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LIMIT LAWS FOR EMBEDDED TREES.

APPLICATIONS TO THE INTEGRATED SUPERBROWNIAN

EXCURSION

MIREILLE BOUSQUET-MÉLOU

Abstrat. We study three families of labelled plane trees. In all these trees, the root is

labelled 0, and the labels of two adjaent nodes di�er by 0, 1 or −1.
One part of the paper is devoted to enumerative results. For eah family, and for all

j ∈ N, we obtain losed form expressions for the following three generating funtions:

the generating funtion of trees having no label larger than j; the (bivariate) generating

funtion of trees, ounted by the number of edges and the number of nodes labelled j;

and �nally the (bivariate) generating funtion of trees, ounted by the number of edges

and the number of nodes labelled at least j. Strangely enough, all these series turn out

to be algebrai, but we have no ombinatorial intuition for this algebraiity.

The other part of the paper is devoted to deriving limit laws from these enumerative

results. In eah of our families of trees, we endow the trees of size n with the uniform

distribution, and study the following random variables: Mn, the largest label ourring in

a (random) tree; Xn(j), the number of nodes labelled j; and X
+
n (j), the number of nodes

labelled j or more. We obtain limit laws for saled versions of these random variables.

Finally, we translate the above limit results into statements dealing with the integrated

superBrownian exursion (ISE). In partiular, we desribe the law of the supremum of

its support (thus reovering some earlier results obtained by Delmas), and the law of its

distribution funtion at a given point. We also onjeture the law of its density (at a

given point).

1. Introdution

We study in this paper three families of labelled plane trees. In all these trees, the root

is labelled 0, and the labels of two adjaent nodes di�er by 0, 1 or −1.
More preisely, the �rst family we onsider is the set of plane trees, and the inrements

of the labels along edges are onstrained to be ±1. In the losely related seond family,

these inrements an be 0,±1. The third family is a bit di�erent. It is simply the set of

(inomplete) binary trees, in whih the nodes are labelled in a deterministi way: the label

of a node is the di�erene between the number of right steps and the number of left steps

ourring in the path that yields from the root to the node under onsideration. See Figure 1

for an illustration. We all this labelling the natural labelling of the binary tree. Note that

the label of eah node is simply its absissa, if we draw the tree in the plane in suh a way

the right (resp. left) son of a node lies one unit to the right (resp. left) of its father. For this

reason, we will sometimes all these labelled binary trees naturally embedded binary trees.

More generally, for any plane labelled tree, we may onsider that the label of eah node tells

where to embed it in Z; hene the title of the paper.

In eah of these three families, we endow the set of trees having a given size (say, n edges)

with the uniform distribution. We address (via generating funtions) the following three

questions:

Date: January 17, 2005.

MBM was partially supported by the European Commission's IHRP Programme, grant HPRN-CT-2001-

00272, �Algebrai Combinatoris in Europe�.

1

http://arxiv.org/abs/math/0501266v1


2 MIREILLE BOUSQUET-MÉLOU

0

−1

0

11 11 0

2 0 −2 1 0 −1

0

−1
1

20

11

Figure 1. A labelled plane tree with inrements ±1. � A labelled tree

with inrements 0,±1. � A naturally embedded binary tree.

(1) What is the maximal label that ours in the tree? This label is in fat a random

variable Mn. We prove that Mn/n
1/4

onverges in distribution to a random variable

N having a density. We give this density expliitly. We also ompute the moments

of N and prove the onvergene of the moments of Mn/n
1/4

to those of N .

(2) How many nodes of the tree have label j? Let Xn(j) denote the orresponding

random variable. If j is �xed, and n goes to in�nity, then the answer to this question

is independent of j. We prove that for any j ∈ Z, the variable Xn(j)/n
3/4

onverges

in distribution to cT−1/2
, where c is a onstant depending on whih family of trees

we onsider, and T follows a unilateral stable law of parameter 2/3.
Given that the maximal label grows like n1/4

, we get a better insight on the

label distribution by asking how many nodes in a tree of size n have label ⌊λn1/4⌋.
We prove that, for any λ ∈ R, the random variable Xn(⌊λn1/4⌋)/n3/4

onverges

in distribution to a limit variable Y (λ). This variable admits a Laplae transform,

whih we give expliitly. The onvergene of the Laplae transform, and of the

moments, hold as well. We say we have obtained a loal limit law for embedded

trees, beause we look at one value of the labels only.

(3) Finally, we also obtain a global limit law by studying the variable X+
n (j) that gives

the number of nodes having label j at least. Remarkably, we prove thatX+
n (0)/n, the

(normalized) number of nodes having a non-negative label, onverges to the uniform

distribution on [0, 1]. More generally, for λ ∈ R, the variable X+
n (λn1/4)/n onverges

in distribution to a variable Y +(λ). This variable admits a Laplae transform, whih

we give expliitly. One again, the onvergene of the Laplae transform, and of the

moments, hold as well.

The laws of N , Y (λ) and Y +(λ) naturally depend on whih family of trees we onsider, but

only by a simple normalization fator.

1.1. Embedded trees and the integrated superBrownian exursion

Why should one study suh labelled trees?

The �rst two lasses of trees we onsider have a lose onnetion with ertain families of

planar maps [6, 8, 11℄. In partiular, the diameter of a random quadrangulation having n
faes is distributed like the largest label in non-negative random trees of our seond family.

Moreover, one saled by n1/4
, this diameter has the same limit law as (Mn − mn)n

−1/4
,

where Mn (resp. mn) is the largest (resp. smallest) label ourring in a random tree of our

seond family [8℄.

The third lass we study is the good old family of binary trees, and this may su�e to

motivate its study! More seriously, the three questions addressed above have, for binary

trees, a natural geometri formulation. The random variable Mn (the maximum label) tells

us about the �true width� of a binary tree (as opposed to the maximal number of nodes lying

at the same level, whih is known to grow like

√
n). More generally, the variables Xn(j) tell
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Figure 2. An (inomplete) binary tree having horizontal pro�le [1, 2, 4, 3, 2]
and vertial pro�le [2, 2, 4; 2, 1, 1].

us about the vertial pro�le of the tree (as opposed to the horizontal pro�le whih desribes

the repartition of nodes by level [13℄). See Figure 2.

We may also invoke an a posteriori justi�ation to the study of these trees: the form of

the generating funtions we obtain is remarkable, whatever family of trees we onsider, and

suggests that there must be some beautiful hidden ombinatoris in these problems, whih

should be explored further.

However, the main motivation for this work is the onnetion between embedded trees

and the integrated superBrownian exursion (ISE). Choose one of the three families of trees,

and onsider the following random probability distribution on R:

µn =
1

n+ 1

∑

j∈Z

Xn(j)δcjn−1/4 , (1)

where Xn(j) is the (random) number of nodes labelled j, δx denotes the Dira measure at x,

and the onstant c equals
√
2 for the �rst family,

√
3 for the seond one and 1 for the family

of binary trees. Then µn is known to onverge weakly to a limiting random probability

distribution alled the ISE [1, 23, 22, 20℄. See Figure 3 for simulations of µn.

Our limit results provide some information about the law of the ISE. For instane, we

prove that cMnn
−1/4

, the largest point having a positive weight under µn, onverges in law
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Figure 3. The plot of Xn(j) vs. j for random binary trees with n = 1000 nodes.
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to N
ise

, the supremum of the support of the ISE. We denote this by

cMnn
−1/4 d→ N

ise

.

The results we obtain for the limit law of Mnn
−1/4

thus translate into expressions of the

moments, distribution funtion and density of the supremum of the ISE. Note that the

moments were already obtained by Delmas [12℄. Our seond limit result deals with the

random variables Xn(⌊λn1/4⌋). Observe that

µn(cλ− cn−1/4, cλ] =
1

n+ 1
Xn(⌊λn1/4⌋). (2)

This leads us to onjeture that the random variable Y (λ) involved in our loal limit law

satis�es

Y (λ)
d
= cf

ise

(cλ) (3)

where f
ise

is the (random) density of the ISE. Similarly,

µn[cλ,+∞) =
1

n+ 1
X+

n (⌈λn1/4⌉),

and we prove that the random variable Y +(λ) involved in our global limit law satis�es

Y +(λ)
d
= g

ise

(cλ)

where g
ise

is the (random) tail distribution funtion of the ISE. The results we obtain about

the laws of Y (λ) and Y +(λ) thus translate into formulas for the Laplae transforms of f
ise

(λ)
and g

ise

(λ) (the formula for f
ise

(λ) being onjetural).

Our onjeture on f
ise

is naturally supported by the fat that the law of Y (λ/c)/c is

independent of the tree family we start from. This is one of the reasons why we onsider as

many as three families of trees. The other reasons involve the onnetions with planar maps,

the remarkable form of the generating funtions we obtain, and our unshakeable interest in

binary trees. The details of the alulations are only given for the �rst of the three families

(Setions 2 to 5), while the results are merely stated for the other two families (Setion 6).

Let us �nally mention that the moments of the enter of mass of the ISE have reently

been determined by two di�erent approahes [7, 19℄. In our disrete setting, this boils down

to studying the onvergene of the variable

1

n5/4

∑

j∈Z

jXn(j).

1.2. Overview of the paper

The starting point of our approah is a series of exat enumerative results dealing with

our �rst lass of trees: plane trees in whih the labels of adjaent nodes di�er by ±1. These
results are gathered in the next setion. We obtain for instane an expliit expression for

the bivariate generating funtion of labelled trees, ounted by the number of edges and the

number of nodes labelled j (for j �xed). This setion inludes, and owes a lot to, some

results reently obtained by Bouttier, Di Franeso and Guitter [5, 6℄ on the enumeration of

trees having no label greater than j. This part of our work raises a number of hallenging

ombinatorial questions � why are these expressions so simple? � whih are not addressed

in this paper.

The limit behaviours of the random variables Mn, Xn(⌊λn1/4⌋) and X+
n (λn1/4) are re-

spetively established in the next three setions (Setions 3 to 5). The main tehnique that

we use is the �analysis of singularities� of Flajolet and Odlyzko [17℄. It permits to extrat

the asymptoti behaviour of the oe�ients of a generating funtion. This tehnique has

already proved useful in numerous oasions, in partiular for proving limit theorems that

are similar in �avour to the ones obtained in this paper: these theorems deal with the height

of simply generated trees and their pro�le, whih are known to be related to the height of
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the Brownian exursion and its loal time [16, 13℄. This tehnique is arefully exempli�ed

in Setion 3 (whih is devoted to the maximal label) before the more di�ult questions of

the loal and global limit laws are attaked (Setions 4 and 5).

Finally, two other families of trees are brie�y studied in Setion 6: trees with inrements

0,±1 and naturally embedded binary trees. The emphasis is put on their enumerative

properties, whih turn out to be as remarkable and surprising as those of our �rst family of

trees. The limit laws we obtain are (up to a salar) the same as for the �rst family.

Let us onlude with some notation and a few de�nitions on formal power series and

generating funtions. Let K be a �eld. We denote by K[t] the ring of polynomials in t with
oe�ients in K, and by K(t) the �eld of rational funtions in t with oe�ients in K. We

denote by K[[t]] the ring of formal power series in t with oe�ients in K. If A(t) ∈ K[[t]]
and n ∈ N, the notation [tn]A(t) stands for the oe�ient of tn in A(t). The series A(t)
is said to be algebrai over K(t) if it satis�es a non-trivial polynomial equation of the form

P (t, A(t)) = 0, where P is a bivariate polynomial with oe�ients in K. In this ase, the

degree of A(t) is the smallest possible degree of P (in its seond variable).

Let A be a set of disrete objets, equipped with a size that takes nonnegative integer

values. Assume that for all n ∈ N, the number of objets of A of size n is �nite, and denote

this number by an. The generating funtion of the objets of A, ounted by their size, is the

formal power series

A(t) =
∑

n≥0

ant
n.

The above notions generalize in a straightforward way to multivariate power series. Suh

series arise naturally when enumerating objets aording to several parameters.

2. Enumerative results

We onsider in this setion (and in the three following ones) our �rst family of labelled

plane trees: the root is labelled 0, and the labels of two adjaent nodes di�er by ±1.

2.1. Trees with small labels

The �rst enumerative problem we address has already been studied by Bouttier, Di

Franeso and Guitter [5, 6℄. It deals with the largest label ourring in a tree. For j ∈ N,

let Tj ≡ Tj(t) be the generating funtion of labelled trees in whih all labels are less than

or equal to j. The indeterminate t keeps trak of the number of edges. Let T ≡ T (t) be the
generating funtion of all labelled trees. Clearly, Tj onverges to T (in the spae of formal

power series in t) as j goes to in�nity. It is very easy to desribe an in�nite set of equations

that ompletely de�nes the olletion of series Tj .

Lemma 1. The series T satis�es

T = 1 + 2tT 2. (4)

More generally, for j ≥ 0,
Tj = 1+ t(Tj−1 + Tj+1)Tj

while Tj = 0 for j < 0.

Proof. The two ingredients of the proof will be useful for the other enumerative problems

we address below. Firstly, replaing eah label k by j−k shows that Tj is also the generating

funtion of trees rooted at j and having only non-negative labels (we say that a tree is rooted

at j if its root has label j). Seondly, onsider suh a tree and assume it is not redued to a

single node. The root has a leftmost hild, whih is the root of a labelled subtree, rooted at

j± 1 and having only non-negative labels. Deleting this subtree leaves a smaller tree rooted

at j, having only non-negative labels (see Figure 4). The result follows.
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Figure 4. The deomposition of plane labelled trees.

The above lemma shows that the series T , ounting labelled trees by edges, is algebrai,

and the short proof we have given provides a simple ombinatorial explanation for this

property. What is far less lear � but nevertheless true � is that eah of the series Tj is

algebrai too, as stated in the proposition below, whih we borrow from [5, 6℄. These series

will be expressed in terms of the series T ≡ T (t) and of the unique formal power series

Z ≡ Z(t), with onstant term 0, satisfying

Z = t
(1 + Z)4

1 + Z2
. (5)

Observe that T and Z are related by:

T =
(1 + Z)2

1 + Z2
. (6)

Proposition 2 (Trees with small labels [5, 6℄). Let Tj ≡ Tj(t) be the generating funtion
of trees having no label greater than j. Then Tj is algebrai of degree (at most) 2. In

partiular,

T0 = 1− 11 t− t2 + 4 t (3 + 2 t)T0 − 16 t2T0
2.

Moreover, for all j ≥ −1,

Tj = T
(1− Zj+1)(1− Zj+5)

(1− Zj+2)(1− Zj+4)
, (7)

where Z ≡ Z(t) is given by (5).

Proof. It is very easy to hek, using (5�6), that the above values of Tj satisfy the reurrene

relation of Lemma 1 and the initial ondition T−1 = 0. How to disover suh a formula

is another story, whih is told in [5℄. The remarkable produt form of Tj still awaits a

ombinatorial explanation.

The equation satis�ed by T0 is obtained by eliminating T and Z from the ase j = 0
of (7). Then an indution of j, based on Lemma 1, implies that eah Tj is quadrati (at

most) over Q(t).

Remarks

1. The produt form (7), ombined with the fats that T is quadrati over Q(t) and Z is

quadrati over Q(T ), shows that Tj belongs to an extension of Q(t) of degree 4. This is true,
but not optimal, sine Tj is atually quadrati over Q(t). Hene this produt form does not

give the best possible information on the degree of Tj.

