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CHROMATIC THRESHOLDS IN DENSE RANDOM GRAPHS

PETER ALLEN, JULIA BÖTTCHER, SIMON GRIFFITHS

YOSHIHARU KOHAYAKAWA AND ROBERT MORRIS

Abstract. The chromatic threshold δχ(H, p) of a graph H with respect to the random

graph G(n, p) is the infimum over d > 0 such that the following holds with high probability:

the family of H-free graphs G ⊆ G(n, p) with minimum degree δ(G) > dpn has bounded

chromatic number. The study of the parameter δχ(H) := δχ(H, 1) was initiated in 1973

by Erdős and Simonovits, and was recently determined for all graphs H . In this paper we

show that δχ(H, p) = δχ(H) for all fixed p ∈ (0, 1), but that typically δχ(H, p) 6= δχ(H) if

p = o(1). We also make significant progress towards determining δχ(H, p) for all graphs H in

the range p = n−o(1). In sparser random graphs the problem is somewhat more complicated,

and is studied in a separate paper.

1. Introduction

One of the most famous early applications of the probabilistic method is Erdős’ proof [13]

that there exist graphs with arbitrarily high girth and chromatic number. In 1973, Erdős

and Simonovits [15] asked whether such constructions are still possible under the additional

condition that the graph have high minimum degree. The chromatic threshold δχ(H) of a

graph H is defined to be the infimum over d > 0 such that there exists C = C(H, d) with the

following property: if G is an H-free graph on n vertices with minimum degree δ(G) > dn,

then χ(G) 6 C. For example, it is easy to see that δχ(H) = 0 for all bipartite H , and it was

proved by Thomassen [27, 28] that δχ(K3) = 1/3 and that δχ(C2k+1) = 0 for every k > 2.

Important breakthroughs in the study of chromatic thresholds of more general families of

graphs were obtained by Lyle [22] and  Luczak and Thomassé [21]. Following [21], we say

that a graph H is near-acyclic if χ(H) = 3 and H admits a partition into a forest F and

an independent set I such that every odd cycle of H meets I in at least two vertices. The

family of near-acyclic graphs was introduced by  Luczak and Thomassé [21], who conjectured

that they were exactly the 3-chromatic graphs with chromatic threshold zero. This was

proved in [3], where moreover the chromatic threshold of every graph H was determined: If

χ(H) = r > 3 then

δχ(H) ∈
{

r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}

,
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where the first possibility occurs exactly when it is possible to obtain a near-acyclic graph by

removing r−3 independent sets from H , the third when H has no forest in its decomposition

family1, and the second otherwise.

In recent years, beginning with [16, 19], there has been a great deal of interest in sparse

random analogues of results in extremal graph theory. For example, it can be proved2

using the general methods introduced in [6, 8, 25, 26] that if p ≫ n−2/(r+1) then, with high

probability, every Kr+1-free subgraph of G(n, p) with
(

1−1/r+o(1)
)

p
(

n
2

)

edges can be made

r-partite by removing o(pn2) edges. DeMarco and Kahn [11, 10] moreover proved that if

p ≫ n−2/(r+1)(log n)2/(r+1)(r−2) then with high probability the largest Kr+1-free subgraph of

G(n, p) is r-partite. For an excellent introduction to the area, see the recent survey [23].

In this paper we will study a sparse random analogue of the chromatic threshold. The

following definition was first made in [3].

Definition 1.1. Given a graph H and a function p = p(n) ∈ [0, 1], define

δχ
(

H, p
)

:= inf
{

d > 0 : there exists C > 0 such that the following holds

with high probability: every H-free spanning subgraph

G ⊆ G(n, p) with δ(G) > dpn satisfies χ(G) 6 C
}

.

We call δχ
(

H, p
)

the chromatic threshold of H with respect to p.

Note that δχ(H) = δχ(H, 1), so this definition generalises that of the chromatic threshold.

We emphasise that the constant C is allowed to depend on the graph H , the function p

and the number d, but not on the integer n. We also note that if, for some d, with high

probability there is no spanning H-free subgraph of G(n, p) whose average degree exceeds

dpn, then vacuously we have δχ(H, p) 6 d.

1.1. Our results. Our first theorem shows that if p ∈ (0, 1] is constant, then the chromatic

threshold does not depend on its value.

Theorem 1.2. For each constant p > 0 and graph H, we have δχ(H, p) = δχ(H).

For functions p = o(1), the situation is quite different. In this paper we will focus on the

‘dense’ regime, by which we mean the case in which p = n−o(1). In this regime, it is still

trivially true that δχ(H, p) = δχ(H) = 0 for all bipartite H . We are also able to determine

δχ(H, p) in the case χ(H) > 4, even for somewhat smaller values of p. Recall that the

2-density m2(H) is the maximum of e(F )−1
v(F )−2

over subgraphs F ⊆ H with at least 3 vertices.

Theorem 1.3. Let H be a graph with χ(H) > 4, and let p = p(n) be any function satisfying

max
{

n−1/m2(H), n−1/2
}

≪ p = o(1). Then

δχ(H, p) =
χ(H) − 2

χ(H) − 1
.

1Recall that the decomposition family of a graph H is the collection of bipartite graphs obtained from H

by removing χ(H) − 2 independent sets.
2See [24] for a proof of this theorem using the method of [26].

2



Recall that δχ(H) = χ(H)−2
χ(H)−1

if and only if there is no forest in the decomposition family of

H , so for all other graphs we have δχ(H, p) > δχ(H) whenever p → 0 sufficiently slowly. We

remark that the upper bound in Theorem 1.3 is an immediate consequence of a theorem of

Conlon and Gowers [8] and Schacht [26], while the lower bound is proved in [2].

Perhaps surprisingly, for graphs H with chromatic number χ(H) = 3 the situation is sig-

nificantly more complicated. In order to state our main theorem, which determines δχ(H, p)

for many (but not all) 3-chromatic graphs in the ‘dense’ range p = n−o(1), we will need the

following definitions (see Figure 1.1).

Definition 1.4. A graph H is a cloud-forest graph if there is an independent set I ⊆ V (H)

(the cloud) such that V (H) \ I induces a forest F , the only edges from I to F go to leaves

or isolated vertices of F , and no two adjacent leaves in F send edges to I.

Moreover, H is a thundercloud-forest graph if there is a cloud I ⊆ V (H), which witnesses

that H is a cloud-forest graph, such that every odd cycle in H uses at least two vertices of I.

PSfrag replacements

II

J

Figure 1. A cloud-forest graph (left), and a forbidden odd cycle for a

thundercloud-forest graph (dashed, right).

An alternative definition of ‘cloud-forest’, which is used in our proofs, is the following:

The vertex set can be partitioned into independent sets I and J , and a forest F ′, such that

there are no edges from V (F ′) to I and each vertex of J has at most one neighbour in V (F ′).

To obtain this partition from that of Definition 1.4, let J be the neighbours of vertices in I,

as shown in Figure 1.1, and let F ′ be obtained by removing J from F .

For example, K3 is not a cloud-forest graph, C5 is a cloud-forest but not a thundercloud-

forest graph, and C2k+1 is a thundercloud-forest graph for every k > 3. Note that every

cloud-forest graph has a forest in its decomposition family, and similarly every thundercloud-

forest graphs is near-acyclic, but in both cases the reverse inclusion does not hold (as K3

and C5 respectively demonstrate).

Our main theorem is the following partial characterisation of δχ(H, p) for 3-chromatic

graphs in the dense regime, i.e., for functions p = p(n) that satisfy p = o(1) and p = n−o(1).

Together with Theorem 1.3, it determines δχ(H, p) in this range for every H that is not a

thundercloud forest graph.
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Theorem 1.5. Let H be a graph with χ(H) = 3, and let p = p(n) be a function satisfying

p = o(1) and p = n−o(1). Then

δχ(H, p)















= 1
2

if H is not a cloud-forest graph.

= 1
3

if H is a cloud-forest graph but not a thundercloud-forest graph.

6 1
3

if H is a thundercloud-forest graph.

We consider this theorem (in particular, the upper bound δχ(H, p) 6 1/3 for cloud-forest

graphs) to be the main contribution of this paper. It is possible that δχ(H, p) = 1/3 for

every function max
{

n−1/m2(H), n−1/2
}

≪ p ≪ 1 whenever H is a cloud-forest graph but not

a thundercloud-forest graph, see [2, Question 6.3].

For thundercloud-forest graphs Theorem 1.5 only provides an upper bound on δχ(H, p),

which we do not believe to be sharp. We make the following conjecture, which would

complete the characterisation of δχ(H, p) in dense random graphs.

Conjecture 1.6. If H is a thundercloud-forest graph, and p = p(n) is a function satisfying

p = o(1) and p = n−o(1), then δχ(H, p) = 0.

