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Asymptotically optimal bound on the adjacent vertex

distinguishing edge choice number

Jakub Kwaśny2, Jakub Przyby lo1,2

AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

An adjacent vertex distinguishing edge colouring of a graph G without isolated edges is
its proper edge colouring such that no pair of adjacent vertices meets the same set of
colours in G. We show that such colouring can be chosen from any set of lists associated
to the edges of G as long as the size of every list is at least ∆ + C∆

1
2 (log ∆)4, where ∆

is the maximum degree of G and C is a constant. The proof is probabilistic. The same
is true in the environment of total colourings.

Keywords: adjacent vertex distinguishing edge colouring, adjacent vertex
distinguishing edge choice number, list neighbour set distinguishing index, adjacent
vertex distinguishing total colouring

1. Introduction

Let G = (V,E) be a (simple) graph. Consider an edge colouring c : E → C where
C is a set of colours. For a given vertex v ∈ V , by E(v) we denote the set of all edges
incident with v in G, and we set

Sc(v) = {c(e) : e ∈ E(v)}. (1)

We shall also write S(v) instead of Sc(v) provided this causes no ambiguities, and we shall
call such set a palette of v or simply refer to it as a set of colours incident with v. The
colouring c is called adjacent vertex distinguishing if it is proper and S(u) 6= S(v) for every
edge uv ∈ E. It exists if only G contains no isolated edges. The least number of colours
in C necessary to provide such a colouring is denoted by χ′

a(G) and called the adjacent
vertex distinguishing edge chromatic number of G, see [17], and [3, 5, 14, 37] for alternative
notations used. It was conjectured [37] that χ′

a(G) ≤ ∆(G)+2 for every connected graph
G of order at least three different from the cycle C5. This was, e.g., positively verified by
Balister et al. [5] for bipartite graphs and for graphs of maximum degree 3, while Greenhill
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and Ruciński proved it asymptotically almost surely for random 4-regular graphs, see [16],
and [7, 8, 18, 19, 20, 27, 35] for results concerning other particular graph classes. In
general it is known that χ′

a(G) ≤ 3∆(G), [3], and χ′
a(G) ≤ ∆(G) + O(logχ(G)), [5], for

every graph G with no isolated edges. Finally, Hatami [17] proved the postulated upper
bound up to an additive constant by showing that χ′

a(G) ≤ ∆ + 300 for every graph G
with no isolated edges and with maximum degree ∆ > 1020.

Suppose now that every edge e ∈ E is endowed with a list of available colours Le.
Analogously as in the case of the classical choosability of graphs, introduced for vertex
colourings by Vizing [34] and independently by Erdős, Rubin and Taylor [12], we define
the adjacent vertex distinguishing edge choice number of a graph G (without isolated
edges) as the least k so that for every set of lists of size k associated to the edges of
G we are able to choose colours from the respective lists to obtain an adjacent vertex
distinguishing edge colouring of G. We denote it by ch′

a(G). This was already investigated
under different notations e.g. in [21] (for a few simple graph classes) and in [32, 33], where
it was proved that ch′

a(G) ≤ 2∆(G)+col(G)−1 and ch′
a(G) ≤ ∆(G)+3col(G)−4 (where

col(G) denotes the colouring number of G, hence col(G) ≤ ∆(G) + 1) for every graph G
without isolated edges. The latter of these results implies an upper bound of the form
ch′

a(G) ≤ ∆(G)+K with a constant K for many classes of graph, e.g. for planar graphs.
In fact in [21] it was boldly conjectured that we always have ch′

a(G) = χ′
a(G). This refers

to the well known List Colouring Conjecture, posed independently by several researchers
(see [23], Section 12.20), that we always have ch′(G) = χ′(G) where ch′(G) denotes the
edge choosability (or equivalently the list chromatic index or the edge choice number)
of G. If proved, the List Colouring Conjecture combined with Vizing’s Theorem would
imply that ch′(G) ≤ ∆(G) + 1. So far the best result concerning such supposed upper
bound is due to Molloy and Reed [30]. It implies that for every graph G with maximum

degree ∆, ch′(G) = ∆ + O(∆
1
2 (log ∆)4) where by ‘log’ we mean the natural logarithm

in this paper. Note that by definition, ch′
a(G) ≥ ch′(G). We shall prove that an upper

bound of the same form as the one in [30] above is valid also in the case of ch′
a(G), see