2. The trees ounted by T0 (equivalently, the trees having only non-negative labels) are

known to be in bijetion with ertain planar maps alled Eulerian triangulations [6℄. Through

this bijetion, the number of edges of the tree is sent to the number of blak faes of the

triangulation. These triangulations are nothing but the dual maps of the biubi (that is,
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bipartite and trivalent) maps, whih were �rst enumerated by Tutte [26℄. In partiular, the

oe�ients of T0(t) are remarkably simple:

T0(t) =
(1− 8t)3/2 − 1 + 12t+ 8t2

32t2
= 1 +

∑

n≥1

3.2n−1

(n+ 1)(n+ 2)

(

2n

n

)

tn.

2.2. The number of nodes labelled j

Let us now turn our attention to a bivariate ounting problem. For j ∈ Z, let Sj ≡ Sj(t, u)
be the generating funtion of labelled trees, ounted by the number of edges (variable t) and
the number of nodes labelled j (variable u). Clearly, Sj(t, 1) = T (t) for all j. Moreover, an

obvious symmetry entails that Sj = S−j.

Lemma 3. For j 6= 0,

Sj = 1 + t(Sj−1 + Sj+1)Sj (8)

while for j = 0,

S0 = u+ t(S−1 + S1)S0 = u+ 2tS1S0. (9)

Proof. Observe that Sj ≡ Sj(t, u) is also the generating funtion of labelled trees rooted at

j, ounted by the number of edges and the number of nodes labelled 0. The deomposition

of trees illustrated in Figure 4 then provides the lemma. The only di�erene between the

ases j = 0 and j 6= 0 lies in the generating funtion of the tree redued to a single node.

Again, the series Sj(t, u) turn out to be algebrai, for reasons that urrently remain

mysterious (from the ombinatoris viewpoint). They an be expressed in terms of the series

T and Z given by (5�6).

Proposition 4 (The number of nodes labelled j). For any j ∈ Z, the generating

funtion Sj ≡ Sj(t, u) that ounts labelled trees by the number of edges and the number of

nodes labelled j is algebrai over Q(T, u) of degree at most 3 (and hene has degree at most

6 over Q(t, u)). More preisely,

(T − S0)
2

(u− 1)2
= 1− 2(1− T 2)

2 + S0 − S0T
, (10)

and all the Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+4)

(1 + µZj+1)(1 + µZj+3)
, (11)

where Z ≡ Z(t) is given by (5) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u− 1)
(1 + Z2)(1 + µZ)(1 + µZ2)(1 + µZ3)

(1 + Z)(1 + Z + Z2)(1 − Z)3(1− µZ2)
. (12)

The series µ(t, u) has polynomial oe�ients in u, and satis�es µ(t, 1) = 0. It has degree 3
over Q(Z, u) and 12 over Q(t, u).

At some point, we will need a losed form expression for µ in terms of Z. Here is one.

Proposition 5. Write

v =
(u− 1)Z(1 + Z2)

(1 + Z)(1 + Z + Z2)(1− Z)3
.

Then the algebrai series µ involved in the expression (11) of Sj , and de�ned by (12), is

µ(t, u) =
1

Z2

(

2

1 + v(1− Z)2/3 + 2/3
√

3 + v2(1− Z)4 cos(φ/3)
− 1

)



8 MIREILLE BOUSQUET-MÉLOU

where

φ = arccos

(−9v(1 + 4Z + Z2) + v3(1− Z)6

(3 + v2(1− Z)4)3/2

)

.

Proof of Propositions 4 and 5.

1

First, observe that the family of series S0, S1, S2, . . . is
ompletely determined by (8) (taken for j > 0) and the seond part of (9). The fat that

for any series µ ∈ Q(u)[[t]], the expression (11) satis�es (8) for all j > 0 is a straighforward

veri�ation, one t and T have been expressed in terms of Z (see (5) and (6)). The form

of (11) is borrowed from [5℄. In order for (11) to be the orret expression of Sj , it remains

to satisfy the seond part of (9). This last ondition provides a polynomial equation relating

µ, T , Z, t and u. In this equation, replae t and T by their expressions in terms of Z (given

by (5�6)). This gives exatly (12). It an be easily heked that µ has degree 6 over Q(T, u)
and degree 12 over Q(t, u).

The equation (10) satis�ed by S0 is obtained by eliminating µ and Z (using (12) and (6))

from the expression (11) of S0. This equation gives an equation of degree 6 over Q(t, u) if
one eliminates T thanks to (4).

Now the equations (9), (8) and (4), ombined with an indution on j, imply that for j ≥ 1,
the series Sj belongs to the �eld Q(T, u, S0), whih has just been proved to be an extension

of Q(T, u) of degree 3. This onludes the proof of Proposition 4.

Let us �nally prove Proposition 5. The equation (12) that de�nes µ an be rewritten

µ =
v

Z

(1 + µZ)(1 + µZ2)(1 + µZ3)

1− µZ2
.

Hene µ is the unique formal power series in v (with rational oe�ients in Z) that satis�es
the above equation and equals 0 when v is 0. It is not hard to hek that the losed form

expression we give satis�es these two onditions.

Remarks

1. The produt form (11) of Proposition 4 re�nes the produt form (7) that deals with trees

with small labels. Indeed, when u = 0, Eq. (12) gives µ = −1, and the expression of Sj(t, 0)
oinides, as it should, with the expression of Tj−1(t) given by Proposition 2.

2. There exists an alternative way to derive an equation for S0 from the system of Lemma 3.

As was observed in [6, p. 645℄ for the problem of ounting trees with bounded labels, Eq. (8)

implies that for j ≥ 1,

I(Sj−1, Sj) = I(Sj , Sj+1)

where the �invariant� funtion I is given by

I(x, y) = xy(1 − tx)(1 − ty) + txy − x− y.

But Sj onverges to T as j goes to in�nity, in the set of formal power series in t. This implies

I(S0, S1) = I(T, T ).

Eliminating S1 between the above equation and (9) gives an equation between S0, T and t.

2.3. The number of nodes labelled j or more

Let us �nally study our third and last enumeration problem. For j ∈ Z, let Rj ≡ Rj(t, u)
be the generating funtion of labelled trees, ounted by the number of edges (variable t) and
the number of nodes labelled j at least (variable u).

1

All the alulations in this paper have been done using Maple. We do not reommend the reader to

hek them by hand.
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Lemma 6. The set of series R0, R1, R2, . . . is ompletely determined by the following equa-

tions: for j ≥ 1,

Rj = 1 + tRj(Rj−1 +Rj+1) (13)

and

R0(t, u) = uR1(tu, 1/u). (14)

More generally, for all j ∈ Z, one has:

R−j(t, u) = uRj+1(tu, 1/u). (15)

Proof. For all j ∈ Z, the series Rj ≡ Rj(t, u) is also the generating funtion of trees rooted

at j, ounted by their number of edges and the number of nodes having a non-positive label.

The equation satis�ed by j, for j ≥ 1, follows one again from the deomposition of trees

illustrated in Figure 4. It remains to prove the symmetry relation (15). For any tree τ ,
let n≤0(τ) denote the number of nodes of τ having a non-positive label. We use similar

notations for the number of nodes having label at most j, et. Let Tj,n denote the set of

trees rooted at j and having n edges. As observed above,

R−j(t, u) =
∑

n≥0

tn
∑

τ∈T−j,n

un≤0(τ) =
∑

n≥0

tn
∑

τ∈T−j,n

un+1−n>0(τ),

beause a tree with n edges has a total of n+1 nodes. A translation of all labels by −1 gives

R−j(t, u) = u
∑

n≥0

(tu)n
∑

τ∈T−j−1,n

u−n≥0(τ),

while replaing eah label k by −k �nally gives

R−j(t, u) = u
∑

n≥0

(tu)n
∑

τ∈Tj+1,n

u−n≤0(τ) = uRj+1(tu, 1/u).

Again, the series Rj are algebrai, and admit a losed form expression in terms of T and

Z.

Proposition 7 (The number of nodes labelled j or more). Let j ∈ Z. The generating

funtion Rj(t, u) ≡ Rj that ounts labelled trees by the number of edges and the number of

nodes labelled j or more is algebrai of degree at most 2 over Q(T (t), T (tu)). Hene it has

degree at most 8 over Q(t, u). More preisely, it belongs to the extension of Q(T (t), T (tu))
generated by

√

(T + T̃ )2 − 4T T̃ (T − 1)(T̃ − 1)

where T ≡ T (t) and T̃ ≡ T (tu).
Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+4)

(1 + νZj+1)(1 + νZj+3)
, (16)

where Z ≡ Z(t) is given by (5) and ν ≡ ν(t, u) is a formal power series in t, with polynomial

oe�ients in u, whih is algebrai of degree 4 over Q(u, Z), and of degree 16 over Q(t, u).
This series satis�es ν(t, 1) = 0. The �rst terms in its expansion are:

ν(t, u) = (u − 1)
(

1 + 2 ut+
(

7 u+ 6 u2
)

t2 +
(

32 u+ 36 u2 + 23 u3
)

t3 +O(t4)
)

.

Before we prove this proposition, let us give something like a losed form for ν. Sine ν
has degree 4 over Q(u, Z), and Z has degree 4 over Q(t), the series ν is in theory expressible

in terms of radials... It turns that this expression is less terrible than one ould fear.
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Proposition 8. De�ne the following four formal power series in t with polynomial oe�-

ients in u:

δ ≡ δ(t, u) = 1− 8(u− 1)
Z(1 + Z2)

(1− Z)4
=

1− 8tu

1− 8t
,

V ≡ V (t, u) =
1−

√
δ

4
=

1−
√

1−8tu
1−8t

4
,

∆ ≡ ∆(t, u) = (1 − V )2 − 4ZV 2

(1 + Z)2
,

and

P = (1 + Z)
1− V −

√
∆

2V Z
.

Then P has degree 16 over Q(t, u), degree 2 over Q(V, Z), and satis�es the following �La-

grangian� equation:

P =
V

1 + Z
(1 + P )(1 + ZP ).

Moreover, the algebrai series ν involved in the expression (16) of Rj is

ν =
P

Z

1− P (1 + Z)− P 2(1 + Z + Z2)

1 + Z + Z2 + PZ(1 + Z)− P 2Z2
.

Proof of Proposition 7. We have already heked, in the proof of Proposition 4, that for

any formal power series ν in t, the series de�ned by (16) for j ≥ 0 satisfy the reurrene

relation (13) for j ≥ 1. It remains to prove that one an hoose ν so as to satisfy (14).

For any formal power series A in t having rational oe�ients in u, we denote by Ã the

series Ã(t, u) = A(tu, 1/u). Observe that ˜̃A = A. With this notation, if Rj is of the generi

form (16), the relation (14) holds if and only if

1 + ν = u
T̃

T

(1 + νZ)(1 + νZ3)(1 + ν̃Z̃)(1 + ν̃Z̃5)

(1 + νZ4)(1 + ν̃Z̃2)(1 + ν̃Z̃4)
. (17)

Let Rm[u] denote the spae of polynomials in u, with real oe�ients, of degree at most

m. Let Rn[u][[t]] denote the set of formal power series in t with polynomial oe�ients in u
suh that for all m ≤ n, the oe�ient of tm has degree at most m. Observe that this set of

series in stable under the usual operations on series: sum, produt, and quasi-inverse. Write

ν =
∑

n≥0 νn(u)t
n
. We are going to prove, by indution on n, that (17) determines uniquely

eah oe�ient νn(u), and that this oe�ient belongs to Rn+1[u].
First, observe that for any formal power series ν, the right-hand side of (17) is u+O(t).

This implies ν0(u) = u− 1. Now assume that our indution hypothesis holds for all m < n.
Reall that Z is a multiple of t: this implies that νZ belongs to Rn[u][[t]]. The indution

hypothesis also implies that the oe�ient of tm in uν̃ belongs to Rm+1[u], for all m < n.

Note that Z̃ = Z(tu) = tu+O(t2) is a multiple of t and u and also belongs to Rn[u][[t]]. This

implies that ν̃Z̃ belongs to Rn[u][[t]] too. The same is true for all the other series ourring

in the right-hand side of (17), namely T, T̃ , Z, Z̃. Given the losure properties of the set

Rn[u][[t]], we onlude that the right-hand side of (17), divided by u, belongs to this set.

Moreover, the fat that Z and Z̃ are multiples of t guarantees that the oe�ient of tn in

this series only involves the νi(u) for i < n. By extrating the oe�ient of tn in (17), we

onlude that νn(u) is uniquely determined and belongs to uRn[u] ⊂ Rn+1[u].
This ompletes the proof of the existene and uniqueness of the series ν satisfying (17).

Also, setting u = 1 (that is, T̃ = T and Z̃ = Z) in this equation shows that ν(t, 1) = 0.
Let us now replae t by tu and u by 1/u in (17). This gives:

1 + ν̃ =
1

u

T

T̃

(1 + ν̃Z̃)(1 + ν̃Z̃3)(1 + νZ)(1 + νZ5)

(1 + ν̃Z̃4)(1 + νZ2)(1 + νZ4)
. (18)
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In the above two equations, replae T by its expression (6) in terms of Z. Similarly, replae T̃

by its expression in terms of Z̃. Finally, it follows from (5) and from the fat that Z̃ = Z(tu)
that

u =
Z̃

Z

(1 + Z)4(1 + Z̃2)

(1 + Z̃)4(1 + Z2)
. (19)

Replae u by this expression in (17) and (18). Eliminate ν̃ between the resulting two equa-

tions: this gives a polynomial equation that relates ν, Z and Z̃, of degree 2 in ν. The

elimination of Z̃ between this quadrati equation and (19) provides an equation of degree

4 in ν that relates ν to Z and u. Finally, the elimination of Z shows that ν is algebrai of

degree 16 over Q(t, u).

Let us now fous on the �rst part of the proposition. From the form (16), and the fat

that ν has degree 4 over Q(u, Z) and Z has degree 4 over Q(t), we onlude that the degree
of Rj over Q(t, u) is a divisor of 16. Let us prove that is is atually a divisor of 8. The proof
goes as follows:

(1) Using the generi form (16), and the equations satis�ed by T, Z and ν, we obtain a

polynomial equation of degree 8 over Q(t, u) for R0.

(2) Using (4) to express t in terms of T , and

u =
T 2

T̃ 2

1− T̃

1− T
,

(whih also follows from (4)), we onvert the equation satis�ed by R0 into a polyno-

mial equation (still of degree 8 in R0) relating R0 to T and T̃ . This equation fators

into four quadrati polynomials in R0. The fator that atually vanishes is identi�ed

by setting u = 1 (in whih ase T̃ = T = R0).

(3) From this equation, we onlude that R0 belongs to the extension of Q(T, T̃ ) gener-
ated by

√
∆1 =

√

(T + T̃ )2 − 4T T̃(T − 1)(T̃ − 1).

Observe that this extension of Q(t, u) is left invariant by the transformation A 7→ Ã.

(4) From the fat that R1 = uR̃0 (see (15)), we onlude that R1 also belongs to

Q(T, T̃ ,
√
∆1).