In [2, Theorem 1.5], we prove Conjecture 1.6 for odd cycles, that is, we prove that

δχ(C2k+1, p) = 0 for every k > 3.

1.2. Sparser random graphs. In a companion paper [2] we study δχ(H, p) for sparser

random graphs, i.e., when p = p(n) tends to zero faster than n−ε for some ε > 0. For

example, in that paper we determine δχ(H, p) for almost all values of p whenever χ(H) > 5:

(1) δχ(H, p) =











δχ(H) if p > 0 is constant,
χ(H)−2
χ(H)−1

if n−1/m2(H) ≪ p ≪ 1,

1 if logn
n

≪ p ≪ n−1/m2(H).

Note that if p ≪ logn
n

then G(n, p) is likely to have an isolated vertex, so trivially δχ(H, p) = 0.

In the range p = Θ
(

n−1/m2(H)
)

we are not sure exactly what to expect, see [2, Problem 6.4].

As noted above, the situation is more complicated (and more interesting) for 3-chromatic

graphs. In [2] we are able to determine δχ(K3, p) and δχ(C5, p) for most functions p, and

δχ(C2k+1, p) if either p ≫ n−1/2 or logn
n

≪ p ≪ n−(2k−3)/(2k−2), for all k > 3. Perhaps most

interestingly, we show that δχ(C5, p) has (at least) four different non-trivial regimes:

δχ(C5, p) =



















0 if p > 0 is constant
1
3

if n−1/2 ≪ p ≪ 1
1
2

if n−3/4 ≪ p ≪ n−1/2

1 if logn
n

≪ p ≪ n−3/4.

We also show that (1) holds for a large class of 4-chromatic graphs (those with m2(H) > 2),

but we suspect (see [2, Conjecture 6.1]) that this is not the case for all 4-chromatic graphs.

All of the lower bound constructions in the range p = o(1) are given in [2], but in Section 3

we will briefly describe those that are used in the proofs of Theorems 1.3 and 1.5. As noted
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above, the main contribution of this paper is the proof (see Section 4) that δχ(H, p) 6 1/3

if H is a cloud-forest graph and p = p(n) satisfies p = o(1) and p = n−o(1).

1.3. An approximate version of δχ(H, p). In the definition of δχ(H, p), the H-free graph

G ⊆ G(n, p) is required to be C-partite (rather than ‘close-to-C-partite’), and in this sense

the theorems stated above have more in common with the theorem of DeMarco and Kahn [11,

10], stated earlier, than those of Conlon and Gowers [8] and Schacht [26] (see the discussion

before Definition 1.1). The following ‘approximate’ random graph version of δχ(H) was

recently proposed by Conlon, Gowers, Samotij and Schacht [9].

Definition 1.7. For each graph H and function p = p(n) ∈ (0, 1], define

δ∗χ
(

H, p
)

:= inf
{

d > 0 : there exists C > 0 such that, for all ε > 0, the following holds

with high probability: every H-free spanning subgraph G ⊆ G(n, p)

with δ(G) > dpn can be made C-colourable by removing εpn2 edges
}

.

Conlon, Gowers, Samotij and Schacht [9] used the so-called Kohayakawa- Luczak-Rödl

conjecture [19], which was recently proved in [6, 9, 25], to deduce the following theorem,

which determines δ∗χ(H, p) in terms of δ∗χ(H, 1) for all H and essentially all p.

Theorem 1.8 (Conlon, Gowers, Samotij and Schacht [9]). For every graph H,

δ∗χ(H, p) =

{

δ∗χ(H) if p ≫ n−1/m2(H)

1 if logn
n

≪ p ≪ n−1/m2(H),

where δ∗χ(H) := δ∗χ(H, 1).

It is somewhat surprising that δχ(H, p) and δ∗χ(H, p) have such different behaviour. Indeed,

the threshold for an exact statement (such as that of DeMarco and Kahn) ‘usually’ differs

from that for the asymptotic statement (such as that proved by Conlon-Gowers and Schacht)

by only a poly-logarithmic factor. By contrast, for most graphs H there are at least two

thresholds at which the value of δχ(H, p) changes, and in the case H = C5 there are (at least)

three such thresholds. It seems reasonable to believe that multiple thresholds also exist for

many other cloud-forest graphs.

Perhaps surprisingly, we do not have δ∗χ(H) = δχ(H) in general. However, we are able to

determine δ∗χ(H) in terms of δχ(H) for every graph H .

Theorem 1.9. For every graph H,

δ∗χ(H) = min
{

δχ(H ′) : there exists a homomorphism from H to H ′
}

.

For example if H is obtained from C5 by blowing up each vertex to a 2-vertex independent

set then we have δχ(H) = 1
2

but δ∗χ(H) = 0. On the other hand, for some graphs H , such as

K3, we have δ∗χ(H) = δχ(H).

Finally, let us note that is interesting to ask how many edges one really needs to delete

in order to obtain a graph with bounded chromatic number: perhaps one can replace εpn2

5



in the definition of δ∗χ(H, p) by some asymptotically smaller function of n and p? For the

specific case of K3, Allen, Böttcher, Kohayakawa and Roberts [5] have shown that εpn2 can

be replaced by any function f(n, p) ≫ n/p, but there exists c > 0 such that the function

cn/p does not suffice.

1.4. The structure of the paper. In Section 2 we state the extremal and probabilistic

tools we will use in the proofs of Theorems 1.2 and 1.5, together with the sparse random

Erdős-Stone Theorem, which implies some of the upper bounds for Theorems 1.2 and 1.5,

and the upper bound of Theorem 1.3. In Section 3 we describe the constructions that prove

the lower bounds in Theorems 1.2, 1.3 and 1.5, and in Section 4 we prove the upper bound

on δχ(H, p) for cloud-forest graphs, which is our main new result and which completes the

proof of Theorem 1.5. In Section 5 we show how to adapt the method of [3] in order to prove

that δχ(H, p) 6 δχ(H) for all fixed p > 0, and hence complete the proof of Theorem 1.2.

Finally, in Section 6, we give a brief sketch of the proof of Theorem 1.9.

2. Preliminaries

In this section we state the sparse random Erdős-Stone theorem, which implies some of

our claimed upper bounds, some basic probabilistic and graph-theoretic tools, and a sparse

version of Szemerédi’s Regularity Lemma.

2.1. The sparse random Erdős-Stone theorem. The following theorem was originally

conjectured by Kohayakawa,  Luczak and Rödl [19], and was recently proved by Conlon and

Gowers [8] (for strictly balanced graphs H) and Schacht [26] (in general), see also [6, 25].

Theorem 2.1. For every graph H, every γ > 0, and every p ≫ n−1/m2(H), the following

holds with high probability. For every H-free subgraph G ⊆ G(n, p), we have

e(G) 6

(

1 − 1

χ(H) − 1
+ γ

)

p

(

n

2

)

.

Theorem 2.1 has the following immediate corollary.

Corollary 2.2. For every graph H, and every p ≫ n−1/m2(H),

δχ(H, p) 6 1 − 1

χ(H) − 1
.

Proof. Let γ > 0, and suppose that G ⊆ G(n, p) is a spanning subgraph with δ(G) >
(

1 − 1
χ(H)−1

+ γ
)

pn. Since p ≫ n−1/m2(H), it follows from Theorem 2.1 that, with high

probability, H ⊆ G. Hence δχ(H, p) 6 1 − 1
χ(H)−1

, as claimed. �

2.2. Probabilistic and graph-theoretic tools. We will frequently use the following con-

centration bounds. Let Bin(n, p) denote the Binomial distribution, and let Hyp(n,m, s)

denote the hypergeometric distribution, corresponding to respectively the number of ele-

ments of [n] chosen if each is selected independently with probability p, and the number of

elements of [m] chosen if a set of s elements of [n] is selected uniformly at random. The
6



following relatively weak bounds on the large deviations of Bin(n, p) and Hyp(n,m, s), see

for example [18, Theorems 2.1 and 2.10], will suffice for our purposes.

Chernoff bound. Let n ∈ N and p ∈ [0, 1], and let X ∼ Bin(n, p). Then

P
(

|X − E[X ]| > t
)

6 e−Ω(t)

for every t = Ω
(

E[X ]
)

.

Hoeffding’s inequality. Let n ∈ N and m, s ∈ [n], and let Y ∼ Hyp(n,m, s). Then

P
(

|Y − E[Y ]| > t
)

6 e−Ω(t)

for every t = Ω
(

E[Y ]
)

.

We will also need the following supersaturation theorem of Erdős and Simonovits [12].

Theorem 2.3 (Erdős and Simonovits). For every s ∈ N there exists β > 0 such that the

following holds. Let G be a graph on n vertices, with e(G) = ̺n2 > β−1n2−1/s edges, where

̺ = ̺(n). Then G contains at least β̺s
2

n2s copies of Ks,s.