Theorem 1 below.
Distinguishing by colour palettes was also considered for general, not necessarily

proper edge colourings. In such a setting we strive at distinguish adjacent vertices by
their respective multisets of incident colours. It is believed that three colours are always
sufficient for this goal for any graph without isolated edges, while the best result thus
far is four, see [1]. This problem is deeply related and was first considered in context of
the so-called 1–2–3 Conjecture, where we use integer colours and search for a minimum
k so that a (not necessarily proper) edge colouring c : E → {1, 2, . . . , k} exists such
that adjacent vertices in a graph meet distinct sums of their incident colours, see [26]
for details. It was conjectured there that integers 1, 2 and 3 are sufficient for any graph
without isolated edges for this aim. Thus far it is known that the labels 1, 2, 3, 4, 5 always
suffice, see [25] (while the mentioned result for multisets implies that the same can be
achieved using a set of four real labels – it is sufficient to choose these to be independent
over the field of rational numbers). Surprisingly, no constant upper bound is known
in a natural list correspondent of this concept, though it is believed that lists (of real
numbers) of cardinality three should always suffice, see [6]. This is on the other hand
known to hold for a total analogue of such a choosability problem, see [36] for details.

The common source of all these problems is the graph invariant called the irregularity
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strength of a graph G, i.e. the least k so that a colouring c : E → {1, 2, . . . , k} exists
attributing every vertex of G a distinct sum of its incident colours, or equivalently the
least k such that we are able to multiply some of the edges of a given graph G – each at
most k times in order to construct of G an irregular multigraph, i.e. a multigraph with
pairwise distinct vertex degrees, see e.g. [2, 10, 11, 13, 15, 24, 28, 31]. This concept was
motivated and stemmed from the fact that there are no irregular graphs at all, except the
trivial one–vertex case and the related research of Chartrand, Erdős and Oellermann [9]
on possible alternative definitions of irregularity in graphs.

2. Preliminaries

Our main result is the following.

Theorem 1. There is a constant C such that

ch′
a(G) ≤ ∆ + C∆

1
2 (log ∆)4

for every graph G with maximum degree ∆ and without isolated edges.

To prove this we shall apply several times probabilistic approach. As a starting point
of our construction of a desired colouring of a given graph we shall however need the
following result of Molloy and Reed concerning the more general setting of hypergraphs.
There the maximum codegree of a hypergraph denotes the greatest number of its edges
containing the same pair of vertices.

Theorem 2 ([30]). For all k, there is a constant Ck (depending on k) such that any
k–uniform hypergraph of maximum degree ∆ and maximum codegree B has list chromatic

index at most ∆ + CkB
1
k ∆1− 1

k

(

log ∆
B

)4
.

Note that this theorem implies the mentioned above best known (in terms of ∆) upper
bound for the lengths of lists associated to the edges of a given graph G from which one
may always properly edge colour the graph, i.e. ∆ + O(∆

1
2 (log ∆)4). We wish to show

the same size of lists (up to the multiplicative constant at the second order term) is also
sufficient to additionally distinguish adjacent vertices with their corresponding colour
palettes.

We shall use Theorem 2 above with k = 2 and B ≤ 2, hence for the case of multigraphs
(or graphs) with edge multiplicity at most two3. This shall be useful, as our Theorem 1 is
in fact directly implied by the following one, which we shall prove below, first discussing
the mentioned implication in Section 3. (The parameter ch′

a(G) for a multigraph G is
defined the same way as for a graph, by means of (1), where E(v) denotes the set of all
edges incident with v – counting in all edges joining v with the same neighbour).