(5) The reurrene relation (13) on the Rj allows us to extends this to all Rj , for j ≥ 0.
(6) Finally, (15) shows that our algebraiity result atually holds for all Rj , for j ∈ Z.

Proof of Proposition 8. In the ourse of the proof of Proposition 7, we have obtained

a polynomial equation P (ν, Z, u) = 0, of degree 4 in ν, relating the series ν(t, u), Z(t), and
the variable u. This equation is not written in the paper (it is a bit too big), but it follows

from (17) and (18). In this equation, replae u by its expression in terms of δ and Z. Then
replae δ by its expression in terms of V : the resulting equation fators into two terms! Eah

of them is quadrati in ν. In order to deide whih of these fators anels, one uses the fat

that when u = 1 (that is, V = 0), the series ν must be 0. It remains to solve a quadrati

equation in ν. Its disriminant is found to be ∆, and one may �nd onvenient to introdue

the series P whih is Lagrangian in V .

Remark. Again, the produt form (16) of Proposition 7 inludes as a speial ase the

enumeration of trees with labels at most j − 1, obtained when u = 0. Indeed, (17) shows

that ν = −1 when u = 0, and (16) then redues to (7).



12 MIREILLE BOUSQUET-MÉLOU

3. The largest label, and the support of the ISE

Let T0 denote the set of labelled trees (rooted at 0), and let T0,n denote the subset of

T0 formed by trees having n edges. We endow T0,n with the uniform distribution. In other

words, any of its elements ours with probability

1

2nCn

where Cn = 1
n+1

(

2n
n

)

is the nth Catalan number, and is well-known to be the number of

(unlabelled) plane trees with n edges.

Let Mn denote the random variable equal to the largest label ourring in a random tree

of T0,n. The law of Mn is related to the series Tj studied in Proposition 2:

P (Mn ≤ j) =
[tn]Tj

2nCn
.

Let us de�ne a normalized version of Mn by

Nn =
Mn

n1/4
.

The aim of this setion is to prove the onvergene of Nn in distribution

2

.

Theorem 9. As n goes to in�nity, the random variable Nn onverges in distribution to a

non-negative random variable N . The tail distribution funtion of N , de�ned by G(λ) =
P(N > λ), satis�es

G(λ) =
12

i
√
π

∫

Γ

v5ev
4

sinh2(λv)
dv =

6√
πλ6

∫ ∞

0

1− cosu coshu

(coshu− cosu)2
u5e−u4/(4λ4)du

where the ontour Γ is formed of two half-lines:

Γ = {1− te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
Equivalently, the variable N has density

f(λ) =
24

i
√
π

∫

Γ

cosh(λv)v6ev
4

sinh3(λv)
dv =

6√
πλ11

∫ ∞

0

1− cosu coshu

(coshu− cosu)2
u5(6λ4 − u4)e−u4/(4λ4)du

with respet to the Lebesgue measure on R+. The moments of N are �nite, and admit simple

expressions:

E(N) =
3
√
π

2Γ(3/4)
, E(N2) = 3

√
π,

and for k ≥ 3,

E(Nk) =
24

√
πk!ζ(k − 1)

2kΓ((k − 2)/4)
.

Finally, the moments of Nn = Mn/n
1/4

onverge to the moments of N .

The funtions G and f are plotted in Figure 5.

The proof of this theorem will be split into four subsetions (Setions 3.1 to 3.4). In view of

the following proposition, this theorem gives the density, distribution funtion and moments

of the supremum of the support of the ISE.

2

The above onvention will be used throughout the paper: if a random variable depending on n is

denoted by some letter of the alphabet, then its suitably normalized version is denoted by the next letter of

the alphabet.
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Figure 5. The tail distribution funtion G and the density f of the limit

distribution N .

Proposition 10 (The supremum of the support of the ISE). Let N
ise

denote the

supremum of the support of the ISE

N
ise

= sup{y : µ
ise

(y,∞) > 0}.
Then N

ise

has the same law as the random variable

√
2N desribed in Theorem 9.

Remark. The moments of N
ise

are thus

E(N
ise

) =
3
√
π√

2Γ(3/4)
, E(N2

ise

) = 6
√
π,

and for k ≥ 3,

E(Nk
ise

) =
24

√
πk!ζ(k − 1)

√
2
k
Γ((k − 2)/4)

.

They were already obtained by Delmas [12℄ using a ompletely di�erent (and ontinuous)

approah. The expressions he gives atually di�er from ours by a fator 2k/4, due to a

di�erent hoie of normalization. Note that the zeta funtion also appears in the moments

of the maximum of the Brownian exursion, whih follows a theta law [10℄. This law is known

to desribe the limiting normalized height of simple trees [16℄. Finally, let us mention that

another, more ompliated expression of the density of the limiting variable N was obtained

in [5℄ (maybe in a slightly less rigorous way). Proposition 10 is proved in Setion 3.5.

3.1. Convergene of the distribution funtion

We prove in this setion that the tail distribution funtion of Nn onverges pointwise. Let

λ ≥ 0 and j = ⌊λn1/4⌋. The probability we are interested in is

P(Nn > λ) = P(Mn > λn1/4) = P(Mn > j) =
[tn]Uj(t)

2nCn
, (20)

where

Uj(t) ≡ Uj = T − Tj =
(1 + Z)

2
Zj+1

(

1 + Z + Z2
)

(1− Z)
2

(1 + Z2) (1− Zj+2) (1− Zj+4)
(21)

is the generating funtion of trees having at least one label greater than j. This algebrai

series has a positive radius of onvergene

3

, and by Cauhy's formula,

[tn]Uj =
1

2iπ

∫

C
Uj(t)

dt

tn+1

=
1

2iπ

∫

C

(1 + Z)
2
Zj+1

(

1 + Z + Z2
)

(1− Z)
2

(1 + Z2) (1− Zj+2) (1− Zj+4)

dt

tn+1
, (22)

for any ontour C inluded in the analytiity domain of Uj and enlosing positively the origin.

This leads us to study the singularities of Uj , and therefore those of Z. We gather in the

following lemma a few properties of this series.

3

So do all algebrai power series
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Lemma 11 (Analyti properties of Z). Let Z ≡ Z(t) be the unique formal power series

in t with onstant term 0 satisfying (5). This series has non-negative integer oe�ients.

It has radius of onvergene 1/8, and an be ontinued analytially on the domain D =
C \ [1/8,+∞). In the neighborhood of t = 1/8, one has

Z(t) = 1− 2(1− 8t)1/4 +O(
√
1− 8t). (23)

Moreover, |Z(t)| < 1 on the domain D. More preisely, the only roots of unity that are

aumulation points of the set Z(D) are 1 and −1, and they are only approahed by Z(t)
when t tends to 1/8 and when |t| tends to ∞, respetively.

Proof. In order to establish the �rst statement, we observe that

Z = W (1 + Z)2

where W ≡ W (t) is the only formal power series in t with onstant term zero satisfying

W = t+ 2W 2. (24)

These equations imply that both W and Z have non-negative integer oe�ients.

The general approah for studying the singularities of algebrai series (see for instane [18℄)

gives the seond part of the lemma (up to (23)). The polynomial equation de�ning Z(t) has
leading oe�ient t and disriminant 4(1− 8t)3, so that the only possible singularity of Z is

1/8. Alternatively, one an exploit the following losed form expression:

Z(t) =

√

1− 4t+
√
1− 8t

(

√

1− 4t+
√
1− 8t−

√
2(1− 8t)1/4

)

4t
. (25)

Let us now ome to the third part of the lemma, and prove that |Z(t)| never reahes 1 on

the domain D. Assume Z(t) = eiθ, with θ ∈ [−π, π]. From (5), one has

t = tθ where tθ =
cos θ

8 cos4(θ/2)
and θ ∈ (−π, π).

This shows that t is real, and belongs to (−∞, 1/8). But the expression (25) of Z(t) shows
that Z(t) is real, whih ontradits the hypothesis Z(t) = eiθ, unless θ = 0. But then t = 1/8
and does not belong to the domain D. Hene the modulus of Z never reahes 1 on D. One

an atually prove that, for θ ∈ (−π, 0),

Z(tθ) =
1 + sin θ

cos θ
,

but we do not need so muh preision here.

Finally, if a sequene tn of D is suh that Z(tn) → eiθ as n → ∞, with θ ∈ (−π, π], then
either θ = π and, by (5), the sequene |tn| tends to ∞, or θ ∈ (−π, π) and tn onverges to

tθ. But then by ontinuity, Z(tn) atually onverges to Z(tθ), whih, as argued above, only

oinides with eiθ when θ = 0, that is, tθ = 1/8. In this ase, Z(tn) → 1.

Let us now go bak to the evaluation of the tail distribution funtion of Nn via the

integral (22). We hoose a ontour C = Cn that depends on n and onsists of two parts C(1)
n

and C(2)
n (see Figure 6):

• C(1)
n is an ar of radius rn/8 = (1 + log2 n/n)/8, entered at the origin; note that its

radius tends to 1/8 as n goes to in�nity,

• C(2)
n is a Hankel ontour around 1/8, at distane 1/(8n) of the real axis, whih

meets C(1)
n at both ends; this ontour shrinks around 1/8 as n goes to in�nity; more

preisely, as t runs along C(2)
n , the variable z de�ned by

t =
1

8

(

1 +
z

n

)
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rn/8

1/8

C(1)
n

C(2)
n

Figure 6. The integration ontour Cn.

runs over the trunated Hankel ontour Hn shown on the right of Figure 7:

Hn = {x− i, x ∈ [0, xn]} ∪
{

−eiθ, θ ∈ [−π/2, π/2]
}

∪ {x+ i, x ∈ [0, xn]}

where (1 + xn/n)
2 + 1/n2 = r2n, so that xn ≤ log2 n and xn = log2 n+O(1/n).

We denote by zn = xn + i the top right end of Hn. This point tends to in�nity as n does.

The integral (22) on C = Cn is the sum of the ontributions of the ontours C(1)
n and C(2)

n .

We shall see that the dominant ontribution is that of C(2)
n , beause of the viinity of the

singularity at t = 1/8.
Let us �rst bound arefully Z(t) for t ∈ Cn. Let tn ∈ Cn be suh that

|Z(tn)| = max
t∈Cn

|Z(t)|.

By Lemma 11, |Z(tn)| tends to 1 as n grows. Moreover, every aumulation point a of the

sequene tn satis�es |a| ≤ 1/8 and |Z(a)| = 1. This fores a = 1/8, and we onlude that

tn → 1/8. Write tn = (1 − un)/8. Then un → 0, but |un| ≥ 1/n. By (23),

Z(tn) = 1− 2u1/4
n (1 + o(1)) .

Let us write, for short, vn = 1− Z(tn). Then vn → 0 but

|vn| = 2|un|1/4 (1 + o(1)) ≥ n−1/4
(26)

0

i

−1

xn ∼ log2 n

Hn

zn

0

i

−1

H

Figure 7. The Hankel ontour H and its trunated version Hn.
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for n large enough. Moreover,

| arg vn| =
1

4
| arg(un)|+ o(1) ≤ π

4
+ o(1),

so that

cos(arg vn) ≥
1√
2
+ o(1).

Finally,

|Z(tn)|2 = |1− vn|2 = 1− 2|vn| cos(arg vn) + |vn|2 ≤ 1−
√
2|vn| (1 + o(1)) ,

that is,

|Z(tn)| ≤ 1− 1√
2
|vn| (1 + o(1)) ≤ 1− 1

2
n−1/4.

The latter inequality follows from (26), and holds for n large enough. Finally, for t ∈ Cn,

1− |Z(t)| ≥ 1

2
n−1/4. (27)

Let us now onsider the integral on the ontour C(1)
n . By Lemma 11, the quantity

(1 + Z)2 Zj+1
(

1 + Z + Z2
)

(1− Z)2

1 + Z2

is uniformly bounded on this ontour by some onstant c, independant of n and t. Moreover,

|1− Zj+2| ≥ 1− |Z|j+2 ≥ 1− |Z| ≥ 1

2
n−1/4

by (27). The same bound holds for the term 1 − Zj+4
. Therefore the modulus of the

ontribution of C(1)
n in the integral (22) is bounded by

4c 8nn1/2 r−n
n = O(8nn1/2−logn) = o(8n/nm) (28)

for any m > 0.

Let us now study the ontribution of the ontour C(2)
n . As t varies along C(2)

n , the variable

z de�ned by t = (1+ z/n)/8 varies along the ontour Hn. As n goes to in�nity, this ontour

onverges to the ontour H shown on the left side of Figure 7. Let z ∈ H. Then z ∈ Hn for

n large enough, |z| ≤ |zn| ∼ log2 n, and, as n goes to in�nity, the following approximations

hold with error terms independent of z:










































Z(t) = 1− 2(−z)1/4n−1/4 +O
(

n−1/2 logn
)

1− Z(t) = 2(−z)1/4n−1/4
(

1 +O(n−1/4
√

logn)
)

Z(t)j = exp(−2λ(−z)1/4)
(

1 +O(n−1/4logn)
)

(reall j = ⌊λn1/4⌋)

t−n−1 = 8n+1e−z
(

1 +O(log4 n/n)
)

.

(29)

Observe that, for z ∈ H, the real part of (−z)1/4 is bounded from below by a positive

onstant α. Hene

| exp(−2λ(−z)1/4)| = exp(−2λℜ(−z)1/4) ≤ exp(−2λα),

so that exp(−2λ(−z)1/4) does not approah 1. This allows us to write

1

1− Zj+2
=

1

1− exp(−2λ(−z)1/4)

(

1 +O(n−1/4logn)
)

.
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Hene, uniformly in t ∈ C(2)
n , we have

Uj(t)t
−n−1 =

(1 + Z)
2
Zj+1

(

1 + Z + Z2
)

(1− Z)
2

(1 + Z2) (1− Zj+2) (1− Zj+4)
t−n−1

=
6.8n+1

n1/2

√−ze−z

sinh2(λ(−z)1/4)
(1 +O(n−1/4 logn))

with 8t = 1 + z/n. Let us now integrate this over C(2)
n :

∫

C(2)
n

Uj(t)
dt

tn+1
=

6.8n

n3/2

∫

Hn

√−ze−z(1 +O(n−1/4 logn))

sinh2(λ(−z)1/4)
dz

=
6.8n

n3/2

(∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)

.

We now put together our estimates of the integrals on C(1)
n (Eq. (28)) and C(2)

n and obtain

[tn]Uj(t) =
6.8nn−3/2

2iπ

(∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)

.

Using (20) and the estimation Cn ∼ 4nn−3/2/
√
π, this gives

P(Nn > λ) → 3

i
√
π

∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz.

The next step in our proof of Theorem 9 is to set v = (−z)1/4 in the above integral. As z
runs on H, the variable v runs on the ontour J of Figure 8, and the orresponding integral

is easily seen to oinide with the integral on the ontour Γ de�ned in the statement of the

theorem. This gives the �rst expression of G(λ).

–2

–1

0

1

2

0.5 1 1.5 2 2.5

Figure 8. The ontours Γ (two half lines) and J .