Finally, we will use the following straightforward and well-known fact.

Fact 2.4. Let F be a forest and G be a graph on n vertices. If e(G) > v(F )n, then F ⊆ G.

2.3. Sparse regularity in G(n, p). One of our key tools in this paper will be the so-called

‘sparse minimum degree form’ of Szemerédi’s Regularity Lemma. In order to state this result

we need a little notation.

Definition 2.5 ((ε, p)-regular pairs and partitions, the reduced graph). Given a graph G

and ε, d, p > 0, a pair of disjoint vertex sets (A,B) is said to be (ε, p)-regular if
∣

∣

∣

∣

e
(

G[A,B]
)

p|A||B| − e
(

G[X, Y ]
)

p|X||Y |

∣

∣

∣

∣

< ε

for every X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|. We say that the pair

(A,B) is (ε, d, p)-lower-regular if e
(

G[X, Y ]
)

> (d− ε)p|X||Y | for every X ⊆ A and Y ⊆ B

with |X| > ε|A| and |Y | > ε|B|. Finally, we say that (A,B) is (ε, d, p)-regular if it is both

(ε, p)-regular and (ε, d, p)-lower-regular.

A partition V (G) = V0 ∪ . . .∪ Vk is said to be (ε, p)-regular if |V0| 6 εn, |V1| = . . . = |Vk|,
and at most εk2 of the pairs (Vi, Vj) with 1 6 i < j 6 k are not (ε, p)-regular.

The (ε, d, p)-reduced graph of an (ε, p)-regular partition is the graph R with vertex set

V (R) = {1, . . . , k} and edge set

E(R) =
{

ij : (Vi, Vj) is an (ε, d, p)-regular pair
}

.

We will use the following form of the Regularity Lemma, see [7, Lemma 4.4] for a proof.

Note that although the statement there only guarantees lower-regularity of pairs in the

partition, the proof explicitly gives an (ε, p)-regular partition.
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Szemerédi’s Regularity Lemma (sparse minimum degree form). Let δ, d, ε > 0,

k0 ∈ N and p = p(n) ≫ (log n)4/n. There exists k1 = k1(δ, d, ε, k0) ∈ N such that the

following holds with high probability. If G ⊆ G(n, p) has minimum degree δ(G) > δpn, then

there is an (ε, p)-regular partition of G into k parts, where k0 6 k 6 k1, whose (ε, d, p)-

reduced graph R has minimum degree at least (δ − d− ε)k.

When p is constant, we will use an associated ‘Counting Lemma’ (see [20, Theorem 3.1],

for example) which says that if H ⊆ R then G contains a positive fraction of all copies of H .

Lemma 2.6 (Counting Lemma). Given p > 0 and d > 0, if ε > 0 is sufficiently small the

following holds for each r1 ∈ N when n ∈ N is sufficiently large. If G is a graph on n vertices

with (ε, d, p)-reduced graph R on r 6 r1 vertices, such that H ⊆ R, then G contains at least
1

2v(H)!
(dp)e(H)(n/r)v(H) copies of H.

When p = o(1), the proof of the Counting Lemma breaks down, since large subsets of

an (ε, d, p)-regular pair no longer necessarily have sufficiently strong regularity properties.

However, the following theorem shows that this desired ‘inheritance of regularity’ holds,

with high probability, for almost all neighbourhoods in G(n, p). This result follows with

some work from Gerke, Kohayakawa, Steger and Rödl [17], for the details see [4].

Theorem 2.7. For any ε′, d > 0 there exist ε0 = ε0(ε
′, d) > 0 and C = C(ε′, d) such that,

for any 0 < ε 6 ε0 and any function p = p(n), the following holds with high probability for

the graph Γ = G(n, p). For any disjoint sets of vertices X and Y with

min
{

|X|, |Y |
}

> C max

{

1

p2
,
log n

p

}

,

and any (ε, d, p)-lower-regular bipartite subgraph G ⊆ Γ[X, Y ], there are at most

C max

{

1

p2
,

log n

p

}

,

vertices w ∈ V (Γ) such that
(

NΓ(w) ∩X,NΓ(w) ∩ Y
)

is not (ε′, d, p)-lower-regular in G.

Finally, let us state a useful (and straightforward) fact about regular pairs, known as the

‘Slicing Lemma’.

Lemma 2.8 (Slicing Lemma). Let (U,W ) be an (ε, d, p)-regular (respectively, lower-regular)

pair and U ′ ⊆ U , W ′ ⊆ W satisfy |U ′| > α|U | and |W ′| > α|W |. Then (U ′,W ′) is

(ε/α, d, p)-regular (respectively, lower-regular). �

3. The lower bounds: constructions

The aim of this short section is to state or adapt constructions from [2, 3, 21] which imply

the lower bounds in Theorem 1.2, 1.3 and 1.5. We first state the lower bound construction

from [2] which, together with Corollary 2.2, proves Theorem 1.3.
8



Theorem 3.1 ([2, Theorem 3.5]). Let H be a graph with χ(H) > 4, and suppose p = p(n)

satisfies n−1/2 ≪ p ≪ 1. Then

δχ(H, p) > 1 − 1

χ(H) − 1
.

The next two constructions together give the lower bounds for Theorem 1.5.

Proposition 3.2 ([2, Proposition 4.2]). Let H be a graph with χ(H) = 3, and suppose that

n−1/2 ≪ p(n) = o(1). If H is not a cloud-forest graph, then

δχ(H, p) >
1

2
.

Proposition 3.3 ([2, Proposition 4.3]). Let H be a graph with χ(H) = 3, and suppose that

n−1/2 ≪ p(n) = o(1). If H is not a thundercloud-forest graph, then

δχ(H, p) >
1

3
.

All three of these constructions use the fact, proved in [2, Proposition 2.1], that if n−1/2 ≪
p = o(1), then G(n, p) contains (with high probability) a subgraph F with o(1/p) vertices,

and arbitrarily high chromatic number and girth. This is not easy to prove for polynomially

sparse random graphs: but it is worth noting that in the dense regime, when p = n−o(1),

we can use the fact that for each constant t, with high probability G(n, p) contains Kt, and

appeal to Erdős’ result [13] that there exist graphs with arbitrarily large girth and chromatic

number to obtain F much more easily.

The first two constructions take the subgraph F , and (with high probability) find a parti-

tion of the remaining vertices of G(n, p) into χ(H) − 1 roughly equal parts V1, . . . , Vχ(H)−1,

such that each vertex of F has about
(

1 − 1
χ(H)−1

)

pn neighbours in V1. For Theorem 3.1 we

can then let G consist of F , together with the edges from F to V1, and all edges between Vi

and Vj for i 6= j. It is easy to check that this G has minimum degree close to
(

1− 1
χ(H)−1

)

pn

and large chromatic number, while any v(H)-vertex subgraph of G intersects F in a forest,

so that we can colour the vertices in each part Vi with colour i and the forest in F with

colours 2 and 3. This gives a proper
(

χ(H) − 1
)

-colouring, so in particular H 6⊆ G.

For Proposition 3.2 we modify this construction slightly, removing edges so that no two

vertices of F have a common neighbour in V1 in G. One can easily verify that this extra

deletion does not significantly decrease the minimum degree of G, and again it is easy to

check that any v(H)-vertex subgraph of G is a cloud-forest graph (the cloud consists of the

vertices in V2).

Finally, the proof of Proposition 3.3 is similar, but more complicated. In addition to the

ideas above, it makes use of a construction of  Luczak and Thomassé [21], that was originally

used to show δχ(H) > 1
3

for graphs H that are not near-acyclic. For the details, and for

proofs of all three statements, we refer the reader to [2].

It remains to prove the lower bound in Theorem 1.2, which is an immediate consequence

of the following proposition.
9



Proposition 3.4. Fix a graph H and a constant p > 0. Then δχ(H, p) > δχ(H). That is,

for each C > 0 and γ > 0, with high probability G(n, p) contains a spanning H-free subgraph

with minimum degree at least
(

δχ(H) − γ
)

pn and chromatic number at least C.

Proposition 3.4 follows by adapting the constructions from [3], which themselves are minor

adaptations of constructions originally due to  Luczak and Thomassé [21]. We state only the

features of these constructions we require in order to prove Proposition 3.4, and refer the

reader to [3, 21] for further details. The following lemma was proved in [3] as Proposition 5,

Theorem 16 or Proposition 35, depending on the value of δχ(H).

Lemma 3.5. For every graph H and constants C, γ > 0, there exists K = K(H, γ, C) > 0

such that the following holds. For all sufficiently large n, there exists an H-free graph G on

n vertices with the following properties:

(a ) δ(G) >
(

δχ(H) − γ
)

n.

(b ) There exist disjoint sets X, Y ⊆ V (G), with |X| = K and |Y | = n/K, such that

χ
(

G[X ]
)

> C and e
(

G[X, Y ]
)

= e
(

G[Y ]
)

= 0.