Theorem 3. There is a constant C0 and ∆0 such that

ch′
a(G) ≤ ∆ + C0∆

1
2 (log ∆)4

for every multigraph G with edge multiplicity at most 2, maximum degree ∆ ≥ ∆0 and
minimum degree δ ≥ ∆

4 .

3Though in [30] the family of edges of a hypergraph was defined as a set (not multiset), i.e. excluding
existence of two copies of the same edge, it can be verified that the thesis of Theorem 2 holds by the
same argument if we admit multiple hyperedges.
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In our approach, similarly as in [17] we start from any proper edge colouring, and then
recolour in a few steps some part of the edges, but in a different way than in that paper
(not to mention that we must choose colours from specified and potentially diversified
lists). We shall proceed in four stages as follows:

(I) We first reserve some portion of colours in each given edge list for a later use. At
the same time we remove some additional colours from each of these so that for
any partial colouring c from the leftovers of the lists (still including great majority
of all original colours) and any its supplementation c′ from the respective sets of
reserved colours, there can be no colour conflict between adjacent edges coloured
under c and c′.

(II) We then fix by Theorem 2 any proper colouring from the leftovers of the lists
and randomly uncolour some small portion of the edges, however large enough so
that afterwards adjacent vertices are not only distinguished, but the symmetric
difference of their partial colour palettes is relatively large.

(III) Next, we use the naive colouring procedure on the uncoloured edges, randomly
choosing colours from their respective reserved lists and uncolouring adjacent edges
coloured the same. We guarantee that afterwards the symmetric differences be-
tween adjacent partial colour palettes are large compared to vertex degrees in the
uncoloured subgraph.

(IV) At the end, any greedy choice of the reserved colours for still uncoloured edges
satisfies our target requirement, as long as we choose them so that the obtained
edge colouring is proper.

In order to control our random process we shall use a few tools of the probabilistic
method, the Lovász Local Lemma, see e.g. [4], the Chernoff Bound, see e.g. [22] (Th.
2.1, page 26) and Talagrand’s Inequality, see e.g. [29]:

Theorem 4 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary pro-
bability space. Suppose that each event Ai is mutually independent of a set of all the
other events Aj but at most D, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(D + 1) ≤ 1,

then Pr
(
⋂n

i=1 Ai

)

> 0.

Theorem 5 (Chernoff Bound). For any 0 ≤ t ≤ np,

Pr(BIN(n, p) > np + t) < e−
t2

3np and Pr(BIN(n, p) < np− t) < e−
t2

2np ≤ e−
t2

3np

where BIN(n, p) is the sum of n independent Bernoulli variables, each equal to 1 with
probability p and 0 otherwise.

Theorem 6 (Talagrand’s Inequality). Let X be a non-negative random variable de-
termined by l independent trials T1, . . . , Tl. Suppose there exist constants c, k > 0 such
that for every set of possible outcomes of the trials, we have:

1. changing the outcome of any one trial can affect X by at most c, and
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2. for each s > 0, if X ≥ s then there is a set of at most ks trials whose outcomes
certify that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X −E(X)| > t + 20c
√

kE(X) + 64c2k) ≤ 4e
− t2

8c2k(E(X)+t) . (2)

3. Colouring multigraphs yields graph colourings

Suppose Theorem 3 holds, and let C0 and ∆0 be the constants from it. Set C :=
max{C0, 3∆0, 10}. Let G = (V,E) be a graph without isolated edges and let {Le}e∈E

be a set of lists of lengths ∆ + ⌊C∆
1
2 (log ∆)4⌋, where ∆ is the maximum degree of G

(∆ ≥ 2). We show there exists an adjacent vertex distinguishing edge colouring of G
from these lists. If ∆ < ∆0, we colour the graph greedily component by component.
More precisely, for every consecutive edge uv of a component we choose a colour from
Luv distinct from all the colours already assigned to its at most 2(∆− 1) adjacent edges
such that the resulting partial palette at u (i.e. the set of all colours already assigned
to incident edges of u) is distinct from the (partial) palettes of all its neighbours except
possibly v and so that the palette of v is distinct from the palettes of its neighbours
except possibly u. This is feasible, as |Luv| > 4(∆− 1). As G has no components of size
1, at the end we obtain an adjacent vertex distinguishing edge colouring of G.