We now want to express G(λ) as a real integral. We �rst observe that the integration

ontour Γ an be replaed by its translated version

Γ0 = {−re−iπ/4, r ∈ (∞, 0]} ∪ {reiπ/4, r ∈ [0,∞)}.
This parametrization of Γ0 by r splits the integral into two real integrals, and one �nds:

G(λ) = − 12√
π

∫ ∞

0

(

1

sinh2(λreiπ/4)
+

1

sinh2(λre−iπ/4)

)

r5e−r4dr

=
48√
π

∫ ∞

0

1− cos(
√
2λr) cosh(

√
2λr)

(cosh(
√
2λr) − cos(

√
2λr))2

r5e−r4dr.
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The expeted expression of G(λ) follows, upon setting u =
√
2λr.

3.2. The limit law and its density

We now want to prove that G(λ) is the tail distribution funtion of a random variable.

Sine it is the limit of non-inreasing funtions, it is non-inreasing. Its integral expressions

show that it is a ontinuous, and even a di�erentiable funtion of λ on (0,+∞). In order to

onlude, we still need to prove that [3, Thm. 14.1℄

lim
λ→∞

G(λ) = 0 and lim
λ→0

G(λ) = 1.

In order to prove the �rst statement, we use the seond expression of G(λ) given in the

theorem. We note that the funtion

u 7→ 1− cosu coshu

(coshu− cosu)2

is well-de�ned, bounded and ontinuous on [0,+∞). Moreover, as u goes to in�nity,

∣

∣

∣

∣

1− cosu coshu

(coshu− cosu)2

∣

∣

∣

∣

= O(e−u),

so that the integral

∫ ∞

0

∣

∣

∣

∣

1− cosu coshu

(coshu− cosu)2

∣

∣

∣

∣

u5du

is onvergent. The term 1/λ6
in the expression of G(λ) then implies the onvergene of G(λ)

to 0 as λ → ∞.

In order to study the limit of G(λ) as λ → 0+, we onsider instead the �rst expression of

G(λ). Sine x2/ sinh2(x) is analyti in the disk of radius π, with expansion 1−x2/3+O(x4),
there exists a onstant c suh that for |v| ≤ π/(2λ),

∣

∣

∣

∣

1

sinh2(λv)
− 1

λ2v2
+

1

3

∣

∣

∣

∣

≤ cλ2|v|2. (30)

Let us write

∫

Γ

v5ev
4

sinh2(λv)
dv =

∫

Γ

(

1

sinh2(λv)
− 1

λ2v2
+

1

3

)

v5ev
4

dv +

∫

Γ

(

v3

λ2
− v5

3

)

ev
4

dv.

Reall the Hankel expression of the reiproal of the Gamma funtion, valid for any s ∈ C:

1

Γ(s)
=

1

2iπ

∫

H
(−z)−se−zdz =

2

iπ

∫

Γ

v3−4sev
4

dv. (31)

Consequently,

∫

Γ

v3ev
4

dv =
iπ

2Γ(0)
= 0,

∫

Γ

v5ev
4

dv =
iπ

2Γ(−1/2)
= − i

√
π

4
,

and we an rewrite

G(λ) =
12

i
√
π

∫

Γ

v5ev
4

sinh2(λv)
dv = 1 +

12

i
√
π

∫

Γ

(

1

sinh2(λv)
− 1

λ2v2
+

1

3

)

v5ev
4

dv.

Let us ut the above integral into two parts, |v| ≤ π/(2λ) and |v| > π/(2λ). The �rst part

is easily seen to tend to 0 as λ does, thanks to (30). For the seond part, we observe that

for λ|v| > π/2,
∣

∣

∣

∣

1

sinh2(λv)
− 1

λ2v2
+

1

3

∣

∣

∣

∣

is bounded (by a onstant independent of λ and v), that the integral of v5ev
4

on Γ is

absolutely onvergent, and that the ontour {v ∈ Γ : |v| > π/(2λ)} �shrinks to ∞� as λ → 0.
We �nally onlude that G(λ) tends to 1 as λ → 0.
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Consequently, there exists a random variable N having distribution funtion 1 − G(λ),
and Nn onverges in law to N . Sine G is di�erentiable, N has a density with respet to the

Lebesgue measure on R+, whih is f(λ) = −G′(λ). The two expressions of G given in the

theorem provide the two expressions of f .

3.3. The moments of N

Let us �rst prove that for all k ≥ 0, the tail distribution funtion of N satis�es

G(λ) = o(λ−k) as λ → ∞. (32)

This is easily seen to imply the existene of moments of N of all orders. In order to prove

the above bound, we write

G(λ) =
24

iλ
√
π

∫

Γ

v4(5 + 4v4)ev
4

e2λv − 1
dv.

This is obtained from the �rst expression of G(λ) using an integration by parts. Now, for

λ > 0 and v ∈ Γ,

|e2λv − 1| ≥ |e2λv| − 1 = e2λℜ(v) − 1 ≥ e2λ − 1.

From this, and from the term ev
4

in the integral, we onlude that there exists a onstant c
suh that

G(λ) ≤ c

e2λ − 1
.

The bound (32) follows. This bounds also guarantees that for k ≥ 1,

E(Nk) = k

∫ ∞

0

λk−1G(λ)dλ. (33)

The generi ase: k ≥ 3. Reall the following integral representations of the Riemann

zeta funtion: for ℜ(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

ws−1

ew − 1
dw =

1

4Γ(s+ 1)

∫ ∞

0

ws

sinh2(w/2)
dw =

2s−1

Γ(s+ 1)

∫ ∞

0

ys

sinh2(y)
dy.

The seond expression follows from the �rst one after an integration by parts.

Let us now ombine (33) with the �rst expression of G(λ):

E(Nk) =
12k

i
√
π

∫ ∞

0

λk−1dλ

∫

Γ

v5ev
4

sinh2(λv)
dv. (34)

Assume for the moment that we an exhange the order of integration (this will be justi�ed

later). Exhange the integrals, and replae the variable λ by y/v, where y is a new variable:

E(Nk) =
12k

i
√
π

∫

Γ

v5−kev
4

dv

∫

vR+

yk−1

sinh2(y)
dy.

For k ≥ 3, the funtion y 7→ yk−1/sinh2(y) is meromorphi on C, with poles at ikπ for k ∈ Z

and k 6= 0. From this, and from the strong deay of this funtion as ℜ(y) → ∞, it follows

that the integral on y is atually independent of the hoie of v ∈ Γ. In partiular, it is equal

to its value at v = 1, whih is

∫ ∞

0

yk−1

sinh2(y)
dy =

4Γ(k)ζ(k − 1)

2k
,

as realled above. The integral on v is then evaluated in terms of the Gamma funtion

using (31), and the expeted expression of E(Nk) follows.
It remains to justify the exhange of integrals in (34). Observe that

| sinh(y)| = |ey − e−y|/2 ≥
(

|ey| − |e−y|
)

/2 = sinh(ℜ(y)),
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so that for v ∈ Γ,
1

| sinh2(λv)|
≤ 1

sinh2(λ)
.

Moreover, the integral of v5ev
4

along Γ is absolutely onvergent, and so is the integral of

λk−1/ sinh2(λ) over R+. It follows that the integral (34), one onverted into two real

integrals, is absolutely onvergent, so that the integrals an be exhanged.

The ase k = 1. We annot apply exatly the same proedure as above, beause the integral

of 1/ sinh2(λ) over R+ is divergent. However, in view of (31), we an write

G(λ) =
12

i
√
π

∫

Γ

v5ev
4

(

1

sinh2(λv)
− 1

λ2v2

)

.

Also, replaing Γ by Γ0 in the latter integral does not hange its value. The tehnique is

then the same as above:

E(N) =
12

i
√
π

∫ ∞

0

dλ

∫

Γ0

v5ev
4

(

1

sinh2(λv)
− 1

λ2v2

)

dv (35)

=
12

i
√
π

∫

Γ0

v4ev
4

dv

∫

vR+

(

1

sinh2(y)
− 1

y2

)

dy

(assuming we an hange the order of integration). Again, the integral on y is independent

of v, and equal to

∫ ∞

0

(

1

sinh2(y)
− 1

y2

)

dy =

[

1

y
− 2

e2y − 1

]∞

0

= −1.

Using again (31) to evaluate the integral on v, one �nds

E(N) = − 6
√
π

Γ(−1/4)
=

3
√
π

2Γ(3/4)
.

In order to justify the exhange of integrals in (35), we wish to prove that (35) is abso-

lutely onvergent. In order to do so, we split the integral over Γ0 into two real integrals,

orresponding respetively to v = reiπ/4 and v = re−iπ/4
. We are thus led to prove that

∫ ∞

0

dλ

∫ ∞

0

r5e−r4
∣

∣

∣

∣

1

sinh2(λreiπ/4)
− 1

iλ2r2

∣

∣

∣

∣

dr

is absolutely onvergent (and a similar result when i is replaed by −i). But we an exhange

the order of integration in this integral of positive funtions. Doing so, and setting λ = y/r
as above, proves that this integral is �nite.

The ase k = 2. Let us start from another expression of G(λ), obtained by writing v = w/λ:

G(λ) =
12

i
√
πλ6

∫

λΓ

w5

sinh2(w)
ew

4/λ4

dw =
12

i
√
πλ6

∫

Γ

w5

sinh2(w)
ew

4/λ4

dw.

The seond expression follows from the analytiity properties of the integrand. Now, take

ǫ > 0, and let us evaluate

∫ ∞

ǫ

λG(λ)dλ =
12

i
√
π

∫ ∞

ǫ

1

λ5
dλ

∫

Γ

w5

sinh2(w)
ew

4/λ4

dw (36)

=
12

i
√
π

∫

Γ

w5

sinh2(w)
dw

∫ ∞

ǫ

ew
4/λ4

λ5
dλ

=
12

i
√
π

∫

Γ

w5

sinh2(w)

[

−ew
4/λ4

4w4

]∞

ǫ

dw

=
3

i
√
π

∫

Γ

w

sinh2(w)

(

ew
4/ǫ4 − 1

)

dw.
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The absolute onvergene of integrals that legitimates the exhange of integrals in (36) is,

this time, obvious (thanks to the fat that λ > ǫ). Now, the analytiity of the funtion

w 7→ w/sinh2(w) for ℜ(w) > 0, and its strong deay as ℜ(w) → ∞, imply that

∫

Γ

w

sinh2(w)
dw = 0.

Hene

∫ ∞

ǫ

λG(λ)dλ =
3

i
√
π

∫

Γ

wew
4/ǫ4

sinh2(w)
dw =

3ǫ2

i
√
π

∫

Γ

vev
4

sinh2(ǫv)
dv

=
3

i
√
π

∫

Γ

ev
4

v
dv + o(1) =

3
√
π

2
(by (31)).

Now, observe that

2

∫ ∞

ǫ

λG(λ)dλ = E(N2
1N>ǫ)− ǫ2G(ǫ).

The announed expression of the seond moment of N follows.

3.4. Convergene of the moments of Nn

In this setion, we prove that the moments of Nn = Mn/n
1/4

onverge to the orrespond-

ing moments of N . In order to do so, we �rst express E(Mk
n ) as the oe�ient of tn in a

ertain series. Then, we apply the general onsequenes of the analysis of singularities: if

this series is regular enough (with a preise meaning of regular), one an derive the asymp-

toti behaviour of its oe�ients from the singular behaviour of the series near its dominant

singularities [17℄.

Reall that the series Uj , given by (21), ounts the trees that ontain at least one label

larger than j. Hene Uj−1 − Uj ounts the trees having maximal label j. Also, note that

Uj = V (Zj)− V (Zj+2), (37)

where

V (x) =
xZ(1 + Z)(1 − Z3)

(1 + Z2)(1− xZ2)
.

Consequently, for k ≥ 1,

E(Mk
n) =

1

2nCn

∑

j≥1

jk[tn](Uj−1 − Uj) =
1

2nCn
[tn]

∑

j≥0

(

(j + 1)k − jk
)

Uj. (38)

For k = 1, this gives

2nCnE(Mn) = [tn]
∑

j≥0

(

V (Zj)− V (Zj+2)
)

= [tn] (V (1) + V (Z)) = [tn]
Z(1 + 2Z + 2Z2)

1 + Z2
.

By Lemma 11, the latter series is analyti in C \ [1/8,∞). The generi onsequenes of the
analysis of singularities apply: one an derive the asymptoti behaviour of the oe�ients

from the singular behaviour of the series [17℄. Given that, when t → 1/8,

Z(1 + 2Z + 2Z2)

1 + Z2
=

5

6
− 6(1− 8t)1/4 +O(

√
1− 8t),

the behaviour of the nth oe�ient of this series is

[tn]
Z(1 + 2Z + 2Z2)

1 + Z2
= −6

8nn−5/4

Γ(−1/4)
(1 + o(1)) =

3

2

8nn−5/4

Γ(3/4)
(1 + o(1)).

It remains to divide by 2nCn ∼ 8nn−3/2/
√
π to onlude that

E(Mnn
−1/4) → 3

√
π

2Γ(3/4)
,
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whih is also the �rst moment of N .

Now, by ombining the expression (37) of Uj and (38), one obtains, for k ≥ 2,

2nCnE(M
k
n) = [tn]



V (1) + (2k − 1)V (Z) +
∑

j≥2

(

(j + 1)k − jk − (j − 1)k + (j − 2)k
)

V (Zj)



 .

(39)

Observe that (j + 1)k − jk − (j − 1)k + (j − 2)k is a polynomial in j of degree k − 2 and

leading oe�ient 2k(k − 1). Let

Aℓ(t) =
∑

j≥−1

(j + 2)ℓV (Zj).

We are going to prove that, for ℓ ∈ N,

an(ℓ) := [tn]Aℓ(t) =











3

4

8n

n
if ℓ = 0,

3.8nℓ!ζ(ℓ + 1)nℓ/4−1

2ℓΓ(ℓ/4)
if ℓ ≥ 1.

(40)

Assume for the moment this is proved, and let us onlude about the limiting moments of

Nn = Mnn
−1/4

. First, we observe that for j ≥ 0, V (Zj) has (only) a fourth root singularity,

so that the oe�ient of tn in V (Zj) grows like 8nn−5/4
, up to a multipliative onstant.

This observation, ombined with (39) and the above asymptotis of an(ℓ), implies that the

dominant term in the asymptoti behaviour of 2nCnE(M
k
n) is that of 2k(k − 1)an(k − 2).

After normalizing by 2nCnn
k/4

, this gives

E(Mk
nn

−k/4) →







3
√
π if k = 2,

24
√
πk!ζ(k − 1)

2kΓ((k − 2)/4)
if k ≥ 3.

These limiting moments are exatly those of N .

It remains to study the asymptoti behaviour of the numbers an(ℓ) (for ℓ �xed, and n
going to in�nity). We have:

Aℓ(t) =
(1 + Z)(1− Z3)

Z(1 + Z2)

∑

j≥1

jℓ
Zj

1− Zj

=
(1 + Z)(1− Z3)

Z(1 + Z2)

∑

j≥1,m≥1

jℓZjm

=
(1 + Z)(1− Z3)

Z(1 + Z2)

∑

N≥1

ZNσℓ(N)

where

σℓ(N) =
∑

j|N
jℓ.