Note that for the application in [3] the important points are the high minimum degree and

the subgraph G[X ] whose chromatic number is large. However for this paper we require in

addition the existence of the set Y . It is easy to check that each of the constructions in [3]

permits us to find such a set. For the constructions given there as Propositions 5 and 35, we

need to choose in the construction not just any ‘Erdős graph’, that is, a graph with chromatic

number at least C and girth at least v(H) + 1, but specifically one in which all but a fixed

number K of vertices are independent; this is possible since graphs with chromatic number

C and girth v(H) + 1 exist. We then let X be the K vertices which are not independent.

For the construction given as Theorem 16, we always obtain the desired sets, taking X to

be the vertex set of the Borsuk subgraph in that construction.

The next lemma allows us to find in G(n, p) a graph corresponding to that described in

Lemma 3.5.

Lemma 3.6. Let d, p, γ,K > 0, and let G be a graph on n vertices satisfying:

(a ) δ(G) > dn.

(b ) There exist disjoint sets X, Y ⊆ V (G), with |X| = K and |Y | = n/K, such that

e
(

G[X, Y ]
)

= e
(

G[Y ]
)

= 0.

Then, with high probability, G(n, p) contains as a spanning subgraph a subgraph of G with

minimum degree at least (d− γ)pn which includes all edges of G[X ].

Proof. We expose the edges of G(n, p) in two rounds. First, we expose all the edges among

the first K + n/K vertices. It is easy to see that, with high probability, we will find a

K-vertex clique in this set. Fix any injective map φ : V (G) → [n] which takes X to the

K-vertex clique and Y to the remaining n/K initial (i.e., already exposed) vertices.

We next expose the remaining edges, and claim that, with high probability, the intersection

of φ(G) and G(n, p) has minimum degree at least (d− γ)pn. Indeed, since δ(G) > dn and d,
10



p and γ are fixed, this follows easily by Chernoff’s inequality and the union bound. Thus,

by construction, we have found the desired subgraph of G. �

Proposition 3.4 now follows immediately.

Proof of Proposition 3.4. Given H , C, p and γ, let n be sufficiently large, and let K =

K(H, γ, C) > 0 and G be given by Lemma 3.5, so in particular G is H-free. Now, applying

Lemma 3.6 with d = δχ(H) − γ, it follows that, with high probability, G(n, p) contains a

spanning subgraph G′ ⊆ G with minimum degree at least
(

δχ(H) − 2γ
)

pn which includes

all edges of G[X ], so χ(G′) > C. Since γ > 0 was arbitrary, this proves the proposition. �

4. The upper bound for cloud-forest graphs

In this section we will prove the following proposition, which is our main new result.

Proposition 4.1. If H is a cloud-forest graph, and p = p(n) satisfies p = o(1) and p =

n−o(1), then

δχ(H, p) 6
1

3
.

This proposition, together with Corollary 2.2 and Propositions 3.2 and 3.3, proves Theo-

rem 1.5. We begin by giving an outline of the proof of Proposition 4.1.

Let us fix a cloud-forest graph H with s vertices, and a function p = p(n) such that

p = o(1) and p = n−o(1). Fix also a (small) constant γ > 0 and (with foresight) set d = γ/6.

We will use the following definitions.

Definition 4.2. We define the (d, p)-robust second neighbourhood N∗
2 (v) of a vertex v in

a graph G to be the set of vertices w of G such that v and w have at least dp2n common

neighbours in G. (Since d and p were fixed above, we suppress them from the notation.)

Given u, v ∈ V (G), let us say that a set Z of size s is (u, v)-completable if Z has at least

s common neighbours in each of N(u) and N(v).

Let G be an H-free spanning subgraph of G(n, p) with δ(G) >
(

1
3

+ 2γ
)

pn. Applying the

sparse minimum degree form of Szemerédi’s Regularity Lemma to G, we obtain a partition

V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, such that the (ε, d, p)-reduced graph R satisfies δ(R) >
(

1
3

+ γ
)

k.

For each i ∈ [k], we let Xi be the set of vertices v ∈ V (G) such that N∗
2 (v) covers at

least a
(

1
2

+ γ
)

-fraction of Vi, and set X0 := V (G) \
(

X1 ∪ · · · ∪ Xk

)

. We will show that

χ
(

G[Xi]
)

= O(1) for each 1 6 i 6 k, and that X0 = ∅.

We will bound the chromatic number of G[Xi] in three steps, as follows. First, we show

(see Claim 2, below) that for every pair u, v ∈ Xi, there are Ω(ns) sets Z ⊆ Vi of size s that

are (u, v)-completable. Second (see Claim 3), we show that if χ
(

G[Xi]
)

≫ 1, then there

exists a subgraph E ′ ⊆ G[Xi] with arbitrarily large minimum degree. Using the pigeonhole

principle, we can show that there exists a subgraph E ⊆ E ′ with large average degree and

an s-set Z ⊆ Vi such that Z is (u, v)-completable for each uv ∈ E. Third (see Claim 4),

a graph with large enough average degree contains all small forests, by Fact 2.4. Using the
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alternative definition of a cloud-forest graph, it follows that there exists a forest F ′ that is

contained in E and which we can extend to a copy of H .

In order to complete the proof, we will show that X0 = ∅, as follows. Suppose for a

contradiction that there exists a vertex u ∈ X0. Since the vertices of X0 spread out their

second neighbourhoods relatively evenly over the clusters of the regular partition, we will

be able to find (see Claim 5) a pair (Vi, Vj) of clusters which form an (ε, d, p)-regular pair

in G, and furthermore are such that there are at least 2dpn/3 vertices in N(u) with at least

dp|Vi|/3 neighbours in each of Vi and Vj . We will then (see Claim 6) use Theorem 2.7 to show

that for at least dpn/3 of those vertices v ∈ N(u), the density of
(

N(v)∩Vi, N(v)∩Vj

)

is at

least dp/2 (this is ‘inherited’ from the (ε, d, p)-regular pair (Vi, Vj)). Now, by Theorem 2.3,

any such bipartite graph contains many copies of Ks,s, which together with v gives us many

copies of K1,s,s. By an application of the pigeonhole principle we find a copy of Ks,s,s in G.

Since H ⊆ Ks,s,s, we thus obtain the desired contradiction.

In order to perform the first step (Claim 2) in the above sketch, we need the following

lemma. It implies that if (W1, Y ) and (W2, Y ) are two ‘sufficiently dense’ pairs in a subgraph

G ⊆ G(n, p), and p is not too small, then we can find ‘many’ copies of Ks,2s with the smaller

part in Y , and the other part split equally between W1 and W2.

Lemma 4.3. For every ε > 0 and s ∈ N, there exists α > 0 such that the following holds

for all sufficiently large n ∈ N. Let G be a graph on n vertices, and let p = n−o(1). Let

W1,W2, Y ⊆ V (G) be disjoint sets with |Y | > 2pn, with εpn 6 |Wi| 6 2pn, and with

|N(y) ∩Wi| > εp2n and
∣

∣

∣

⋂

v∈S

N(v) ∩Wi

∣

∣

∣
6 2ps+1n

for each i ∈ {1, 2}, y ∈ Y and S ⊆ Y of size s. Then there exist at least α|Y |s sets Z ⊆ Y

of size s such that
∣

∣

∣

⋂

v∈Z

N(v) ∩Wi

∣

∣

∣
> s

for each i ∈ {1, 2}.

Proof. Fix ε > 0 and s ∈ N, let β > 0 be the constant returned by Theorem 2.3, and set

α :=
β

2

(

ε

6s

)s(
ε2

32

)s2

.

Let us assume without loss of generality that |W1| > |W2|, and say that a copy of Ks,2s in

the bipartite graph with parts Y and W1 ∪W2 is balanced if it has s vertices in each of W1

and W2. Our aim is to show that at least α|Y |s sets Z ⊆ Y of size s extend to a balanced

copy of Ks,2s. We will do so in two steps: we will prove a lower bound on the total number

of balanced copies of Ks,2s, and an upper bound on the number rooted at a given s-set in

Y . By the pigeonhole principle, this will be enough to give the result.

To prove a lower bound on the number of balanced copies of Ks,2s, we will apply Theo-

rem 2.3 to the following random bipartite graph H. Let φ : W2 → W1 be a uniformly chosen
12



random injective map, and let Y ′ ⊆ Y be a uniformly chosen random subset of size 2pn. Let

H be the bipartite graph with parts Y ′ and W1, and edge set

E(H) =
{

yw ∈ G[Y ′,W1] : yφ−1(w) ∈ G[Y ′,W2]
}

.

(If φ−1(w) is not defined, we say the pair yφ−1(w) is not in G.) Note that each copy of Ks,s

in H corresponds to a balanced copy of Ks,2s.

