%.
Except the Zachary karate club graph, RF trained on graph embeddings formed
by our methods has a higher accuracy than RF trained on node2vec embeddings.
The highest accuracy is achieved by SCWalk which significantly outperforms
node2vec on 4 graphs (CORA, CORAML, DBLP and PUBMED).
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Figure 2: Classification accuracy of RF with 100 estimators for each dataset and three graph
embedding algorithms.

5.3. Näıve Bayes Evaluation

In this subsection we present evaluation results for NB classification. The av-
erage values of performance metrics for node2vec and our random walk methods
(for p = 0.85) are depicted in Tables 8 and 9, respectively. It can be observed
that our methods on average provide better embeddings for NB classification
than node2vec.

Accuracy Precision Recall F1

0.7034 0.6634 0.6304 0.634

Table 8: Average values of performance metrics for NB classification on node2vec embeddings.

Accuracy Precision Recall F1

0.7553 0.6898 0.6496 0.6605

Table 9: Average values of performance metrics for NB classification on all embeddings gen-
erated by SCWalk and HubWalkDistribution (p = 0.85).

Figure 3 shows the classification accuracy of NB per dataset for three graph
embedding algorithms. HubWalkDistribution is the best performing algorithm
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on 2 graphs (CITESEER and DBLP), while SCWalk is the best choice for 5
graphs (all other graphs except Zachary). It can be seen that SCWalk signifi-
cantly outperforms node2vec for 5 graphs (AE photo, CORA, CORAML, DBLP
and PUBMED).

Graph

0.2

0.4

0.6

0.8

1.0

AE photo

CITESEER
CORA

CORAML
DBLP

Zachary karate club 

PUBMED

Tuned Node2Vec SCWalk (p=0.85) HubWalkDistribution (p=0.85)

Figure 3: Classification accuracy of NB for each dataset and three graph embedding algo-
rithms.

5.4. Experimental Analysis of Hyper-parameters

The principal difference of our graph embedding methods compared to ex-
isting graph embedding approaches based on biased random walks is leveraging
node labels according to the previously described hubness principle. Thus, the
most important hyper-parameter of our methods is the probability p of biased
random walk sampling. Larger values of p imply that node labels are more fre-
quently used in the sampling process. Consequently, for an increase in p we also
expect an increase in the accuracy of node classification models. In this subsec-
tion, we discuss in detail the impact of p on the performance of classification
models trained on SCWalk and HubWalkDistribution embeddings.

Table 10 shows accuracy, precision, recall and F1 of SVM classification mod-
els trained on SCWalk and HubWalkDistribution embeddings obtained for dif-
ferent values of hyper-parameter p. The previously mentioned model evaluation
metrics are averaged across all examined embedding dimensions (10, 25, 50, 100
and 200). It can be seen that with larger p values we obtain better-performing
SVM classifiers, i.e., accuracy, precision, recall and F1 score of SVM models
consistently increase with p. Considerable improvements can be observed for
SCWalk where accuracy, precision, recall and F1 increased by 8.92%, 9.07%,
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10.58% and 10.27%, respectively, when p goes from 0.15 to 0.85. Additionally,
SVM classifiers trained on SCWalk embeddings provide better classification re-
sults than the same classifiers trained on HubWalkDistribution embeddings.

SCWalk HubWalkDistribution

p A P R F1 A P R F1

0.15 0.7701 0.6834 0.6391 0.6526 0.7654 0.6831 0.6366 0.6504
0.5 0.8085 0.7171 0.6743 0.6884 0.7752 0.6882 0.6431 0.6558
0.85 0.8388 0.7454 0.7067 0.7196 0.7908 0.7002 0.6542 0.6684

Table 10: The average values of performance metrics for SVM classification on SCWalk and
HubWalkDistribution embeddings for different values of p. A – accuracy, P – precision, R –
recall

The results for RF and NB classification models are summarized in Tables 11
and 12. Again, it can be seen a consistent increase in model performance for
higher p values for both SCWalk and HubWalkDistribution. As for SVM, RF
and NB models trained on SCWalk embeddings are better than models trained
on HubWalkDistribution embeddings. For SCWalk, the F1 score of RF and NB
models increased by 12.44% and 11%, respectively, when p increases from 0.15
to 0.85.