The funtion

Dℓ(z) =
∑

N≥1

zNσℓ(N)

is easily seen to have radius of onvergene 1. Moreover, as z tends to 1 in suh a way

| arg(1− z)| < φ < π/2,

Dℓ(z) ∼















1

1− z
log

(

1

1− z

)

if ℓ = 0,

ℓ!ζ(ℓ + 1)

(1− z)ℓ+1
if ℓ ≥ 1
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(this an be obtained using a Mellin transform [16, 15℄). The above expression of Aℓ(t),
ombined with Lemma 11 and these properties of Dℓ(z), shows that Aℓ(t) is analyti in the

domain D = C \ [1/8,∞). Moreover, sine | arg(1 − Z)| ≤ π/4 + o(1) as t → 1/8 in D, we

an use the above estimates of Dℓ(z). This gives

Aℓ(t) ∼















−3 log 2 +
3

4
log

(

1

1− 8t

)

if ℓ = 0,

3ℓ!ζ(ℓ+ 1)

2ℓ(1− 8t)ℓ/4
if ℓ ≥ 1.

The generi results derived from the analysis of singularities apply, and give the asymptoti

behaviour (40) of the numbers an(ℓ). This onludes the proof of Theorem 9.

3.5. The supremum of the support of the ise

Let us �nally prove Proposition 10. The following argument requires a detour via disrete

snakes and Brownian snakes. We refer to [21, 23, 20℄ for de�nitions and notation

4

. In

partiular, we use the following integral representation of the random measure µ
ise

: for any

ontinuous bounded funtion g on R,
∫

R

g(y)dµ
ise

(y) =

∫ 1

0

g(r(t))dt (41)

where r(.) is a random proess, ontinuous on [0, 1], alled the head of the Brownian snake.

In other words, µ
ise

is the oupation measure of the proess r. (Again, the de�nition of r
varies from one paper to the other. The above formula �xes our normalization of r.)

The random variable Nn = Mnn
−1/4

oinides with max(rn), where rn is the (normal-

ized) head of the disrete snake assoiated with our tree family. The random proess

√
2rn

onverges weakly to r, the head of the Brownian snake [23℄. Sine max is a ontinuous fun-

tional on C[0, 1], this implies that

√
2Nn =

√
2max(rn) onverges in distribution to max(r).

Thus max(r) has density f(λ/
√
2)/

√
2, where f is de�ned in Theorem 9.

λ+ ǫλ

1

x

fλ,ǫ(x)

λ

1

gλ,ǫ(x)

λ− ǫ λ+ ǫλ

x

1

hλ,ǫ(x)

λ− ǫ

Figure 9. The funtions fλ,ǫ, gλ,ǫ and hλ,ǫ.

It remains to prove that max(r) is equal (in distribution) to N
ise

, the supremum of the

support of the ISE. Let λ ∈ R and ǫ > 0. Let fλ,ǫ be the funtion plotted on the left-hand

side of Figure 9. We have

N
ise

≤ λ ⇐⇒ µ
ise

(−∞, λ] = 1 ⇐⇒
∫

R

fλ,1(y)dµise(y) = 1.

Thanks to (41), this gives

N
ise

≤ λ ⇐⇒
∫ 1

0

fλ,1(r(t))dt = 1

4

We warn the reader that normalizations hange from one paper to another.
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Taking probabilities yields to

P(N
ise

≤ λ) = P

(∫ 1

0

fλ,1(r(t))dt = 1

)

= P(max(r) ≤ λ),

sine r is almost surely ontinuous.

4. A loal limit law

For j ∈ Z, let Xn(j) denote the random variable equal to the number of nodes having

label j in a random tree of T0,n. This quantity is related to the series Sj(t, u) studied in

Proposition 4. In partiular,

E

(

eaXn(j)
)

=
[tn]Sj(t, e

a)

2nCn
.

Also, observe that

Xn(j) = 0 ⇐⇒ Mn < j,

where Mn is the largest label, studied in the previous setion. Let us de�ne a normalized

version of Xn(j) by

Yn(j) =
Xn(j)

n3/4
.

Let λ ∈ R. The aim of this setion is to prove that Yn(⌊λn1/4⌋) onverges in distribution,

as n goes to in�nity, to a random variable Y (λ) that we desribe by its Laplae transform.

This is ahieved in Theorem 14 below, but we �rst want to present two onsequenes of this

theorem, whih have a simpler formulation. The �rst onsequene deals with the ase λ = 0.
Reall that, up to a normalization by n3/4

, the random variable Yn(0) gives the number of

nodes labelled 0 in a tree rooted at 0.

Proposition 12 (The number of nodes labelled 0). As n goes to in�nity, the random

variable 3Yn(0)/
√
2 onverges in distribution to T−1/2

, where T follows a unilateral stable

law of parameter 2/3. The onvergene of the moments holds as well: for k ≥ 0,

E
(

Yn(0)
k
)

→
(√

2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
=

(√
2

3

)k

E(T−k/2).

This proposition will be proved in Setion 4.2. I am indebted to Alain Rouault, who re-

ognized that the above moments were related to T . Reall that T is given by its Laplae

transform:

E(e−aT ) = e−a2/3

for a ≥ 0.

The seond onsequene of Theorem 14 is an expliit expansion in λ of the limiting �rst

moment of Yn(j).

Proposition 13 (The �rst moment). Let λ ∈ R. Denote j = ⌊λn1/4⌋. Then, as n goes

to in�nity,

E (Yn(j)) →
1√
π

∑

m≥0

(−2|λ|)m
m!

cos
(m+ 1)π

4
Γ

(

m+ 3

4

)

.

This funtion of λ is plotted on Figure 10.

Similar, but more and more ompliated expressions may be written for the next moments of

Y (λ). This proposition will be proved in Setion 4.3. Let us, �nally, state our main theorem,

from whih the two above propositions derive.
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Figure 10. The average number of nodes labelled ⌊λ√n⌋ in a tree of size

n, when n → ∞.

Theorem 14 (A loal limit law). Let λ ≥ 0. The sequene Yn(⌊λn1/4⌋) onverges in

distribution to a non-negative random variable Y (λ) whose Laplae transform is given, for

|a| < 4/
√
3, by

E

(

eaY (λ)
)

= L(λ, a)

where

L(λ, a) = 1 +
48

i
√
π

∫

Γ

A(a/v3)e−2λv

(1 +A(a/v3)e−2λv)2
v5ev

4

dv,

A(x) ≡ A is the unique solution of

A =
x

24

(1 +A)3

1−A
(42)

satisfying A(0) = 0, and the integral is taken over

Γ = {1− te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
More preisely, the Laplae transform of Yn(⌊λn1/4⌋) onverges pointwise to L(λ, ·) on the

interval (−4/
√
3, 4/

√
3). The onvergene of moments holds as well.

It is believed (or known?) that the random measure µ
ise

is almost surely absolutely

ontinuous with respet to the Lebesgue measure on R. Eq. (2) leads us to the following

onjeture.

Conjeture 15 (The density of the ISE). There exists a random ontinuous proess

f
ise

(λ), de�ned for λ ∈ R, suh that µ
ise

= f
ise

Leb, where Leb denotes the Lebesgue measure

on R. Moreover, f
ise

(λ) satis�es

f
ise

(λ)
d
=

1√
2
Y

( |λ|√
2

)

,

where the law of Y (λ) is given in Theorem 14.

Comments

1. The limit random variable Y (λ) equals 0 with a positive probability as soon as λ > 0.
Indeed, by the portmanteau Theorem [14, Thm. 11.1.1℄,

P(Y (λ) = 0) ≥ lim supP(Yn(⌊λn1/4⌋) = 0) = lim supP(Mn < ⌊λn1/4⌋).
But, by Theorem 9,

P(Mn < ⌊λn1/4⌋) → 1−G(λ) > 0.
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2. Let us add a few words on the series A(x) de�ned by (42), in order to onvine ourselves

that the integral giving L(λ, a) is well-de�ned. Clearly, the expansion of A(x) at x = 0
has non-negative oe�ients. Looking at the disriminant of the equation that de�nes A
shows that A has radius of onvergene at least 4/

√
3. Moreover, it is easy to prove that

A(4/
√
3) = 2−

√
3 = 0.26 . . . Consequently, |A(x)| is bounded by 2−

√
3 for |x| ≤ 4/

√
3.

Sine |v| ≥ 1 for v ∈ Γ, the modulus of A(a/v3) is bounded from above by 2−
√
3. Moreover,

ℜ(v) ≥ 1, so that |e−2λv| ≤ e−2λ < 1. Hene

A(a/v3)e−2λv

(1 +A(a/v3)e−2λv)2

is uniformly bounded on Γ, and L(λ, a) is well-de�ned.
Note that the series A(x) admits the following losed form expression:

A(x) =
2

1 + 2√
3
cos(arccos(−x

√
3/4)

3 )
− 1. (43)

This an be heked by proving that this expression satis�es (42) and the initial ondition

A(0) = 0.

4.1. Proof of Theorem 14

Let λ ≥ 0 and j = ⌊λn1/4⌋. Let us �rst express the Laplae transform of Yn(j) in terms

of the generating funtions Sj(t, u) of Proposition 4:

E

(

eaYn(j)
)

= E

(

ean
−3/4Xn(j)

)

=
[tn]Sj(t, e

an−3/4

)

2nCn
. (44)

Again, we will evaluate this Laplae transform thanks to the analysis of singularities [17℄.

We wish to use again the integration ontour Cn of Figure 6. This requires to prove that

Sj(t, u) is analyti in a neigborhood of this ontour (for n large and u = ean
−3/4

). This is

guaranteed by the following lemma. This lemma naturally inludes some properties of the

series µ involved in the produt form (11) of Sj . We denote by In the part of the omplex

plane enlosed by Cn (inluding Cn itself).

Lemma 16 (Analyti properties of µ and Sj). Let a be a real number suh that |a| <
4/

√
3. Then there exists ǫ > 0 suh that for n large enough, the series µ(t, un), with un =

ean
−3/4

, is analyti in the domain

En = {t : |t− 1/8| > 1/((8 + ǫ)n)} \ [1/8,+∞).

In partiular, µ(t, un) is analyti in a neighborhood of In. Its modulus in In is smaller

than α, for some α < 1 independent of a and n. The series Sj(t, un) is also analyti in a

neighborhood of In.
Proof. The lemma is lear if a = 0: in this ase, un = 1, the series µ(t, un) vanishes, and
the series Sj redues to the size generating funtion of labelled trees, namely T , whih is

analyti in C \ [1/8,∞). We now assume that a 6= 0 and |a| < 4/
√
3. This guarantees that

A(a) is well-de�ned, where the series A is de�ned in Theorem 14.

Let us �rst study the singularities of the series µ̄ ≡ µ̄(z, u) de�ned as the unique formal

power series in z satisfying

µ̄ = (u− 1)
(1 + z2)(1 + µ̄z)(1 + µ̄z2)(1 + µ̄z3)

(1 + z)(1 + z + z2)(1 − z)3(1 − µ̄z2)
.

Note that µ̄ has polynomial oe�ients in u, and vanishes when u = 1. Assume that u is a

�xed real number lose to, but di�erent from, 1. Reall that, as all algebrai formal power

series, µ̄(t, u) has a positive radius of onvergene. Let us perform a lassial analysis to



LIMIT LAWS FOR EMBEDDED TREES 27

detet its possible singularities. These singularities are found in the union of two sets S1 and

S2:

• S1 is the set of non-zero roots of the dominant oe�ient of the equation de�ning µ̄.
That is, S1 = {±i} ,

• S2 is the set of the roots of the disriminant of the equation de�ning µ̄. For u = 1 + x
and x small, these roots are found to be

z = ±1, z = −1 +O(x), z = e±2iπ/3 +O(x), z = 1 + ω121/6x1/3 +O(|x|2/3),
where ω satis�es ω6 = 1. (The term ω allows us to write loosely x1/3

without saying whih

determination of the ubi root we take.)

Observe that the moduli of all these �andidates for singularities� go to 1 as x goes to 0.
Now the series µ = µ(t, u) involved in the expression (11) of Sj(t, u) satis�es

µ(t, u) = µ̄(Z(t), u)

where Z(t) is de�ned by (5). In other words, we ould have de�ned the series µ̄ by

µ̄(z, u) = µ

(

z(1 + z2)

(1 + z)4
, u

)

.

Reall that Z is analyti in the domain D = C \ [1/8,∞). Take u = un = ean
−3/4

= 1 + x,
with x = an−3/4(1 + o(1)). By Lemma 11, for n large, the only values of S1 ∪ S2 that may

be reahed by Z(t), for t ∈ D, are of the form

z = 1 + ω121/6a1/3n−1/4 +O(n−1/2).

In view of (5), these values of Z(t) are reahed for

t =
1

8
− ω4(12)2/3

128

a4/3

n
+ O(n−5/4).

Sine |a| < 4/
√
3, these values of t are at distane less than 1/((8 + ǫ)n) of 1/8, for some

ǫ > 0, and hene outside the domain En. Consequently, µ(t, un) is analyti inside En.
We now want to bound µ(t, un) inside In. Let tn ∈ In be suh that

|µ(tn, un)| = max
t∈In

|µ(t, un)|.

In partiular, |µ(tn, un)| ≥ |µ((1−1/n)/8, un)|. In order to evaluate the latter quantity, note

that Z((1−1/n)/8) = 1−2n−1/4+O(n−1/2). Thanks to the losed form expression of µ given

in Proposition 5, and to the expression (43) of the series A, we see that µ((1−1/n)/8, un) →
A(a). Sine a 6= 0, A(a) 6= 0, and for n large enough,

|µ(tn, un)| ≥ |µ((1− 1/n)/8, un)| = |A(a)|+ o(1) > 0. (45)

Reall that all the sets In are inluded in a ball of �nite radius entered at the origin. Let

α be an aumulation point of the sequene tn. Then |α| ≤ 1/8.
Assume �rst that α 6= 1/8. Then there exists N suh that α is in En for all n ≥ N , that

is, in the analytiity domain of µ(·, un). Let tn1 , tn2 , . . . onverge to α. By ontinuity of µ
in t and u, we have

µ(tni , uni) → µ(α, 1) = 0.

This ontradits (45). Hene the only aumulation point of tn is 1/8, and tn onverges to

1/8. Let us thus write

tn =
1

8

(

1− xn

n

)

.

We have xn = o(n), but also |xn| > 1 sine tn belongs to In. We wish to estimate µ(tn, un).
From the singular behaviour of Z (Lemma 11), we derive

Z(tn) = 1− 2
(xn

n

)1/4

+O

(

(xn

n

)1/2
)

.
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Moreover,

un − 1 = an−3/4
(

1 +O(n−3/4)
)

.

This gives

un − 1

(1− Z)3
=

a

8x
3/4
n

(

1 +O

(

(xn

n

)1/4
))

.

If the sequene xn was unbounded, then there would exist a subsequene xni onverging to

in�nity. Then (uni − 1)/(1− Z)3 would tend to 0. The losed form expression of µ given

in Proposition 5 implies that µ(tni , uni) would tend to 0, ontraditing (45). Hene the

sequene xn is bounded, and one derives from the expliit expressions of µ and A that

µ(tn, un) = A(ax−3/4
n ) + o(1).

Sine A is bounded by 2 −
√
3 inside its disk of onvergene, |µ(tn, un)| is ertainly smaller

than some α for α < 1 and n large enough. This onludes the proof of the seond statement

of Lemma 16.