We claim first that, with high probability,

(2) e(H) >
ε2p4n2

2
>

ε2p2

32
· v(H)2.

To prove this, let y ∈ Y ′, and recall that y has at least εp2n neighbours in each of W1 and

W2, and that |W2| 6 |W1| 6 2pn. Since φ is a random map, the degree dH(y) of y in H is

hypergeometrically distributed with mean at least (εp/2)·εp2n, and it follows (by Hoeffding’s

inequality, and the fact that p = n−o(1)) that

P

(

dH(y) 6
ε2p3n

4

)

≪ 1

n
.

By the union bound, and recalling that |Y ′| = 2pn, the claimed bound on e(H) follows.

Let K denote the number of copies of Ks,s in H. We claim that

(3) E[K] >
β

2

(

ε2p2

32

)s2

(2pn)2s.

To prove this, observe that if (2) holds then Theorem 2.3, applied with ̺ = ε2p2/32, implies

that K > β̺s
2

v(H)2s. Since (2) holds with probability greater than 1/2, and v(H) > |Y ′| =

2pn, the bound (3) follows immediately.

We will next show that the number of balanced copies of Ks,2s is at least

(4)

( |Y |
3pn

)s(
εpn

2s

)s

· E[K].

To see this, simply note that for a given balanced copy K of Ks,2s, the s-set is contained in

the randomly chosen Y ′ with probability
( |Y | − s

2pn− s

)( |Y |
2pn

)−1

6

(

2pn

|Y | − s

)s

6

(

3pn

|Y |

)s

.

If this event occurs, then K yields a copy of Ks,s in H with probability

s!
(

|W1|−s
|W2|−s

)(

|W2| − s
)

!
(

|W1|
|W2|

)

|W2|!
=

s!(|W1| − s)!

|W1|!
6

s!

(εpn− s)s
6

(

2s

εpn

)s

.

where the first inequality uses the condition |W1| > εpn of the lemma, and the second uses

the facts that p = n−o(1) and n is sufficiently large. Thus E[K] is at most the product of

these two probabilities, times the number of choices for K, as claimed in (4).

Finally observe that, since no s-set of vertices of Y has more than 2ps+1n neighbours in

either W1 or W2, each s-set of vertices of Y extends to at most (2ps+1n)2s balanced copies
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of Ks,2s. It follows from (3) and (4) that the number of s-sets in Y which extend to at least

one balanced copy of Ks,2s is at least

( |Y |
3pn

)s(
εpn

2s

)s

· β
2

(

ε2p2

32

)s2

(2pn)2s · (2ps+1n)−2s = α|Y |s ,

as required. �

Before proving Proposition 4.1, let us note several properties of Γ = G(n, p) that hold

with high probability if p = n−o(1). In the proof we will assume that all of these properties

hold:

(A1) For each |S| = O(1) we have
∣

∣

∣

⋂

u∈S

NΓ(u)
∣

∣

∣
=
(

1 + o(1)
)

p|S|n.

(A2) For each |U | = Ω(pn) there are at most p|U |2 edges in U , and there are at most logn
p2

vertices outside U with more than 2p|U | neighbours in U .

(A3) For any disjoint sets U and V of size Ω(pn) there are
(

1 + o(1)
)

p|U ||V | edges between

U and V .

In each case, the probability of failure can easily be shown to tend to zero using the Chernoff

bound.

Proof of Proposition 4.1. Let H be a cloud-forest graph with s vertices, and let γ > 0. We

claim that there exists C = C(H, γ) such that the following holds with high probability:

if G is a H-free spanning subgraph of G(n, p) with δ(G) >
(

1
3

+ 2γ
)

pn, then χ(G) 6 C.

Let k0 = 1/γ, let d = γ/6, and let ε′ > 0 be sufficiently small. Let ε0 < ε′ and C ′ be the

constants returned by Theorem 2.7 with inputs ε′ and d, and choose ε 6 ε0/4 sufficiently

small.

Suppose that Γ = G(n, p) satisfies assumptions (A1), (A2) and (A3), and the high proba-

bility events of Theorem 2.7 and of the sparse minimum degree form of Szemerédi’s Regularity

Lemma. Let G ⊆ Γ be an H-free graph with minimum degree
(

1
3

+ 2γ
)

pn. We will write

N(u) for the neighbourhood of u in G, and NΓ(u) for the neighbourhood in Γ.

We begin by applying the sparse minimum degree form of Szemerédi’s Regularity Lemma,

with input δ = 1
3

+ 2γ, d, ε and k0, to G. This gives us a partition of V (G) into parts

V0, V1, . . . , Vk, where k0 6 k 6 k1 and k1 = k1(δ, d, ε, k0) does not depend on n, and a

reduced graph R with

(5) δ(R) >

(

1

3
+ γ

)

k .

We now define sets X1, . . . , Xk by

(6) Xi :=

{

v ∈ V (G) :
∣

∣N∗
2 (v) ∩ Vi

∣

∣ >

(

1

2
+ d

)

|Vi|
}

and let X0 = V (G) \
(

X1 ∪ · · · ∪ Xk

)

. Let α′ > 0 be the constant returned by Lemma 4.3

with input ε > 0 and s, and set α = dsα′.
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Our first goal is to show that for each i we have χ
(

G[Xi]
)

= O(1). We break the proof

up into a series of claims, the first of which gives us the set W1 that we will use in our

application of Lemma 4.3.

Claim 1. For every u ∈ V (G), there exists W1 ⊆ N(u) of size d2pn/6 such that

(7) |N(w) ∩W1| > d3p2n/24

for every w ∈ N∗
2 (u), and

(8) |N(w) ∩W1| 6 2d2p2n

for every w ∈ V (G).

Proof of Claim 1. Choose a set W1 ⊆ N(u) of size d2pn/6 uniformly at random. By the

definition of N∗
2 (u), we have |N(u) ∩ N(w)| > dp2n for every w ∈ N∗

2 (u). Moreover, by

assumption (A1), and our bound on δ(G), we have pn/3 6 |N(u)| 6 2pn and |N(u)∩N(w)| 6
2p2n for every w ∈ V (G). It follows that |N(w) ∩W1| is a hypergeometrically distributed

random variable with expected value at least d3p2n/12 for every w ∈ N∗
2 (u), and at most

d2p2n for every w ∈ V (G).

Since p = n−o(1), Hoeffding’s inequality and the union bound tell us that with high prob-

ability |N(w) ∩ W1| satisfies (7) for every w ∈ N∗
2 (u), and (8) for every w ∈ V (G). Thus

there must exist some such set W1 ⊆ N(u), as claimed. �

We now show that for each i and pair u, v ∈ Xi, there are many sets in Vi which are

(u, v)-completable.

Claim 2. For every i ∈ [k], and every pair u, v ∈ Xi, there exist at least α|Vi|s subsets

Z ⊆ Vi of size s that are (u, v)-completable.

Proof of Claim 2. Let W1 ⊆ N(u) be given by Claim 1, and set

W2 = N(v) \W1 and Y = N∗
2 (u) ∩N∗

2 (v) ∩ Vi \
(

W1 ∪W2 ∪ {u, v}
)

.

We will use Lemma 4.3 to show that there exist at least α′|Y |s sets Z ⊆ Y of size s whose

common neighbourhoods intersect each of W1 and W2 in at least s vertices, and which are

therefore (u, v)-completable.

In order to apply Lemma 4.3, we need to check that W1, W2 and Y satisfy the various

conditions of the lemma. To do so, note first that

|W1| =
d2pn

6
and

(

1

3
− d2

6

)

pn 6 |W2| 6 |N(v)| 6 2pn

by Claim 1, our lower bound on δ(G), and assumption (A1). Thus we have εpn 6 |Wi| 6 2pn

for i ∈ {1, 2}, as required.

Next, to bound |Y |, note that since u, v ∈ Xi, by inclusion-exclusion and (6) we have

∣

∣N∗
2 (u) ∩N∗

2 (v) ∩ Vi

∣

∣ > 2

(

1

2
+ d

)

|Vi| − |Vi| = 2d|Vi| .

Since |W1| + |W2| + 2 6 4pn + 2 6 d|Vi| and p = o(1), we obtain |Y | > d|Vi| > 2pn.
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To bound |N(y) ∩ Wi|, we use Claim 1 and the fact that Y ⊆ N∗
2 (u) ∩ N∗

2 (v). Indeed,

by (7) we have |N(y) ∩ W1| > d3p2n/24 > εp2n for every y ∈ Y ⊆ N∗
2 (u), and by (8),

together with the fact W2 = N(v) \W1, we have

|N(y) ∩W2| > |N(y) ∩N(v)| − |N(y) ∩W1| > dp2n− 2d2p2n > εp2n

for every y ∈ Y ⊆ N∗
2 (v). Finally, since W1 ⊆ N(u), W2 ⊆ N(v) and u, v /∈ Y , it follows

from assumption (A1) that
∣

∣

∣

∣

⋂

w∈S

N(w) ∩Wi

∣

∣

∣

∣

6 2ps+1n

for i ∈ {1, 2} and every set S ⊆ Y of size s, as required.