So assume that ∆ ≥ ∆0. For every vertex u of G with d(u) < ∆/4 which has exactly
one neighbour v with d(v) < ∆/4 we contract the edge uv (keeping the possible multiple
edges). The resulting multigraph G′ has maximum degree ∆ and edge multiplicity at
most 2. In the remaining part of the paper we shall abbreviate the term ‘multigraph’
and usually write ‘graph’ instead. If the minimum degree of G′ is less than ∆/4 we take
two copies of G′ and add an edge between every vertex of degree less than ∆/4 in the
first copy and its analogue in the second copy. We repeat such procedure (taking again
two copies of the resulting graph) if necessary until we obtain a graph G′′ with minimum

degree δ ≥ ∆/4. We associate any list of colours of lengths ∆ + ⌊C∆
1
2 (log ∆)4⌋ to edges

without such lists assigned yet. By Theorem 3 there is an adjacent vertex distinguishing
edge colouring of G′′ from the given lists. This restricted to the edges of G′ yields its
proper edge colouring c from the original lists under which every vertex of degree at least
∆/4 is set distinguished (has a distinct palette) from all its neighbours. This remains
valid also in G if we uncontract the previously contracted edges and uncolour all edges
of G with both ends in the set S = {v ∈ V : d(v) < ∆/4}. Let H = (S,E′) be the graph
induced by the set E′ of all the uncoloured edges in G. Note that the only components
of H with size 1 are formed by the previously contracted edges uv, and thus such u
and v are (and shall remain) set distinguished in G as their partial palettes are at this
point disjoint. Therefore we may analogously as above greedily choose new colours for
the edges of H from their respective lists so that afterwards also all vertices in S are set
distinguished from their neighbours in G. (Note in particular that as we only need to
distinguish neighbours of the same degree in G, any vertex from S forming a 1-vertex
component of H is trivially set distinguished from all its neighbours in G.)
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4. Proof of Theorem 3

We do not specify ∆0. We simply assume throughout the proof that it is a large
enough constant that all explicit inequalities below hold; in particular ∆0 ≥ 9. Let
C′ = C2

√
2 where C2 is a constant from Theorem 2 (exploited further with k = 2

and B = 2) and set C0 = C′ + 4. Let G = (V,E) be a (multi)graph of codegree at
most 2 with maximum degree ∆ ≥ ∆0 and minimum degree δ ≥ ∆/4 (hence without a
component of order less than 3) endowed with a set {Le}e∈E of lists, each of cardinality

∆ + ⌊C0∆
1
2 (log ∆)4⌋. Further on it shall be convenient for us to denote a given edge e.g.

by uv, bearing in mind that there might be two different edges joining u and v in G.

4.1. Step I: Reserving colours

For each v ∈ V we choose a set Rv ⊂ ⋃

e∈E(v) Le independently placing in it every

colour from
⋃

e∈E(v) Le with probability p1 = (log∆)4

∆
1
2

. For every edge uv ∈ E we then

define the list of reserved colours as Ruv = Ru ∩ Rv ∩ Luv and the leftover list as
L′
uv = Luv r (Ru ∪Rv).

Claim 7. The sets Rw, w ∈ V can be chosen so that for every e ∈ E:

(i) |Re| ≥ 1
2 (log ∆)8;

(ii) |L′
e| ≥ ∆ + C′∆

1
2 (log ∆)4.