By ontinuity of µ(t, un), this funtion of t is still bounded by 1 (in modulus) is a neigh-

borhood of In. Reall also that the modulus of Z(t) never reahes 1 for t ∈ C \ [1/8,∞).
The form (11) then implies that Sj(t, un) is an analyti funtion of t in a neigbourhood of

In.

Let us now go bak to the expression (44) of the Laplae transform of Yn(j). Thanks to
the lemma we have just proved, we an use the Cauhy formula to extrat the oe�ient of

tn in Sj(t, un). We use the following expression of Sj :

Sj = T + T
(1− Z)2(1 + Z + Z2)µZj

(1 + µZj+1)(1 + µZj+3)
,

whih is easily derived from (11). Thus

[tn]Sj(t, un) = 2nCn +
1

2iπ

∫

Cn

T
(1− Z)2(1 + Z + Z2)µZj

(1 + µZj+1)(1 + µZj+3)

dt

tn+1
.

Again, we split the ontour Cn into two parts C(1)
n and C(2)

n , shown in Figure 6. As in the

proof of Theorem 9, the ontribution of C(1)
n is easily seen to be o(8n/nm) for all m > 0,

thanks to the results of Lemmas 11 and 16. On C(2)
n , one has

t =
1

8

(

1 +
z

n

)

where z lies in the trunated Hankel ontour Hn. Conversely, let z ∈ H. Then z ∈ Hn

for n large enough, and, in addition to the estimations (29) already used in the proof of

Theorem 9, one �nds

µ(t, un) = A(a(−z)−3/4)(1 + o(1)), (46)

where A(x) is the series de�ned by (42). After a few redutions, one �nally obtains

[tn]Sj(t, un) = 2nCn+
12.8nn−3/2

iπ

∫

H

A(a(−z)−3/4) exp(−2λ(−z)1/4)
√−ze−z

(1 +A(a(−z)−3/4) exp(−2λ(−z)1/4))2
dz+o(8nn−3/2).

It remains to normalize by 2nCn = 8nn−3/2/
√
π, and then to set v = (−z)1/4 to obtain the

expeted expression for the limit of the Laplae transform of Yn(j), with j = ⌊λn1/4⌋.
The limit Laplae transform L(λ, a) is learly ontinuous at a = 0, and equals 1 at this

point. A version of Lévy's ontinuity theorem [14, Thm. 9.8.2℄ adapted to Laplae transforms

implies that the sequene Yn(j) onverges in distribution to a limit random variable Y (λ)
having Laplae transform L(λ, ·).
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From the onvergene of the Laplae transform in a neighbourhood of the origin, it is

easy to derive that for every k, the sequene of random variables Yn(j)
k
is uniformly inte-

grable. But then the onvergene in distribution implies the onvergene of the moments [4,

Thm. 5.4℄. This onludes the proof of Theorem 14.

4.2. Proof of Proposition 12

When λ = 0, the limiting Laplae transform redues to

L(0, a) = 1 +
48

i
√
π

∫

Γ

A(a/v3)

(1 +A(a/v3))2
v5ev

4

dv = 1 +
12

i
√
π

∫

Γ

χ(a/v3)

1 + χ(a/v3)
v5ev

4

dv

where χ(x) is the unique series in x satisfying

χ =
x

6
(1 + χ)3/2.

The Lagrange inversion formula [25, p. 38℄ gives, for k ≥ 1,

[xk]
χ(x)

1 + χ(x)
=

1

6k
Γ(3k/2− 1)

k!Γ(k/2)
.

Consequently,

L(0, a) = 1 +
12

i
√
π

∫

Γ

∑

k≥1

1

6k
Γ(3k/2− 1)

k!Γ(k/2)
akv5−3kev

4

dv.

The onvergene is absolute, so that we an exhange the sum and the integral:

L(0, a) = 1 +
12

i
√
π

∑

k≥1

1

6k
Γ(3k/2− 1)

k!Γ(k/2)
ak
∫

Γ

v5−3kev
4

dv.

Using (31), and piking the oe�ient of ak, we �nd that the kth moment of the random

variable Y (0) is

E(Y (0)k) =

√
π

6k−1

Γ(3k/2− 1)

Γ(k/2)Γ((3k − 2)/4)
.

The dupliation formula,

22s−1Γ(s)Γ(s+ 1/2) =
√
π Γ(2s),

applied to s = (3k − 2)/4, �nally gives

E(Y (0)k) =

(√
2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
= lim

n→∞
E
(

Yn(0)
k
)

.

Sine Y (0) has a Laplae transform, it is uniquely determined by its moments [3, Thm. 30.1℄.

But

mk =
Γ(1 + 3k/4)

Γ(1 + k/2)

is known to be the kth moment of T−1/2
, where T follows a unilateral stable law of parameter

2/3 (see [9, p. 111℄). Proposition 12 follows.
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4.3. Proof of Proposition 13

We have derived above the moments of Y (0) from the expression of its Laplae transform.

This extends to the moments of Y (λ), for λ > 0: for k ≥ 1,

E(Y (λ)k) =
48.k!

i
√
π

∫

Γ

[ak]
A(a/v3)e−2λv

(1 +A(a/v3)e−2λv)2
v5ev

4

dv.

Sine A(x) = x/24 +O(x2), the ase k = 1 of the above identity reads

E(Y (λ)) =
2

i
√
π

∫

Γ

e−2λvv2ev
4

dv.

In the above expression, expand the exponential as a series. The onvergene of the sum

and integral is absolute, so that one an exhange them. This gives:

E(Y (λ)) =
2

i
√
π

∑

m≥0

(−2λ)m

m!

∫

Γ

vm+2ev
4

dv.

Using (31) (whih is valid for any s with the onvention 1/Γ(−n) = 0 for n ∈ N), this an

be rewritten as

E(Y (λ)) =
√
π
∑

m≥0

(−2λ)m

m!Γ((1 −m)/4)
=

1√
π

∑

m≥0

(−2λ)m

m!
Γ

(

m+ 3

4

)

cos

(

(m+ 1)π

4

)

.

The last equality follows from the omplement formula,

Γ(s)Γ(1 − s) =
π

sin(πs)
. (47)

5. A global limit law, and the distribution funtion of the ISE

In Setion 4, we have derived from Proposition 4 some loal limit results; for instane,

a limit law for Xn(0)/n
3/4

, the (normalized) number of nodes labelled 0. In this setion,

we proeed with a similar study, whih aims at deriving from Proposition 7 a global limit

result � in partiular, the limit law of X+
n (0)/n, the normalized number of nodes having a

non-negative label. The tehnique is opied on Setion 4, and we do not give all the details.

For j ∈ Z, let X+
n (j) denote the random variable equal to the number of nodes having

label at least j in a random tree of T0,n. Let us de�ne a normalized version of X+
n (j) by

Y +
n (j) =

X+
n (j)

n
.

These quantities are related to the series Rj(t, u) studied in Proposition 7. In partiular,

E

(

eaY
+
n (j)

)

= E

(

ean
−1X+

n (j)
)

=
[tn]Rj(t, e

a/n)

2nCn
.

We extend the de�nition of X+
n and Y +

n to real values in a natural way by setting X+
n (x) =

X+
n (⌈x⌉) and Y +

n (x) = Y +
n (⌈x⌉). Let λ ≥ 0. The aim of this setion is to prove that

Y +
n (λn1/4) onverges in distribution, as n goes to in�nity, to a random variable Y +(λ) that

we desribe by its Laplae transform. This is ahieved in Theorem 19 below, but we �rst

want to present two onsequenes of this theorem, whih have a simpler formulation. The

�rst onsequene is a striking limit law for Y +
n (0). Reall that, up to a normalization by n,

this random variable gives the number of nodes having a non-negative label in a tree rooted

at 0.

Proposition 17 (The number of non-negative nodes). As n goes to in�nity, the ran-

dom variable Y +
n (0) onverges in law to the uniform distribution on [0, 1].

This proposition will be proved in Setion 5.2. The seond onsequene of Theorem 19 is an

expliit expansion in λ of the limiting �rst moment of Y +
n (λn1/4).
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Proposition 18 (The �rst moment). Let λ ≥ 0. Then, as n goes to in�nity,

E

(

Y +
n (λn1/4)

)

→ 1

2
√
π

∑

m≥0

(−2λ)m

m!
cos
(mπ

4

)

Γ

(

m+ 2

4

)

.

This proposition will be proved in Setion 5.3.

Let us, �nally, state our main theorem, from whih the two above propositions derive.

Theorem 19 (A global limit law). Let λ ≥ 0.The sequene Y +
n (λn1/4) onverges in

distribution to a random variable Y +(λ) whose Laplae transform is given, for |a| < 1, by

E

(

eaY
+(λ)

)

= G(λ, a),

where

G(λ, a) = 1 +
48

i
√
π

∫

Γ

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv,

B(x) = − (1−D)(1 − 2D)

(1 +D)(1 + 2D)
, D =

√

1 +
√
1− x

2
, (48)

and the integral is taken over

Γ = {1− te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
Moreover, the Laplae transform of Y +

n (λn1/4) onverges pointwise to G(λ, ·) on the interval

(−1, 1). The onvergene of moments holds as well.

The sequene Y +
n (−λn1/4) onverges in distribution to the random variable 1− Y +(λ).

This theorem will be proved in the next subsetion. In view of the following proposition,

it tells us about the law of the distribution funtion of the ISE.

Proposition 20 (The tail distribution funtion of the ISE). Let g
ise

(λ) =
µ
ise

(λ,+∞) denote the tail distribution funtion of the ISE. Then for λ ≥ 0,

g
ise

(λ)
d
= Y +(λ/

√
2),

where the law of the variable Y +(λ) is given in Theorem 19. In partiular, g
ise

(0) is uni-

formly distributed on [0, 1]. The random variable g
ise

(−λ) has the same distribution as

1− Y +(λ/
√
2).

Comments

1. The law of g
ise

(0) was already given by Aldous [1, Eq. (12)℄.

2. Let us add a few words on the series B and D to onvine ourselves that the integral

giving G(λ, a) is well-de�ned as long as |a| < 1. Let E(x) = 1 −D(x). Then E admits the

following expansion:

E(x) = 1−

√

1− 1−
√
1− x

2
= 2

∑

n≥1

Cn−1

(

1−
√
1− x

8

)n

where Cn is the nth Catalan number. Similarly,

1−
√
1− x = 2

∑

n≥1

Cn−14
−nxn,

and these two identities imply that E(x) has non-negative oe�ients. Moreover, its radius

of onvergene is easily seen to be 1, so that |E(x)| ≤ E(1) = 1−1/
√
2 for |x| ≤ 1. Moreover,

expressing B in terms of E gives:

B =
E(1 − 2E)

(2− E)(3 − 2E)
,
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whih shows that B(x) is also analyti for |x| < 1 and satis�es in this domain

|B(x)| ≤ E(1)(1 + 2E(1))

(2− E(1))(3 − 2E(1))
= 22

√
2− 31 = 0.11...

For v ∈ Γ, |v| ≥ 1 and ℜ(v) ≥ 1. This implies that

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2

is uniformly bounded on Γ, and G(λ, a) is well-de�ned.

5.1. Proof of Theorem 19

Let j = ⌈λn1/4⌉. Given that the produt forms for the series Sj and Rj are very similar,

it is not surprising that we use an approah opied on that of the previous setion. We start

from

E(eaY
+
n (j)) = E(u

X+
n (j)

n ) =
[tn]Rj(t, un)

2nCn
,

with un = ea/n. For tehnial reasons, we hoose to modify slightly the integration ontour

of Figure 6. The Hankel part of this ontour, whih was lying at distane 1/8 of the real

axis, is now moved a bit further, at distane 1/6 of the real axis. More preisely, the new

ontour Cn onsists of two parts C(1)

n and C(2)

n suh that

• C(1)

n is an ar of radius (1 + log2 n/n)/8, entered at the origin;

• C(2)

n is a Hankel ontour around 1/8, at distane 1/(6n) of the real axis, whih meets

C(1)

n at both ends.

We �rst need to prove that the series Rj(t, un) is analyti in a neighborhood of In, the

region lying inside the integration ontour Cn. The following lemma is the ounterpart of

Lemma 16.

Lemma 21 (Analyti properties of ν and Rj). Let a be a real number suh that |a| < 1.

Then ν(t, un) is analyti in a neighborhood of In. Its modulus in In is smaller than α, for
some α < 1 independent of a and n. The series Rj(t, un) is also analyti in a neighborhood

of In.

Proof. Again, the lemma is obvious if a = 0. We thus assume a 6= 0 and |a| < 1.
Let us �rst study the singularities of the series ν̄ ≡ ν̄(z, u) de�ned by

ν̄(z, u) = ν

(

z(1 + z2)

(1 + z)4
, u

)

.

Aording to Proposition 7, ν̄ is a formal power series in z with polynomial oe�ients in u,
and by (5), one has:

ν(t, u) = ν̄(Z(t), u).

In the ourse of the proof of Proposition 7, we have obtained a polynomial equation

P (ν, Z, u) = 0, of degree 4 in ν, relating ν(t, u), Z(t) and the variable u. This equation

is not written in the paper (it is a bit too big), but it an be easily obtained using the

expression of ν given in Proposition 8. By de�nition of ν̄, we have P (ν̄, z, u) = 0.
Assume that u is a �xed real number lose to 1. That is, u = 1 + x, with x small. In

order to study the singularities of ν̄, we look again at the zeroes of the leading oe�ient of

P , and at the zeroes of its disriminant. This gives several andidates for the singularities of

ν̄(z, u), whih we lassify in three series aording to their behaviour when x is small. First,

some andidates tend to a limit that is di�erent from 1,

z = −1, z = ±i, z = e±2iπ/3, z = e±2iπ/3 +O(x), z = −1 +O(x).
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Then, some andidates tend to 1 and lie at distane at most |x|1/4 of 1 (up to a multipliative

onstant):

z = 1+ ω(cx)1/4 +O(
√

|x|),
where ω is a fourth root of unity and c is in the set {0, 16, 64/3,−16/3}. Finally, some

andidates tend to 1 but lie further away from 1 (more preisely, at distane |x|1/6):

z = 1 + 2eiπ/6ω′x1/6 +O(|x|1/3),
where ω′

is a sixth root of unity.

Let us now onsider ν(t, u) = ν̄(Z(t), u) with u = un = ea/n = 1 + x, where x =
a/n(1+ o(1)). Reall that Z is analyti in C \ [1/8,∞). By Lemma 11, the series Z(t) never
approahes any root of unity di�erent from 1. Hene for n large enough, Z(t) never reahes
any of the andidates z of the �rst series.

The andidates of the seond series are of the form

z = 1 + ω(ac/n)1/4 +O(n−1/2)

for some onstant c, with |c| ≤ 64/3, depending on the andidate. By (5), Z(t) may only

reah these values for

t =
1

8
− ac

128n
+O(n−5/4).

Sine |a| < 1, there exists ǫ > 0 suh that these values lie at distane less that 1/((6 + ǫ)n)
of 1/8, that is, outside a neighborhood of the domain In.