Therefore, by Lemma 4.3, there exist at least α′|Y |s > α′(d|Vi|)s = α|Vi|s sets Z ⊆ Y ⊆ Vi

of size s that are (u, v)-completable, as claimed. �

We now show that if G[Xi] has large chromatic number then there is a single set Z ⊆ Vi

which is (u, v)-completable for many edges uv ∈ G[Xi].

Claim 3. For each i ∈ [k], if χ
(

G[Xi]
)

> 2s/α then there exists a set of edges E ⊆ G[Xi] of

average degree at least 2s, and an s-set Z ⊆ Vi which is (u, v)-completable for every uv ∈ E.

Proof of Claim 3. Since G[Xi] is not 2s/α-colourable, it is not
(

2s/α − 1
)

-degenerate, and

so contains a subgraph of minimum degree, and hence also average degree, at least 2s/α.

Let E ′ be the edges of such a subgraph, and note that, by Claim 2, for each edge uv ∈ E ′

there exist at least α|Vi|s sets Z ⊆ Vi of size s that are (u, v)-completable. Therefore, by the

pigeonhole principle, there exists a subset E ⊆ E ′ and a set Z ⊆ Vi of size s, such that Z is

(u, v)-completable for every uv ∈ E, and

|E| >
(

α|Vi|s
(

|Vi|
s

)

)

· |E ′| > α|E ′| .

Since E ′ has average degree at least 2s/α it follows that E has average degree at least 2s,

as claimed. �

We can now bound χ
(

G[Xi]
)

for each i ∈ [k].

Claim 4. χ
(

G[Xi]
)

6 2s/α for each 1 6 i 6 k.

Proof of Claim 4. Suppose that χ
(

G[Xi]
)

> 2s/α for some i ∈ [k], and let E ⊆ G[Xi] and

Z ⊆ Vi be given by Claim 3. Thus E has average degree at least 2s, and for each uv ∈ E the

set Z is (u, v)-completable. Letting W be the set of vertices in edges of E, it follows that

Z has at least s common neighbours in N(u) for every vertex u ∈ W . We will show that

H ⊆ G, which will contradict our assumption that G is H-free, and hence prove the claim.

Recall first that since H is a cloud-forest graph (using the alternative definition), its vertex

set can be partitioned into independent sets I and J , and a forest F ′, such that there are no

edges from V (F ′) to I and each vertex of J has at most one neighbour in V (F ′).

By Fact 2.4, E contains F ′. We now construct an embedding of H into G as follows. We

embed the copy of F ′ in H into that in E. We then embed I into vertices of Z outside the
16



copy of F ′, and finally embed the vertices of J greedily, preserving the property of having a

graph embedding. We can embed I to Z because Z has s = v(H) vertices and there are no

edges of H from V (F ′) to I. Finally, each vertex of J has at most one neighbour in V (F ′)

and the rest of its neighbours are in I, so, since Z has at least v(H) common neighbours in

N(u) for each u in the copy of F ′, the greedy embedding of J succeeds. �

It remains to prove that X0 = ∅. We start by showing that if this is false, then there is a

dense regular pair (Vi, Vj) in G and a substantial number of vertices with many neighbours

in each of Vi and Vj.

Claim 5. If X0 6= ∅, then there exists an (ε, d, p)-regular pair (Vi, Vj) and at least 2dpn/3

vertices with at least dp|Vi|/3 neighbours in each of Vi and Vj.

Proof of Claim 5. Suppose that u ∈ X0, and recall that therefore

∣

∣N∗
2 (u) ∩ Vj

∣

∣ <

(

1

2
+ d

)

|Vj|

for every j ∈ [k]. Since δ(G) > pn/3, we can fix a set U ⊆ N(u) of size pn/3, and for each

j ∈ [k], choose a subset V ′
j ⊆ Vj \ U of size

(

1
2

+ d
)

|Vj| containing N∗
2 (u) ∩ Vj \ U .

We will first show (via some simple counting) that there exists ij ∈ E(R) such that

(9) e
(

G[U, V ′
i ]
)

+ e
(

G[U, V ′
j ]
)

> (1 + 5d)p|U ||V ′
i |.

Indeed, let i be such that e
(

G[U, V ′
i ]
)

is maximised, and consider j ∈ V (R), not necessarily

adjacent to i. Note that if there exist 2k/3 indices j such that the inequality (9) holds, then

by (5), which bounds the minimum degree of R, at least one among them satisfies ij ∈ E(R)

and we are done. So let us suppose (for a contradiction) that there exist k/3 indices j such

that (9) fails to hold. Then, by the maximality of e
(

G[U, V ′
i ]
)

, we have

(10)

k
∑

j=1

e
(

G[U, V ′
j ]
)

6
k

3
·
(

(

1 + 5d
)

p|U ||V ′
i | − e

(

G[U, V ′
i ]
)

)

+
2k

3
· e
(

G[U, V ′
i ]
)

,

We now establish a lower bound on the same sum. We have δ(G) >
(

1
3

+ 2γ
)

pn, and

e
(

G[U, V (G) \N∗
2 (u)]

)

6 dp2n2 =
γpn|U |

2

by the definition of N∗
2 (u) and since |U | = pn/3 and d = γ/6. Moreover,

e
(

G[U ]
)

6 p|U |2 ≪ pn|U | and e
(

G[U, V0]
)

6 2p|U ||V0| 6 2εpn|U |

by our assumptions (A2) and (A3), and since p = o(1). Now, since N∗
2 (u) ∩ Vj \ U ⊆ V ′

j for

every j ∈ [k], it follows from the above inequalities that

(11)
k
∑

j=1

e
(

G[U, V ′
j ]
)

> e
(

G[U,N∗
2 (u) \ U ]

)

− e
(

G[U, V0]
)

>

(

1

3
+ γ

)

pn|U |.
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Now, combining (10) and (11), we have
(

1

3
+ γ

)

pn|U | 6 k

3
·
(

(

1 + 5d
)

p|U ||V ′
i | + e

(

G[U, V ′
i ]
)

)

6

(

1

3
+ 2d

)

pn|U |,

where the second inequality follows as e
(

G[U, V ′
i ]
)

6
(

1 + d
)

p|U ||V ′
i |, by assumption (A3),

and since |V ′
i | =

(

1
2

+ d
)

|Vi| 6
(

1
2

+ d
)

n/k. But recalling that d = γ/6, we see that this is a

contradiction, and thus we have proved that there is a pair ij ∈ E(R) for which (9) holds.

Let us fix such a pair, and set

U ′ =

{

w ∈ U : min
{

|N(w) ∩ V ′
i |, |N(w) ∩ V ′

j |
}

>
dp|Vi|

3

}

.

In order to prove the claim, it will suffice to show that |U ′| > 2d|U | = 2dpn/3. Set

c :=
e
(

G[U, V ′
i ]
)

p · |U ||V ′
i |

,

and observe that c 6 1 + d by assumption (A3). We claim that

(12)
∣

∣

{

w ∈ U : |N(w) ∩ V ′
i | > dp|V ′

i |
}
∣

∣ > (c− 2d)|U |
and

(13)
∣

∣

{

w ∈ U : |N(w) ∩ V ′
j | > dp|V ′

i |
}
∣

∣ > (1 − c + 4d)|U |,
from which it will follow (by inclusion-exclusion, and since |V ′

i | > |Vi|/3) that we have

|U ′| > 2d|U |, as required. Suppose first that (12) fails to hold, and observe that therefore

e
(

G[U, V ′
i ]
)

6 (c− 2d)|U | · (1 + d)p|V ′
i | + (1 − c + 2d)|U | · dp|V ′

i | < cp|U ||V ′
i |

by assumption (A3), which contradicts the definition of c. Similarly, if (13) fails to hold,

then

e
(

G[U, V ′
j ]
)

6 (1 − c + 4d)|U | · (1 + d)p|V ′
i | + (c− 4d)|U | · dp|V ′

i | = (1 − c + 5d)p|U ||V ′
i |,

again using assumption (A3), which contradicts (9). Hence, both (12) and (13) hold, and so

the claim follows. �

We now use Claim 5 to show that if X0 6= ∅ then there exist a substantial number of

vertices each of whose neighbourhoods is dense.

Claim 6. If X0 6= ∅, then there exists an (ε, d, p)-regular pair (Vi, Vj) and a set W of

size dpn/3 with the following property. For every w ∈ W , there exists a graph Gw ⊆
G
[

N(w) ∩ Vi, N(w) ∩ Vj

]

with dp|Vi|/2 vertices and at least 2−6d3p3|Vi|2 edges.