Proof. For each edge uv ∈ E, the random variable Xuv = |Ru ∩Rv ∩ Luv| is a sum of

∆ + ⌊C0∆
1
2 (log ∆)4⌋ independent 0–1 random variables (corresponding to the elements

of Luv) with probability of picking 1 equal to p21. By the Chernoff Bound we thus obtain
that:

Pr

(

Xuv <
1

2
(log ∆)8

)

≤ Pr

(

Xuv <
1

2
(log ∆)8 + 1

)

< e−
(log ∆)8

5 ≤ 1

∆2
(3)

(for ∆ sufficiently large).
Now for any edge uv ∈ E we denote a random variable Yuv = |(Ru ∪Rv) ∩ Luv|. As

above, it can be regarded as a sum of ∆ + ⌊C0∆
1
2 (log ∆)4⌋ independent Bernoulli trials

with the probability of success equal to (2p1 − p21). As thus E(Yuv) = 2∆
1
2 (log ∆)4 +

Θ((log ∆)8), again by the Chernoff Bound we obtain:

Pr
(

Yuv > 4∆
1
2 (log ∆)4 − 1

)

< e−
∆

1
2 (log ∆)4

2 ≤ 1

∆2
. (4)

Consider all events of the form Xe < 1
2 (log ∆)8 and Ye > 4∆

1
2 (log ∆)4 − 1 with

e ∈ E. Note that any of these is mutually independent of all such events but the ones
associated with edges f such that e ∩ f 6= ∅, i.e. all other events but at most 4∆. Since
e 1
∆2 (4∆ + 1) ≤ 1, by (3), (4) and the Lovász Local Lemma, with positive probability

none of these events occurs. The thesis follows by our choice of C0. �
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4.2. Step II: Uncolouring edges

Let Re and L′
e, e ∈ E be sets complying with Claim 7. By the choice of C′ and

Theorem 2 there exists a proper edge colouring of G from the lists L′
e, e ∈ E. We fix

any such colouring and then randomly and independently uncolour each edge of G with

probability p2 = (log∆)2

∆ . For every v ∈ V , let Uv be the set of uncoloured edges incident
with v in G. By Sv in turn we denote the obtained partial palette of v, i.e. the set
of colours of the edges in E(v) r Uv. Let S1△S2 := (S1 ∪ S2) r (S1 ∩ S2) denote the
symmetric difference of any sets S1, S2.

Claim 8. We can uncolour the edges of G so that:

(iii) 1
8 (log ∆)2 ≤ |Uv| ≤ 3

2 (log ∆)2 for every v ∈ V ;

(iv) |Su△Sv| ≥ 1
16 (log ∆)2 for every uv ∈ E with d(u) = d(v).

Proof. For each v, the random variable |Uv| is a sum of at least ∆
4 and at most ∆

independent binary random variables equal to 1 with probability p2 = (log∆)2

∆ , therefore
1
4 (log ∆)2 ≤ E(|Uv|) ≤ (log ∆)2. The Chernoff Bound thus yields:

Pr

(

|Uv| <
1

8
(log ∆)2

)

+ Pr

(

|Uv| >
3

2
(log ∆)2

)

< e−
(log ∆)2

32 + e−
(log ∆)2

48 ≤ 1

∆3
. (5)

Let for every v ∈ V , Av denote the event that (iii) does not hold for v. By (5) above,
Pr(Av) < ∆−3.

Now we shall temporarily need an orientation of the edges. Fix any ordering v1, . . . , vl
of V and orient every edge from its end with lower index to the end with higher index. For
every edge uv ∈ E with d(u) = d(v) and oriented, without loss of generality, from u to v
we denote by B−→uv the event that (iv) does not hold for uv. Since we uncolour the edges
independently, while estimating the probability of a given event B−→uv we may assume that
the uncolourings are being committed in any order convenient for our analysis. We shall
in fact bound the following probability:

Pr(B−→uv ∧ Av) ≤ Pr

(

|Su△Sv| <
1

16
(log ∆)2

∣

∣

∣

∣

1

8
(log ∆)2 ≤ |Uv| ≤

3

2
(log ∆)2

)

. (6)

The analysis of the latter of these is easier to follow if one assumes the edges incident with
v have been (randomly) uncoloured first, and only just then we draw the edges incident
with u (except one or two uv) to be uncoloured. (The same can be formalized by means
of the law of total probability.) By the conditional assumption, |Uv| ≥ 1

8 (log ∆)2, and
thus, just before uncolouring the remaining (except at most two uv) edges incident with
u, there are at least 1

8 (log ∆)2 − 2 colours associated to the edges incident with u (other
than uv) that do not appear on the edges incident with v. Denote the set of these colours
by R and set r = |R|, hence r ≥ 1

8 (log ∆)2 − 2. In order to have |Su△Sv| < 1
16 (log ∆)2

satisfied, we thus need to uncolour at least
⌈

r − 1
16 (log ∆)2

⌉

out of r edges coloured with
the elements of R. Therefore, by (6),

Pr(B−→uv ∧ Av) ≤ max
r≥ 1

8 (log∆)2−2

(

r
⌈

r − 1
16 (log ∆)2

⌉

)

p
⌈r− 1

16 (log∆)2⌉
2 . (7)
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Set A =
⌊

1
16 (log ∆)2

⌋

. In order to upper-bound the above it is thus sufficient to maximize

a function f(r) =
(

r
r−A

)

pr−A
2 for integers r ≥ 2A− 2, for which we have:

f(r + 1)

f(r)
=

(r + 1)!A!(r −A)!pr+1−A
2

r!A!(r + 1 −A)!pr−A
2

=
(r + 1)p2

(r + 1 −A)
< 1

(for ∆ sufficiently large). Therefore the function f(r) is decreasing for integers r ≥ 2A−2.
By (7) and the well-known fact that

(

2n
n

)

≤ 4n for n ≥ 1, we thus obtain that:

Pr(B−→uv ∧ Av) ≤
(

2A− 2

A− 2

)

pA−2
2 ≤

(

2(A− 3)

A− 3

)

pA−3
2 ≤ (4p2)A−3 <

1

∆3
. (8)

Now, every event Aw and (B−→uv ∧ Av) is mutually independent of all other such events
except those associated with a vertex (and possibly some other vertex in case of events
of the second type) at distance at most 1 from w or, resp. u or v, i.e., all except at
most 4∆2 other events. By (5) and (8) and the Local Lemma we thus conclude we may
uncolour some edges of G so that none of these events (hence also none of Aw and B−→uv)
holds – the thesis follows. �

4.3. Step III: Colouring with the reserved colours

Let U be a set of all uncoloured edges in G consistent with Claim 8 above. Indepen-
dently for every edge e ∈ U we now randomly and with equal probability choose a colour
from its list of reserved colours Re. After finishing this process we uncolour every edge
(in U) coloured the same as any of its adjacent edges (in U). Note that consequently, by
our choice of the lists of reserved colours, the obtained partial edge colouring of G shall
be proper. We denote by U ′ the set of uncoloured edges after this procedure. We also
denote by U ′

v the set of edges in U ′ incident with a vertex v, while S′
v shall denote the

partial colour palette of v at the end of this step.

Claim 9. It is possible to choose colours from the reserved lists so that:

(v) |U ′
v| ≤ 1

4 · 1
32 (log ∆)2 for every v ∈ V ;

(vi) |S′
u△S′

v| ≥ 1
32 (log ∆)2 for every uv ∈ E with d(u) = d(v).

Proof. For any given vertex v ∈ V , let A′
v denote the event that |U ′

v| > 1
128 (log ∆)2.