The andidates of the third series are more worrying: Z(t) may reah them for

t =
1

8
− ω′′

8
(a/n)

2/3
+O(n−5/6), (49)

where ω′′
is a ubi root of unity, and these values may lie inside In. If a > 0 and ω′′ =

e±2iπ/3
, or if a < 0 and ω′′ = e2iπ/3, the modulus of the above value of t is found to be

1/8(1+ cn−2/3+ o(n−2/3)), for some positive onstant c: this is larger than the radius of the

ontour Cn, whih implies that t lies outside a neighborhood of In. However, if a > 0 and

ω′′ = 1, or if a < 0 and ω′′ = 1 or e−2iπ/3
, the above value of t lies de�nitely inside In. Its

modulus is 1/8(1− cn−2/3 + o(n−2/3)), for some positive onstant c.
In order to rule out the possibility that ν(t, un) has suh a singularity, we are going to

prove, by having a lose look at the expression of ν given in Proposition 8, that the radius of

onvergene of ν(t, un) is at least 1/8−O(1/n). We use below the notation of Proposition 8.

Clearly, the series V (t, un) has radius of onvergene min(1/8, 1/(8un)). In partiular,

this radius is at least ρn := 1/(8(1 + |x|)) (with un = 1+ x). Moreover, the series V admits

the following expansion

V (t, 1 + x) =
1

4

(

1−
√

1− 8tx

1− 8t

)

=
1

2

∑

n≥1

Cn−1

(

2tx

1− 8t

)n

,

where Cn is the nth Catalan number. This shows that V (t, 1 + |x|) is a series in t with

positive oe�ients and that for all t suh that |t| ≤ ρn,

|V (t, 1 + x)| ≤ V (|t|, 1 + |x|) ≤ V

(

1

8(1 + |x|) , 1 + |x|
)

=
1

4
.

The next step is to prove that ∆(t, un) never vanishes for |t| ≤ ρn. Indeed,

∆ = (1− V )2 − 4WV 2,

where W ≡ W (t) is the formal power series in t de�ned by (24). This series has radius 1/8,
and non-negative oe�ients. Hene for all t suh that |t| ≤ 1/8, one has |W (t)| ≤ W (1/8) =
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1/4. Consequently, for |t| ≤ ρn,

|∆(t, 1 + x)| ≥ (1− |V (t, 1 + x)|)2 − 4|W (t)||V (t, 1 + x)|2 ≥
(

1− 1

4

)2

− 1

16
=

1

2
.

Hene ∆(t, un) does not vanish in the entered disk of radius ρn. It follows that the series

P (t, un) is analyti inside this disk.
Aording to the expression of ν given in Proposition 8, the series ν(t, un) is meromorphi

for |t| ≤ ρn. The �nal question we need to answer is whether ν has poles in this disk, and

where. Returning to the polynomial P suh that P (ν, Z, u) = 0 shows that this an only

happen if the oe�ient of ν4 in this polynomial vanishes. But this an only our if z = Z(t)
has one of the following forms:

z = ±i, z = e±2iπ/3 +O(x), z = −1 +O(x), z = 1 + ω(64x/3)1/4 +O(x1/2).

As argued above, only the last value of z is likely to be reahed by Z(t), and this may only

our if

t =
1

8
− 1

6
(a/n) +O(n−5/4).

Consequently, the radius of ν(t, un) is at least 1/8 − O(1/n), and this proves that the val-

ues (49) that have been shown to lie in the entered disk of radius 1/8, are not, after all,

singularities of ν(t, un). This ompletes our proof that ν(t, un) is analyti in a neighborhood

of In.

We now want to bound ν(t, un) inside In. From now on, we an walk safely in the steps

of the proof of Lemma 16. Let tn ∈ In be suh that

|ν(tn, un)| = max
t∈In

|ν(t, un)|.

We �rst give a lower bound for this quantity, by estimating ν(t, un) for t = 1/8 − 1/(6n).
This is easily done by ombining the losed form expressions of ν (Proposition 8) and B
(Theorem 19). One obtains:

|ν(tn, un)| ≥ |µ(1/8− 1/(6n), un)| = |B(3a/4)|+ o(1) > 0.

This lower bound is then used to rule out the possibility that the sequene tn has an au-

mulation point di�erent from 1/8. Thus tn onverges to 1/8, and one an write

tn =
1

8

(

1− xn

n

)

.

We have xn = o(n), but also |xn| > 4/3 sine tn belongs to In. We want to estimate

ν(tn, un). Sine

Z(tn) = 1− 2
(xn

n

)1/4

+O

(

(xn

n

)1/2
)

and

un − 1 = a/n (1 +O(1/n)) ,

one has

u− 1

(1− Z)4
=

a

16xn

(

1 +O

(

(xn

n

)1/4
))

.

The losed form expressions of ν and B imply that the sequene xn is bounded and

ν(tn, un) = B(a/xn) + o(1).

Sine B is bounded by 0.12 inside its disk of onvergene, |ν(tn, un)| is ertainly smaller than

some α for α < 1 and n large enough. This onludes the proof of the seond statement of

Lemma 21.

By ontinuity of ν(t, un), this funtion of t is still bounded by 1 (in modulus) is a neigh-

borhood of In. Reall also that the modulus of Z(t) never reahes 1 for t ∈ C \ [1/8,∞).
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The form (16) then implies that Rj(t, un) is an analyti funtion of t in a neigborhood of

In.

One this rather painful lemma is at last established, the rest of the proof of Theorem 19

opies the end of the proof of Theorem 14, with Sj , µ and A respetively replaed by Rj , ν
and B. The ounterpart of (46) is

ν(t, un) = B(−a/z)(1 + o(1)).

Reall that the Hankel part of the ontour Cn is now at distane 1/(6n) of the real axis.

Hene, when n goes to in�nity, one �nds

[tn]Rj(t, un) = 2nCn+
12.8nn−3/2

iπ

∫

4/3H

B(−a/z) exp(−2λ(−z)1/4)
√−ze−z

(1 +B(−a/z) exp(−2λ(−z)1/4))2
dz+o(8nn−3/2).

After normalizing by 2nCn and setting v = (−z)1/4, this gives

E(eaY
+
n (j)) → 1 +

48

i
√
π

∫

(4/3)1/4Γ

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv,

but the analytiity properties of the integrand allow us to replae the integration ontour by

Γ.

5.2. Proof of Proposition 17

When λ = 0, the limiting Laplae transform redues to

G(0, a) = 1 +
48

i
√
π

∫

Γ

B(a/v4)

(1 +B(a/v4))2
v5ev

4

dv = 1 +
4

3i
√
π

∫

Γ

χ(a/v4)(3 − χ(a/v4))

1 + χ(a/v4)
v5ev

4

dv

where χ(x) is the unique formal power series in x satisfying

χ =
x

4
(1 + χ)2.

The Lagrange inversion formula gives, for k ≥ 1,

[xk]
χ(x)(3 − χ(x))

1 + χ(x)
=

6

4k
(2k − 2)!

(k − 1)!(k + 1)!
.

Consequently,

G(0, a) = 1 +
8

i
√
π

∫

Γ

∑

k≥1

1

4k
(2k − 2)!

(k − 1)!(k + 1)!
akv5−4kev

4

dv.

The onvergene is absolute, so that we an exhange the sum and the integral:

G(0, a) = 1 +
8

i
√
π

∑

k≥1

1

4k
(2k − 2)!

(k − 1)!(k + 1)!
ak
∫

Γ

v5−4kev
4

dv.

Using (31), and piking the oe�ient of ak, we �nd that the kth moment of the random

variable Y +(0) is

E(Y (0)k) =
8

i
√
π

1

4k
(2k − 2)!

(k − 1)!(k + 1)

iπ

2Γ(k − 1/2)
=

1

k + 1
.

The unique distribution having its kth moment equal to 1/(k+1) is the uniform distribution

on [0, 1]. Proposition 17 follows.
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5.3. Proof of Proposition 18

We have derived above the moments of Y +(0) from the expression of its Laplae transform.

This extends to the moments of Y +(λ), for λ > 0: for k ≥ 1,

E(Y +(λ)k) =
48.k!

i
√
π

∫

Γ

[ak]
B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv.

Sine B(x) = x/48 +O(x2), the ase k = 1 of the above identity gives

E(Y +(λ)) =
1

i
√
π

∫

Γ

e−2λvvev
4

dv.

In the above expression, expand the exponential as a series. The onvergene of the sum

and integral is absolute, so that one an exhange them. This gives:

E(Y +(λ)) =
1

i
√
π

∑

m≥0

(−2λ)m

m!

∫

Γ

vm+1ev
4

dv.

Using (31), this an be rewritten as

E(Y +(λ)) =

√
π

2

∑

m≥0

(−2λ)m

m!Γ((2 −m)/4)
=

1

2
√
π

∑

m≥0

(−2λ)m

m!
Γ

(

m+ 2

4

)

cos
(mπ

4

)

.

The last equality follows from the omplement formula (47).

5.4. The distribution funtion of the ISE

Let us �nally prove Proposition 20.

Let µn be a sequene of random probability measures on R onverging weakly to a prob-

ability measure µ. Let Fn denote the (random) distribution funtion of µn: for λ ∈ R,

Fn(λ) = µn(−∞, λ].

Similarly, let F denote the distribution funtion of µ. It is not very hard to prove that, for

all λ ∈ R suh that µ{λ} = 0, Fn(λ) onverges in distribution to F (λ). (We prove this in

the appendix of the paper, but it is ertainly written somewhere in the literature.)

Let us now apply this general result to our ontext. The probability measure µn is given

by (1), with c =
√
2. It is known to onverge to the random measure µ

ise

. Assume for

the moment that this measure does not assign a positive weight to any point. Then, with

the above notation, Fn(λ) onverges in distribution to F (λ), for all λ ∈ R. But, given the

de�nition (1) of µn,

Fn(λ) = 1− µn(λ,∞) = 1− 1

n+ 1
X+

n (λn1/4/
√
2) +

1

n+ 1
Xn(λn

1/4/
√
2),

where the de�nition of Xn is extended to all reals by Xn(x) = 0 if x ∈ R\Z. By Theorems 14

and 19, the right-hand side onverges in distribution to 1 − Y +(λ/
√
2). Consequently, the

tail distribution funtion of the ISE (that is, µ
ise

(λ,∞)) has the same law as Y +(λ/
√
2).

It remains to prove that µ
ise

does not weight points positively (almost surely). Let λ ∈ R.

Then

P(µ
ise

{λ} > 0) = 0 ⇐⇒ E(µ
ise

{λ}) = 0. (50)

Let ǫ > 0, and let hλ,ǫ be the funtion plotted on the right-hand side of Figure 9. Then

µ
ise

{λ} = lim
ǫ→0+

∫

R

hλ,ǫ(y)dµise(y)

= lim
ǫ→0+

∫ 1

0

hλ,ǫ(r(t))dt (by (41))

=

∫ 1

0

1λ=r(t)dt.
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Taking expetations, we obtain

E(µ
ise

{λ}) = E

(∫ 1

0

1λ=r(t)dt

)

=

∫ 1

0

P(λ = r(t))dt.

But P(λ = r(t)) = 0 for all t ∈ (0, 1) and λ, sine r(t) has a density with respet to the

Lebesgue measure for all t. By (50), we onlude that µ
ise

does not weight points positively.

The last statement of Proposition 20 is then easily proven, using a the symmetry of µ
ise

and the fat that it does not assign a positive probability to any point.

6. Other tree models and universality

6.1. Trees with inrements 0,±1

We onsider in this setion a slight variation on the previous family of trees: the inrements

of the labels along edges may now be 0,±1. This family of trees has attrated a lot of interest

in relation to planar maps [6, 8, 11, 24℄.

6.1.1. Enumerative results. As above, let Tj ≡ Tj(t) be the generating funtion of labelled
trees in whih all labels are at most j, ounted by their number of edges. Let Sj ≡ Sj(t, u)
be the generating funtion of labelled trees, ounted by the number of edges (variable t) and
the number of nodes labelled j (variable u). Finally, let Rj ≡ Rj(t, u) be the generating

funtion of labelled trees, ounted by the number of edges and the number of nodes having

label j at least. As above, it is easy to write an in�nite system of equations de�ning any of

the families Tj , Sj or Rj . The only di�erene with our �rst family of trees is that a third ase

arises in the deomposition of trees illustrated by Figure 4: the leftmost hild of the root

may have label j. In partiular, the generating funtion T ≡ T (t) ounting plane labelled

trees now satis�es

T = 1 + 3tT 2,

while for j ≥ 0,

Tj = 1+ t(Tj−1 + Tj + Tj+1)Tj . (51)

The equations of Lemmas 3 and 6 are modi�ed in a similar way. The three in�nite systems

of equations thus obtained an be solved using the same tehniques as in Setion 2. The

solutions are expressed in terms of the above series T ≡ T (t) and of the unique formal power

series Z ≡ Z(t), with onstant term 0, satisfying

Z = t
(1 + 4Z + Z2)2

1 + Z + Z2
. (52)

Observe that T and Z are related by:

T =
1 + 4Z + Z2

1 + Z + Z2
.

We state without proof the ounterparts of Propositions 2, 4 and 7.

Proposition 22 (Trees with small labels [5, 6℄). Let Tj ≡ Tj(t) be the generating

funtion of trees having no label greater than j. Then Tj is algebrai of degree (at most) 2.
In partiular,

T0 = 1− 16 t+ 18 tT0 − 27 t2T0
2.

Moreover, for all j ≥ −1,

Tj = T
(1− Zj+1)(1− Zj+4)

(1− Zj+2)(1− Zj+3)
,

where Z ≡ Z(t) is given by (52).
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Remarks

1. As observed in [6, p. 645℄, there is an �invariant� funtion attahed to equations of the

form (51): for j ≥ 0,

I(Tj−1, Tj) = I(Tj, Tj+1)

where I is now given by

I(x, y) = xy(1 − t(x+ y))− x− y.

As explained in the remark that follows Propositions 4 and 5, this an be used to derive

rapidly from (51) the value of T0.

2. As was the ase for trees with inrements ±1, the trees ounted by T0 (equivalently, the

trees having only non-negative labels) are losely related to planar maps. More preisely,

there is a one-to-one orrespondene between non-negative trees having n edges and planar

maps having n edges [8, 11℄. The oe�ients of T0(t) are also remarkably simple:

T0(t) =
(1 − 12t)3/2 − 1 + 18t

54t2
=
∑

n≥0

2.3n

(n+ 1)(n+ 2)

(

2n

n

)

tn.

A ombinatorial explanation for the algebraiity of T0 is given in [11℄.

Proposition 23 (The number of nodes labelled j). For any j ∈ Z, the generating

funtion Sj ≡ Sj(t, u) that ounts labelled trees by the number of edges and the number of

nodes labelled j is algebrai of degree at most 4 over Q(T, u) (and hene has degree at most

8 over Q(t, u)). More preisely,

9T 4(u− 1)2

(T − S0)2
= 9T 2 − 2T (T − 1)(2T + 1)S0 + (T − 1)2S2

0

and all the Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+3)

(1 + µZj+1)(1 + µZj+2)
,

where Z ≡ Z(t) is given by (52) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u− 1)
(1 + Z + Z2)(1 + µZ)2(1 + µZ2)2

(1 + Z)2(1− Z)3(1− µ2Z3)
.

The series µ(t, u) has polynomial oe�ients in u, and satis�es µ(t, 1) = 0. It has degree 4
over Q(Z, u) and 16 over Q(t, u).