Proof of Claim 6. By Claim 5 there is an (ε, d, p)-regular pair (Vi, Vj) and a set U ′ of 2dpn/3

vertices, each of which has at least dp|Vi|/3 neighbours in each of Vi and Vj. We first prove

that there exists a subset W ⊆ U ′ of size dpn/3 such that the following hold for every w ∈ W :

(a ) |NΓ(w) ∩ Vi| 6 2p|Vi| and |NΓ(w) ∩ Vj| 6 2p|Vj|,
(b ) the pair

(

NΓ(w) ∩ Vi, NΓ(w) ∩ Vj

)

is (ε′, d, p)-lower-regular,
18



where ε′ = ε′(d) > 0 was chosen earlier to be sufficiently small. This will be sufficient

to prove the claim, because it follows, by the Slicing Lemma applied with α = d/6, that
(

N(w) ∩ Vi, N(w) ∩ Vj

)

is (6ε′/d, d/2, p)-lower-regular, and hence

e
(

G[X, Y ]
)

>
d3p3|Vi|2

26

for every X ⊆ N(w) ∩ Vi and Y ⊆ N(w) ∩ Vj with |X| = |Y | = dp|Vi|/4.

We will obtain the set W by removing from U ′ those vertices which fail either condition (a )

or (b ), and then taking an arbitrary subset of the correct size. We claim that there are only

no(1) such ‘bad’ vertices in U ′. To see that there are only no(1) vertices w ∈ U ′ such that

|NΓ(w)∩ Vi| > 2p|Vi| or |NΓ(w)∩ Vj | > 2p|Vj|, simply observe that assumption (A2) implies

that the number of such vertices is at most 2 logn
p2

= no(1). To prove the corresponding

statement for condition (b ), we apply Theorem 2.7 with X = Vi and Y = Vj. Recall that

the pair (Vi, Vj) is (ε, d, p)-lower-regular, and therefore, by Theorem 2.7, there are at most

C ′ max
{

logn
p

, p−2
}

= no(1) vertices w ∈ V (G) such that
(

NΓ(w) ∩ Vi, NΓ(w) ∩ Vj

)

is not

(ε′, d, p)-lower-regular, as required. This completes the proof of the claim. �

We are finally ready to show that X0 = ∅.

Claim 7. X0 = ∅.
Proof of Claim 7. Suppose for a contradiction that X0 6= ∅, and let (Vi, Vj) and W be given

by Claim 6. We will use Theorem 2.3 to find many copies of Ks,s in Gw for each w ∈ W ,

which gives a lower bound on the number of copies of K1,s,s with parts in (respectively) W ,

Vi and Vj . This bound will be sufficiently large that, via an application of the pigeonhole

principle, we can find a copy of Ks,s,s in G. But H ⊆ Ks,s,s, so this gives the desired

contradiction.

To spell out the details, let β > 0 be the constant returned by Theorem 2.3 with input

s, and recall that, for every w ∈ W , the graph Gw ⊆ G
[

N(w) ∩ Vi, N(w) ∩ Vj

]

has dp|Vi|/2

vertices and d3p3|Vi|2/26 edges. By Theorem 2.3, it follows that Gw contains at least

β

(

dp

16

)s2(
dp|Vi|

2

)2s

copies of Ks,s, and hence, recalling that |W | = dpn/3, it follows that the number of pairs

(w,K), where w ∈ W and K ⊆ G
[

N(w) ∩ Vi, N(w) ∩ Vj

]

is a copy of Ks,s, is at least

(14)
dpn

3
· β
(

dp

16

)s2(
dp|Vi|

2

)2s

> β

(

dp

16

)(s+1)2

|Vi|2sn ≫ s|Vi|2s,

since p = n−o(1).

Finally, note that there are at most |Vi|2s choices for the graph K, and so there must exist

some K which is in the neighbourhood of at least s distinct u ∈ W . In particular, we have

a copy of Ks,s,s in G, and hence a copy of H . This contradiction proves the claim. �

By Claims 4 and 7, it follows that χ(G) 6 2sk/α, which completes the proof of the

proposition. �
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5. Upper bounds for p constant

In this section we will prove the upper bound δχ(H, p) 6 δχ(H) for all p > 0 constant.

Together with the matching lower bound from Proposition 3.4, this completes the proof of

Theorem 1.2. Recall that the bound δχ(H, p) 6 1− 1
χ(H)−1

for all H and any constant p was

proved in Corollary 2.2, so that it remains to prove the following two propositions.

Recall that the decomposition family of a graph H is the collection of bipartite graphs

obtained from H by removing χ(H) − 2 independent sets. The following proposition gener-

alises [3, Theorem 7], which proved it for p = 1.

Proposition 5.1. Let H be a graph with χ(H) = r > 3, and let 0 < p 6 1 be a constant. If

H has a forest in its decomposition family, then

δχ(H, p) 6 δχ(H) =
2r − 5

2r − 3
.

That is, for every γ > 0, there exists C = C(H, p, γ) > 0 such that, with high probability,

every H-free spanning subgraph G ⊆ G(n, p) with δ(G) >
(

2r−5
2r−3

+ γ
)

pn satisfies χ(G) 6 C.

Recall that a graph H is near-acyclic if χ(H) = 3 and H admits a partition into a forest F

and an independent set I such that every odd cycle of H meets I in at least two vertices.

It is r-near-acyclic if it is possible to obtain a near-acyclic graph by removing χ(H) − 3

independent sets from H . The following proposition generalises [3, Theorem 34].

Proposition 5.2. Let H be an r-near-acyclic graph with χ(H) = r > 3, and let 0 < p 6 1

be a constant. Then we have

δχ(H, p) 6 δχ(H) =
r − 3

r − 2
.

That is, for every γ > 0, there exists C = C(H, p, γ) > 0 such that, with high probability,

every H-free spanning subgraph G ⊆ G(n, p) with δ(G) >
(

r−3
r−2

+ γ
)

pn satisfies χ(G) 6 C.

We emphasise that, in both propositions, the bound on the chromatic number is allowed

to depend on p. Indeed, the construction used to prove [2, Theorem 1.3] shows that, for

every γ > 0 and C, if χ(H) = r > 4 and p = p(H, γ) > 0 is sufficiently small, then with

high probability G(n, p) contains spanning H-free subgraphs with minimum degree at least
(

r−2
r−1

− γ
)

pn and chromatic number at least C.

The proofs of both propositions are, with the exception of one key step in both proofs,

relatively straightforward modifications of the proofs in [3] of the corresponding bounds in

the case p = 1. For this reason we will emphasise the new ideas required in the random

setting, and refer the reader to [3] for motivation of the lemmas we quote from [3]. We will

first (in Section 5.1) state and prove a lemma which is the main new tool we will require;

then (in Sections 5.2 and 5.3) we will describe how we combine this lemma with the method

of [3] in order to prove the propositions.
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5.1. A bound on the number of pairs with few common neighbours. Let G be a

subgraph of G(n, p), and suppose that U and W are sets of vertices with the property that

every u ∈ U has more than
(

1
2

+ γ
)

p|W | neighbours in W . If p = 1, then this implies that

every pair of vertices has many common neighbours in W , but for p < 1 there may exist

some exceptional pairs with small common neighbourhood, even if W is quite large.

The following lemma, which is the key new step in the proof of both of the propositions

above, says that (with high probability) few pairs in U have small common neighbourhood

in W for every such pair (U,W ) with |W | = Ω(n). As in the previous section, we will write

NΓ(u) for the neighbourhood of u in Γ = G(n, p) and N(u) for the neighbourhood in G.

Lemma 5.3. Given p, γ, α ∈ (0, 1] there exists C > 0 such that, with high probability, the

following holds. For every subgraph G ⊆ G(n, p), and every pair of vertex sets U and W

satisfying |W | > αn and

(15) |N(u) ∩W | >
(

1

2
+ γ

)

p|W |

for every u ∈ U , we have

|N(u) ∩N(v) ∩W | 6 γp2|W |
for at most C|U | pairs u, v ∈ U .

The first step to proving this lemma is to find a bounded-size subset X ⊆ U such that

the Γ-neighbourhoods in W of subsets of U \X are all well-behaved. The following lemma

is quite a bit more general (though no harder to prove) than the result we need. Note that

for this lemma we require p < 1.

Lemma 5.4. Given p ∈ (0, 1) and δ ∈ (0, 1], there exists C > 0 such that, with high

probability, the following holds. For every set of vertices W ⊆ V = V
(

G(n, p)
)

, there exists

a set of vertices XW ⊆ V with |XW | 6 C such that

(16)
∣

∣

∣

⋂

v∈S

NΓ(v) ∩ W
∣

∣

∣
∈ p|S||W | ± δn

for all S ⊆ V \XW .