Note that as |Re| ≥ 1
2 (log ∆)8 for every edge e by Claim 7 (i), the probability that an

edge e ∈ Uv shall be uncoloured at this stage equals at most |Uv| ·2(log ∆)−8. Therefore,
since |Uv| ≤ 3

2 (log ∆)2 by Claim 8 (iii),

E(|U ′
v|) ≤ |Uv|2

2

(log ∆)8
≤ 9

2(log ∆)4
≤ 1

3
· 1

128
(log ∆)2.

In order to bound the probability of A′
v we shall use Talagrand’s Inequality. Note that

the random variable |U ′
v| is determined by at most ∆2 independent trials, i.e. the choices

of the reserved colours for the edges in Uv and their adjacent edges at this step. A change
of the result of any such trial may alter |U ′

v| by at most 2, while the fact that |U ′
v| ≥ s can

be certified by the outcomes of at most 2s trials (each corresponding to one uncoloured

8



edge incident with v or an adjacent edge of such an edge with the same colour assigned).
By Theorem 6 we thus obtain:

Pr(A′
v) ≤ Pr

(

|U ′
v| >

1

3
· 1

128
(log ∆)2 +

1

3
· 1

128
(log ∆)2 + 40

√

2 · 1

3
· 1

128
(log ∆)2 + 512

)

≤ Pr

(

|U ′
v| > E(|U ′

v|) +
1

3
· 1

128
(log ∆)2 + 20 · 2

√

2E(|U ′
v|) + 64 · 22 · 2

)

≤ 4e
−

( 1
3
· 1
128

(log ∆)2)2

64(E(|U′
v |)+ 1

3
· 1
128

(log ∆)2) ≤ 4e
−

( 1
3
· 1
128

(log ∆)2)2

64(2· 1
3
· 1
128

(log ∆)2) <
1

∆5
. (9)

For any edge uv ∈ E with d(u) = d(v), let B′
uv denote the event that |S′

u△S′
v| <

1
32 (log ∆)2. By Claim 8 (iv), |Su△Sv| ≥ 1

16 (log ∆)2. We fix any subset Suv ⊆ (Su△Sv)
with |Suv| = ⌊ 1

16 (log ∆)2⌋. Note that B′
uv implies that at least ⌊ 1

32 (log ∆)2⌋ colours from
Suv have been assigned to edges in Uu ∪ Uv at this step (despite the fact that some of
these could also be uncoloured later). The necessary condition for this is that all edges
of some subset of ⌊ 1

32 (log ∆)2⌋ elements of Uu ∪Uv have been assigned colours from Suv.
As by Claim 8 (iii), |Uu ∪ Uv| ≤ 3(log ∆)2 while by Claim 7 (i), |Re| ≥ 1

2 (log ∆)8 for
every edge e, we obtain that:

Pr (B′
uv) ≤

(

⌊

3(log ∆)2
⌋

⌊

1
32 (log ∆)2

⌋

)( 1
16 (log ∆)2

1
2 (log ∆)8

)⌊ 1
32 (log ∆)2⌋

≤
(

3(log ∆)2
)⌊ 1

32 (log∆)2⌋ ·
(

1

8(log ∆)6

)⌊ 1
32 (log∆)2⌋

=

(

3

8(log ∆)4

)⌊ 1
32 (log∆)2⌋

<
1

∆5
. (10)

Analogously as previously, every event A′
w and B′

uv is mutually independent of all
other events except those associated with a vertex (and possibly some other vertex in
case of events of the second type) at distance at most 3 from w or, resp. u or v, i.e., all
except at most 4∆4 other events. By (9) and (10) and the Local Lemma we thus obtain
the thesis. �

4.4. Step IV: Colouring the remaining edges

Fix any (partial) edge colouring of G consistent with the thesis of Claim 9. Now we
may colour the remaining edges greedily. To do this we analyze one after another each
edge e = uv in U ′ and colour it with any colour from Re which is not used by some of
its adjacent edges. This is feasible, as by our construction and the choice of the lists of
reserved colours, a colour from Re cannot be assigned to any edge in (E(u) ∪ E(v)) r
(Uu ∪Uv), while |Uu∪Uv| ≤ 3(log ∆)2 by Claim 8 (iii), and |Re| ≥ 1