Proposition 24 (The number of nodes labelled j or more). Let j ∈ Z. The generating

funtion Rj(t, u) ≡ Rj that ounts labelled trees by the number of edges and the number of

nodes labelled j or more is algebrai over Q(t, u), of degree at most 8. It has degree at most

2 over Q(T, T̃ ), where T ≡ T (t) and T̃ ≡ T (tu). More preisely, it belongs to the extension

of Q(T, T̃ ) generated by

√

4(T + T̃ )2 − T T̃ (4 + 3T T̃).

Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+3)

(1 + νZj+1)(1 + νZj+2)
,

where Z ≡ Z(t) is given by (52) and ν ≡ ν(t, u) is a formal power series in t, with polynomial

oe�ients in u, whih is algebrai of degree 4 over Q(u, Z), and of degree 16 over Q(t, u).
This series satis�es ν(t, 1) = 0. The �rst terms in its expansion are:

ν(t, u) = (u − 1)
(

1 + 3 ut+
(

15 u+ 14 u2
)

t2 +
(

104 u+ 117 u2 + 83 u3
)

t3 +O(t4)
)

.
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6.1.2. Limit laws. We now endow the set of labelled trees having n edges with the uniform

distribution, and onsider the same random variables as for our �rst family of trees: Mn,

the largest label, Xn(j), the number of nodes having label j, and �nally X+
n (j), the number

of nodes having label j at least.

Again, we an prove that Mnn
−1/4

onverges in law to N
ise

/
√
3, where N

ise

is the

supremum of the support of the ISE, and that for all λ ∈ R, the sequene X+
n (λn1/4)/n

onverges in law to g
ise

(
√
3λ) where g

ise

is the tail distribution funtion of the ISE. The

arguments are the same as for our �rst lass of trees (Setions 3.5 and 5.4).

Hene we ould just as well have started from the enumerative results of Setion 6.1.1,

rather than from those of Setion 2, to haraterize the laws of N
ise

and g
ise

(λ) (Propo-

sitions 10 and 20). More remarkably, we have performed on Xn(j) an analysis similar to

that of Setion 4, and obtained the same loal limit law. In other words, for all λ ≥ 0, the
sequene Xn(⌊λn1/4⌋)n−3/4

onverges in law to

√
3f

ise

(
√
3λ) where f

ise

is the onjetured

density of the ISE, given in Conjeture 15.

In all three ases, the onvergene of the moments holds as well.

6.2. Naturally embedded binary trees

We study in the setion the inomplete binary trees

5

arrying their natural labelling, as

shown on the right of Figure 1. Suh trees are either empty, or have a root, to whih a

left and right subtree (both possibly empty) are attahed. A (minor) di�erene with the

two previous families of trees is that the main enumeration parameter is now the number of

nodes rather than the number of edges.

6.2.1. Enumerative results. Let Tj ≡ Tj(t) be the generating funtion of (naturally la-

belled) binary trees in whih all labels are at most j, ounted by their number of nodes. Let

Sj ≡ Sj(t, u) be the generating funtion of binary trees, ounted by the number of nodes

(variable t) and the number of nodes labelled j (variable u). Finally, let Rj ≡ Rj(t, u) be
the generating funtion of binary trees, ounted by the number of nodes and the number of

nodes having label j at least. It is easy to write an in�nite system of equations de�ning any

of the families Tj , Sj or Rj . The deomposition of trees that was ruial in Setion 2 is now

replaed by the deomposition of Figure 11. The generating funtion T ≡ T (t) ounting

naturally labelled binary trees satis�es

T = 1 + tT 2,

(as it should!) while for j ≥ 0,

Tj = 1 + tTj−1Tj+1. (53)

Note that the initial ondition is now T−1 = 1 (aounting for the empty tree).

j

Tj−1 Tj+1

j

= +∅

Figure 11. The deomposition of naturally labelled binary trees rooted at j.

5

The author has obtained similar, but slightly heavier results for embedded omplete binary trees.
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The equations of Lemmas 3 and 6 respetively beome:

Sj =

{

1 + tSj−1Sj+1 if j 6= 0,
1 + tuS2

1 if j = 0,
(54)

while

Rj = 1 + tRj−1Rj+1 for j ≥ 1, (55)

and

R−j(t, u) = Rj+1(tu, 1/u) for all j ∈ Z. (56)

The three in�nite systems of equations thus obtained an be solved using the same teh-

niques as in Setion 2. The solutions are expressed in terms of the above series T ≡ T (t)
and of the unique formal power series Z ≡ Z(t), with onstant term 0, satisfying

Z = t

(

1 + Z2
)2

1− Z + Z2
. (57)

Observe that T and Z are related by:

T =
1 + Z2

1− Z + Z2
.

We state without proof the ounterparts of Propositions 2, 4 and 7. One again, the results

below are dying for ombinatorial explanations!

Proposition 25. Let Tj ≡ Tj(t) be the generating funtion of binary trees having no label

greater than j. Then Tj is algebrai of degree (at most) 2. In partiular,

T0 =
(1− 4t)3/2 − 1 + 8t− 2t2

2t(1 + t)
.

Moreover, for all j ≥ −1,

Tj = T
(1− Zj+2)(1− Zj+7)

(1− Zj+4)(1− Zj+5)
,

where Z ≡ Z(t) is given by (57).

It is easy to hek that the above series Tj satisfy the equations (53) and the initial ondition

T−1 = 1. The method we used to disover this produt form is again borrowed from [5℄.

Remark. For this family of trees as well, we have found an �invariant� funtion attahed to

equations of the form (53): for j ≥ 0,

I(Tj−1, Tj) = I(Tj, Tj+1)

where

I(x, y) = (x+ y) t2 +

(

x2 − x− y + y2
)

t

xy
+

−1 + x+ y

xy
.

This an be used to derive rapidly from (53) the value of T0.

Proposition 26 (The number of nodes labelled j). For any j ∈ Z, the generating

funtion Sj ≡ Sj(t, u) that ounts binary trees by the number of nodes and the number of

nodes labelled j is algebrai of degree at most 4 over Q(T, u) (and thus has degree at most 8
over Q(t, u)). More preisely,

T 2(u− 1)2

u(T − S0)2
=

(T − 1)4S2
0 − 2TS0(T − 1)2(3− 9T + 7T 2) + T 2(T 2 + T − 1)2

(T − 1)(S0 − 1)(T 2 + TS0 − S0)2

and all the series Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+5)

(1 + µZj+2)(1 + µZj+3)
,
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where Z ≡ Z(t) is given by (57) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u− 1)
Z(1 + µZ)2(1 + µZ2)(1 + µZ6)

(1 + Z)2(1 + Z + Z2)(1 − Z)3(1− µ2Z5)
.

The series µ(t, u) has polynomial oe�ients in u, and satis�es µ(t, 1) = 0. It has degree 4
over Q(Z, u) and 16 over Q(t, u).

Comment on the proof. The proof is similar to the proof of Proposition 7 until one

omputes the equation satis�ed by S0. But then, the relation S0 = 1 + tS2
1 does not allow

us to onlude that S1 belongs to Q(t, u, S0). Instead, we ompute the algebrai equation

satis�ed by S1. It is found to have degree 4 over Q(u, T ). The above relation between S0

and S1 shows that S0 belongs to the extension of Q(t, u) generated by S1. Comparing the

degrees implies �nally that Q(t, u, S0) = Q(t, u, S1). Then (54) shows, by indution on j,
that all the series Sj belong to this �eld.

Proposition 27 (The number of nodes labelled j or more). Let j ∈ Z. The generating

funtion Rj(t, u) ≡ Rj that ounts binary trees by the number of nodes and the number

of nodes labelled j or more is algebrai over Q(t, u). More preisely, R0 has degree 16

over Q(t, u) and degree 4 over Q(T, T̃ ), with T̃ = T (tu), and all the series Rj belong to

Q(T, T̃ , R0) = Q(t, u, R0). Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+5)

(1 + νZj+2)(1 + νZj+3)
,

where Z ≡ Z(t) is given by (52) and ν ≡ ν(t, u) is a formal power series in t, with polynomial

oe�ients in u, whih is algebrai of degree 8 over Q(u, Z) and 32 over Q(t, u). This series
satis�es ν(t, 1) = 0. The �rst terms in its expansion are:

ν(t, u) = (u− 1)
(

t+ (u + 1)t2 + (2u2 + 3u+ 3)t3 +O(t4)
)

.

Comment on the proof. The proof is similar to the proof of Proposition 7 until one

omputes the equation satis�ed by R0. One �nds that R0 has degree 4 over Q(T, T̃ ), and
degree 16 over Q(t, u). Using (56), one then derives an equation satis�ed by R1. Strangely

enough, it turns out that the minimal polynomials of R0 and R1 over Q(T, T̃ ) (or over

Q(t, u)) are the same. The two series are of ourse di�erent:

R0(t, u) = 1 + tu+ u(1 + u)t2 + u(2u2 + 2u+ 1)t3 + u(1 + u)(4u2 + u+ 2)t4 +O(t5),
R1(t, u) = 1 + t+ (1 + u)t2 + (u2 + 2u+ 2)t3 + (1 + u)(2u2 + u+ 4)t4 +O(t5).

Let P (x) be the minimal polynomial of R0 and R1 over K ≡ Q(T, T̃ ). We want to prove

that R1 belongs to the extension of K generated by R0. Note that this property does not

simply follow from the fat that R0 and R1 are onjugate roots of P . For instane, for a

generi polynomial P of degree 4 over K, with Galois group S4, the four extensions of K

generated by the roots of P are di�erent. We are going to determine the Galois group of

our polynomial P , using the general strategy desribed in [2, p. 141�142℄. The resolvent

ubi of P , whih we denote R below, is found to fator into a linear term and a quadrati

one. Hene the Galois group of R over K has order 2. This implies that the Galois group

G of P over K is either the yli group of order 4 or the dihedral group of order 8. In the

former ase, the four extensions of K generated by the roots of P oinide (and are equal

to the splitting �eld of P ) and we are done. In the latter ase, there exists a labelling of

the four roots of P , say X0, X1, X2, X3, suh that the group G, seen as a subgroup of the

permutations of {0, 1, 2, 3}, is
G = {id, (0, 1), (2, 3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2), (0, 2, 1, 3), (0, 3, 1, 2)}.

Then
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• the simple extensions of K generated by the Xi satisfy K(X0) = K(X1) and K(X2) =
K(X3),

• the root of the resolvent that belongs to K is Y = X0X1 +X2X3.

The root of R that belongs to K = Q(T, T̃ ) is found to be Y = t−3/(u(1 + u)) +O(t−2).
We already know two roots of P , namely R0 and R1, whih are equal to 1+O(t). The other
two roots are respetively of the form Q2 = −t−2/u+O(t−1) and Q3 = −t−1/(1+u)+O(1).
From the value of Y , we onlude that the above properties hold with X0 = R0, X1 = R1,

X2 = Q2 and X3 = Q3. In partiular, R0 and R1 belong to the same extension of degree 4

of Q(T, T̃ ).
Then, an indution on j, based on (55), implies that for all j ≥ 2, the series Rj belongs to

the extension of K = Q(T, T̃ ) generated by R0. Sine R1(t, u) = R0(tu, 1/u) and K(R0) =
K(R1), the �eld K(R0) is invariant under the transformation A(t, u) 7→ A(tu, 1/u). This

property, ombined with (56), implies that for j ≥ 1, the series R−j belongs to K(R0).

6.2.2. Limit laws. We now endow the set of binary trees having n nodes with the uniform

distribution, and onsider the same random variables as for above: Mn, the largest label,

Xn(j), the number of nodes having label j, and X+
n (j), the number of nodes having label j

at least.

Again, we an prove that Mnn
−1/4

onverges in law to N
ise

, where N
ise

is the supremum

of the support of the ISE, and that for all λ ∈ R, the sequene X+
n (λn1/4)/n onverges in

law to g
ise

(λ) where g
ise

is the tail distribution funtion of the ISE. The arguments are the

same as for our �rst lass of trees (Setions 3.5 and 5.4). Hene we ould just as well have

started from the enumerative results of Setion 6.2.1, rather than from those of Setion 2,

to haraterize the laws of N
ise

and g
ise

(λ) (Propositions 10 and 20).

More remarkably, we have performed on Xn(j) an analysis similar to that of Setion 4,

and obtained the same loal limit law. In other words, for all λ ≥ 0, the sequene

Xn(⌊λn1/4⌋)n−3/4
onverges in law to f

ise

(λ) where f
ise

is the onjetured density of the

ISE, given in Conjeture 15.

In all three ases, the onvergene of the moments holds as well.
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Appendix: onvergene of random distribution funtions

We want to prove the result stated without proof at the beginning of the proof of Setion 5.4.

Reall that a sequene of real random variables Zn onverges in law to another random

variable Z if and only if for all x ∈ R suh that P(Z = x) = 0,

lim
n

P(Zn ≤ x) = P(Z ≤ x).

This implies the so-alled portmanteau inequality: for all x ∈ R,

P(Z < x) ≤ lim inf P(Zn ≤ x) ≤ lim supP(Zn ≤ x) ≤ P(Z ≤ x). (58)

Let us now use the notation of Setion 5.4. The onvergene of µn to µ implies that for

any bounded Lipshitz funtion f on R [27, p. 71�74℄:

∫

R

f(x)dµn(x)
d→
∫

R

f(x)dµ(x).

Let λ ∈ R and let fλ,ǫ and gλ,ǫ be the funtions plotted in Figure 9. Then

∫

R

gλ,ǫ(y)dµn(y) ≤ Fn(λ) = µn(−∞, λ] ≤
∫

R

fλ,ǫ(y)dµn(y).

Hene, for all x ∈ R,

P

(∫

R

fλ,ǫ(y)dµn(y) ≤ x

)

≤ P(Fn(λ) ≤ x) ≤ P

(∫

R

gλ,ǫ(y)dµn(y) ≤ x

)

.
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Sine µn onverges to µ, and gλ,ǫ is a bounded Lipshitz funtion,

∫

R

gλ,ǫ(y)dµn(y)
d→
∫

R

gλ,ǫ(y)dµ(y).

A similar result holds for the integral involving fλ,ǫ. Thus (58) implies

P

(∫

R

fλ,ǫ(y)dµ(y) < x

)

≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P

(∫

R

gλ,ǫ(y)dµ(y) ≤ x

)

.

The integral ourring in the rightmost expression of this inequality is bounded from below

by µ(−∞, λ − ǫ], while the integral involving fλ,ǫ is bounded from above by µ(−∞, λ + ǫ].
Hene

P(µ(−∞, λ+ ǫ] < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P(µ(−∞, λ− ǫ] ≤ x).

Taking the limit ǫ → 0+ gives:

P(µ(−∞, λ] < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P(µ(−∞, λ) ≤ x).

If, in addition, the measure µ does not assign a positive probability to λ, the rightmost

expression in the above inequality equals P(µ(−∞, λ] ≤ x). The inequality beomes

P(F (λ) < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P(F (λ) ≤ x),

so that for all x suh that P(F (λ) = x) = 0,

limP(Fn(λ) ≤ x) = P(F (λ) ≤ x).

That is, Fn(λ) onverges in law to F (λ).

CNRS, LaBRI, Université Bordeaux 1, 351 ours de la Libération, 33405 Talene Cedex,
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