SCWalk HubWalkDistribution

p A P R F1 A P R F1

0.15 0.7328 0.6841 0.6184 0.6348 0.7253 0.6783 0.6112 0.6273
0.5 0.7782 0.7124 0.6582 0.6739 0.744 0.6878 0.6236 0.6409
0.85 0.8203 0.7448 0.6984 0.7138 0.7651 0.6982 0.6408 0.6577

Table 11: The average values of performance metrics for RF classification on SCWalk and
HubWalkDistribution embeddings for different values of p. A – accuracy, P – precision, R –
recall

6. Conclusions and Future Work

Node classification is one of the most important machine learning task when
analyzing partially labeled networks. In this paper we have discussed three dif-
ferent approaches to the node classification problem: collective inference meth-
ods, node classification based on graph embeddings and graph neural networks.
The approach based on graph embeddings provides a valuable trade-off between
classification accuracy and computational efficiency. However, graph embedding
algorithms are typically designed to be independent of a concrete application,
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SCWalk HubWalkDistribution

p A P R F1 A P R F1

0.15 0.7085 0.6419 0.6104 0.6146 0.7054 0.6389 0.6079 0.612
0.5 0.7421 0.6732 0.6367 0.6457 0.7214 0.6493 0.6181 0.6232
0.85 0.7737 0.7138 0.668 0.6823 0.7368 0.6659 0.6311 0.6387

Table 12: The average values of performance metrics for NB classification on SCWalk and
HubWalkDistribution embeddings for different values of p. A – accuracy, P – precision, R –
recall

i.e., they provide general-purpose representations of nodes in Euclidean spaces
that are suitable for a variety of tasks (including also node classification).

In this paper we have presented two novel graph embedding algorithms
(SCWalk and HubWalkDistribution) based on random walks that are specifically
tailored for the node classification problem. This means that our algorithms ex-
plicitly take into account existing labels of nodes when sampling random walks.
Additionally, our algorithms give a special attention to hubs, which are the most
important nodes in large-scale networks.

In the experimental evaluation, we have compared our methods to node2vec,
which is the most popular general-purpose graph embedding algorithm based on
random walks. More specifically, we have examined predictive performance of
four traditional classification algorithms (SVM, RF and NB) trained on embed-
dings produced by our methods and node2vec on seven real-world networks (one
small and six medium to large). The obtained results show that the predictive
power of classification models improves with our methods. Additionally, it was
demonstrated that a higher degree of hub-based biases when sampling random
walks leads to more suitable embeddings for the node classification problem.

Our future work can go in few directions. One of them will be to consider
even more biased random walks approaches for graph embedding algorithms,
e.g., to take node degree (or other centrality metrics) when computing transition
probabilities during random walks. The set of target classification algorithms
could be also extended when experimentally evaluating our methods, e.g., by
including neural networks. The robustness of random walk sampling strategies
to adversarial attacks is also an important issue. Therefore, it is valuable to test
how our methods behave when labels are randomly changed for a small number
of nodes. It is also interesting to examine SCWalk and HubWalkDistribution
algorithms in other machine learning applications, such as link prediction and
node clustering.
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graphs: Towards LID-aware graph embedding algorithms, in: N. Reyes,
R. Connor, N. Kriege, D. Kazempour, I. Bartolini, E. Schubert, J.-J. Chen
(Eds.), Similarity Search and Applications, Springer International Publish-
ing, Cham, 2021, pp. 159–172. doi:10.1007/978-3-030-89657-7\_13.

[30] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, Struc2vec: Learning node
representations from structural identity, in: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’17, Association for Computing Machinery, New York, NY, USA,
2017, p. 385–394. doi:10.1145/3097983.3098061.

[31] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, Association for Computing Machin-
ery, New York, NY, USA, 2016, p. 1225–1234. doi:10.1145/2939672.

2939753.

[32] S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph represen-
tations, in: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, AAAI Press, 2016, p. 1145–1152.

[33] W. L. Hamilton, Graph Representation Learning, Springer Cham, 2020.
doi:10.1007/978-3-031-01588-5.

24

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/978-3-030-89657-7_13
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1007/978-3-031-01588-5


[34] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, in: International Conference on Learning Representations,
2017.

[35] J. Chen, T. Ma, C. Xiao, FastGCN: Fast learning with graph convolu-
tional networks via importance sampling, in: International Conference on
Learning Representations, 2018.

[36] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-
works on graphs with fast localized spectral filtering, in: Proceedings of
the 30th International Conference on Neural Information Processing Sys-
tems, NIPS’16, Curran Associates Inc., Red Hook, NY, USA, 2016, p.
3844–3852.
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