2 (log ∆)8 by Claim 7
(i). We thus obtain a proper edge colouring c of G from the given lists. As in this
final step for every edge uv ∈ E with d(u) = d(v) we have only assigned colours to its
adjacent edges in U ′

u ∪ U ′
v, the palettes of u and v remained distinct since by Claim 9

9



we had |S′
u△S′

v| ≥ 1
32 (log ∆)2 and |U ′

u ∪ U ′
v| ≤ 1

2 · 1
32 (log ∆)2, and consequently now

|Sc(u)△Sc(v)| ≥ 1
2 · 1

32 (log ∆)2. This finishes our construction, as the remaining adjacent
vertices (with distinct degrees) are set distinguished by definition. �

5. Concluding remarks

Note that we have in fact showed above the following stronger thesis than in Theo-
rem 3.

Theorem 10. There is a constant C0 and ∆0 such that for every multigraph G = (V,E)
with edge multiplicity at most 2, maximum degree ∆ ≥ ∆0 and minimum degree δ ≥ ∆

4 ,

and any set {Le}e∈E of lists of cardinalities ∆+⌊C0∆
1
2 (log ∆)4⌋, there exists a choice of

colours from these lists yielding a proper edge colouring c of G such that |Sc(u)△Sc(v)| ≥
1
2 · 1

32 (log ∆)2 for every edge uv ∈ E with d(u) = d(v).

This almost immediately implies the following total correspondent of Theorem 1 for
simple graphs, where the graph invariant ch′′

a(G) is defined the same as ch′
a(G) but

for total, not edge colourings c and with the palette of a vertex v defined as S′
c(v) :=

c(v) ∪ {c(e) : e ∈ E(v)}.

Corollary 11. There is a constant C′ such that

ch′′
a(G) ≤ ∆ + C′∆

1
2 (log ∆)4

for every graph G = (V,E) with maximum degree ∆.

Proof. Analogously as previously it is sufficient to show the thesis for graphs with
maximum degree ∆ large enough, e.g. for ∆ ≥ max{∆0, e

16} and with C′ = C0 + 1
where C0 and ∆0 are the constants from Theorem 10. Fix any set of lists {Lx}x∈V ∪E

of lengths ∆ + ⌊C′∆
1
2 (log ∆)4⌋. First we greedily choose an auxiliary proper vertex

colouring c of G from the given lists and for every edge uv ∈ E we remove c(u) and
c(v) from the list of uv. Denote the obtained set of edge lists by {L′

e}e∈E and note

that |L′
e| ≥ ∆ + ⌊C0∆

1
2 (log ∆)4⌋. Then as long as the minimum degree is less than ∆/4

we iteratively take two copies of a currently analyzed graph and add edges between the
corresponding vertices of degree less than ∆/4, until finally we obtain a graph G′ with

minimum degree δ ≥ ∆/4. Fix any list L′
e with |L′

e| = ∆ + ⌊C0∆
1
2 (log ∆)4⌋ for every

edge e of G′ without a list assigned. By Theorem 10 there is a proper edge colouring
c′ of G′ from the lists L′

e such that |Sc′(u)△Sc′(v)| ≥ 1
2 · 1

32 (log ∆)2 ≥ 4 for every edge
uv with equal degrees of u and v. This restricted to the edges of the original graph
G retains this property for the adjacent vertices u, v in G with d(u) = d(v) ≥ ∆/4.
We then colour every vertex v with c(v) and next greedily change the colour of every
vertex v with d(v) < ∆/4 so that the obtained total colouring c′′ of G is proper and
there is no set conflict between any vertex v with d(v) < ∆/4 and its neighbours in
G. At the same time, by our construction, |S′

c′′(u)△S′
c′′(v)| ≥ 2 for every edge uv with

d(u) = d(v) ≥ ∆/4 in G. �
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