Proof. Define ℓ = ℓ(p, δ) to be the least positive integer such that pℓ < δ/2. Given W , let X
be a maximal family of disjoint vertex sets satisfying |S| 6 ℓ and

(17)
∣

∣

∣

⋂

v∈S

NΓ(v) ∩ W
∣

∣

∣
6∈ p|S||W | ± δn

2

for each S ∈ X . We claim that XW =
⋃

S∈X S satisfies the required conditions. Indeed, for

any subset S ⊆ V \ XW with |S| 6 ℓ it is immediate from the maximality of X that (16)

holds. On the other hand, if |S| > ℓ then let S0 be an arbitrary subset of S of cardinality ℓ,

and observe that

0 6

∣

∣

∣

⋂

v∈S

NΓ(v) ∩ W
∣

∣

∣
6

∣

∣

∣

⋂

v∈S0

NΓ(v) ∩ W
∣

∣

∣
6 pℓ|W | +

δn

2
6 δn,

21



as required.

To show that, with high probability, |XW | 6 C for every set W , note first that, by the

Chernoff bound,

P

(

∣

∣

∣

⋂

v∈S

NΓ(v) ∩ W
∣

∣

∣
6∈ p|S||W | ± δn

2

)

6 e−Ω(δn).

These events are moreover independent for disjoint sets S, so if X contains t sets for some

sufficiently large constant t, the probability that all of them satisfy (17) is at most e−n. Any

X with t sets gives XW with at most C = tℓ vertices. The number of ways to choose such

an X is at most nO(1), and the number of ways to choose W is at most 2n, so by the union

bound we conclude that with high probability, for all W we have |XW | 6 C as desired. �

We can now prove Lemma 5.3.

Proof of Lemma 5.3. For p = 1, if U and W satisfy the conditions of the lemma, then for

any u, v ∈ U we have |N(u)∩N(v)∩W | > 2γ|W | − 2 > γp2|W |, so the lemma statement is

true. We thus assume from now on that p < 1.

Fix δ = δ(α, γ, p) > 0 sufficiently small, choose C sufficiently large for Lemma 5.4 to hold,

and suppose that Γ = G(n, p) has the property described in that lemma. Let us assume also

that there do not exists sets S, T ⊆ V (Γ) such that

|S| > αγpn

5
, |T | > C and e

(

Γ[S, T ]
)

6

(

1 − γ

10

)

p|S||T |,
and note that this also holds with high probability, by Chernoff’s inequality.

Now let G ⊆ Γ and let U and W satisfy the conditions of the lemma. Let XW be the set

given by Lemma 5.4. Recall that for each u ∈ U we have
∣

∣N(u) ∩W
∣

∣ >
(

1
2

+ γ
)

p|W |. For

each u ∈ U we define a set Xu of all vertices v ∈ U \XW (so NΓ(u) ∩NΓ(v) ∩W has about

the expected size) such that N(u) ∩NΓ(v) ∩W is a bit smaller than expected:

(18) Xu :=

{

v ∈ U \XW : |N(u) ∩NΓ(v) ∩W | 6
(

1

2
+

3γ

5

)

p2|W |
}

.

Claim 1. If u ∈ U \ (XW ∪Xv) and v ∈ U \ (XW ∪Xu), then

|N(u) ∩N(v) ∩W | > γp2|W |.
Proof of Claim 1. Since u, v 6∈ XW , and assuming we chose δ < αγp2/5, we have

|NΓ(u) ∩NΓ(v) ∩W | 6 p2|W | + δn 6

(

1 +
γ

5

)

p2|W |.

Also, since u 6∈ Xv and v 6∈ Xu, it follows that

min
{

|N(u) ∩NΓ(v) ∩W |, |N(v) ∩NΓ(u) ∩W |
}

>

(

1

2
+

3γ

5

)

p2|W |.

Moreover, both are subsets of NΓ(u) ∩NΓ(v) ∩W , and so, by inclusion-exclusion,

|N(u) ∩N(v) ∩W | > 2

(

1

2
+

3γ

5

)

p2|W | −
(

1 +
γ

5

)

p2|W | = γp2|W |,

as claimed. �
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Claim 2. |Xu| 6 C for every u ∈ U \XW .

Proof of Claim 2. We will count the paths of length two from u to Xu with first edge in G,

second edge in G(n, p), and middle vertex in W . By (18), the number of such paths is at

most

(19)

(

1

2
+

3γ

5

)

p2|W | · |Xu|.

On the other hand, defining

Ŵu :=

{

w ∈ W : |NΓ(w) ∩Xu| 6
(

1 − γ

10

)

p|Xu|
}

,

we obtain a lower bound on the number of such paths of

(20)
∣

∣N(u) ∩
(

W \ Ŵu

)
∣

∣ ·
(

1 − γ

10

)

p|Xu|
(15)

>

((

1

2
+ γ

)

p|W | − |Ŵu|
)(

1 − γ

10

)

p|Xu|.

Now if |Ŵu| 6 γp|W |/5, then using (19) and (20), we obtain
(

1

2
+

4γ

5

)

p|W | ·
(

1 − γ

10

)

p|Xu| 6
(

1

2
+

3γ

5

)

p2|W | · |Xu| ,

which is a contradiction. We conclude that |Ŵu| > γp|W |/5, so by definition of Ŵu and by

our assumption on Γ (with S = Ŵu and T = Xu), we have |Xu| 6 C, as claimed. �

The lemma follows easily from the claims. Indeed, by Claim 1 the only pairs u, v ∈ U

with |N(u) ∩ N(v) ∩ W | 6 γp2|W | are those with u ∈ XW ∪ Xv or v ∈ XW ∪ Xu. Since

|XW |+ |Xu| = O(1) for every u ∈ U , by Lemma 5.4 and Claim 2 , it follows that the number

of such pairs is at most O(|U |), as required. �

5.2. The proof of Proposition 5.1. We need the following two lemmas from [3]. Let

Kℓ(t) be the t-blow-up of Kℓ, that is, the graph obtained from Kℓ by replacing each vertex

with an independent set of size t, and each edge with a complete bipartite graph Kt,t. We

write F +H for the join of F and H , that is, the graph obtained from a disjoint union of F

and H by adding all edges between F and H .

Lemma 5.5 (Lemma 9 of [3]). Let α > 0 and 3 6 r, t ∈ N, let F be a forest, and let H ⊆
F + Kr−2(t). Let G be a graph on n vertices, and X ⊆ V (G). If G[N(u)] contains at least

αn(r−1)v(H) copies of Kr−1(v(H)) for every u ∈ X, then either H ⊆ G or |X| 6 v(H)/α.

Lemma 5.6 (Lemma 10 of [3]). For every α > 0 and 3 6 r, t ∈ N, there exists C = C(α, r, t)

such that for every graph H ⊆ F + Kr−2(t), the following holds. Let G be an H-free graph

on n vertices, and let X ⊆ V (G) be such that every edge of G[X ] is contained in at least

αnr−2 copies of Kr in G. Then G[X ] is Cv(F )-degenerate.

We can now give the proof.
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Proof of Proposition 5.1. Let F be a forest in the decomposition family of H , so in particular

H ⊆ F +Kr−2

(

v(H)
)

. Let γ > 0, and let G be an H-free spanning subgraph of G(n, p) with

δ(G) >

(

2r − 5

2r − 3
+ 3γ

)

pn.

Applying the sparse minimum degree form of Szemerédi’s Regularity Lemma, with k0 = r/γ,

d = γ and ε sufficiently small, to G, we obtain a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk with

k0 6 k 6 k1 = O(1) such that the (ε, d, p)-reduced graph R satisfies

δ(R) >

(

2r − 5

2r − 3
+ γ

)

k .

We now partition the vertices of V (G) according to the sets Vi to which they send ‘many’

edges. More precisely, define for each I2 ⊆ I1 ⊆ [k],

XI1,I2 :=
{

v ∈ V (G) : I1 =
{

i ∈ [k] : |N(v) ∩ Vi| > γp|Vi|
}

,

I2 =
{

i ∈ [k] : |N(v) ∩ Vi| >
(

1
2

+ γ
)

p|Vi|
}

}

.
(21)

We remark that this is a refinement of the partition used in the proof of [3, Theorem 7].

Since the number of parts in this partition is at most 3k1, the following claim completes the

proof of Proposition 5.1.

Claim. χ
(

G[XI1,I2]
)

= O(1) for every I2 ⊆ I1 ⊆ [k].

Proof of Claim. We partition the edges of G[XI1,I2] into graphs J = JI1,I2 and L = LI1,I2,

where J consists of those edges whose endpoints have at least γp2|Vi| common neighbours

in each of the clusters {Vi : i ∈ I2} and the remaining edges are in L. We will show that

J and L are both O(1)-degenerate, which implies both are O(1)-colourable and hence that

G[XI1,I2] is O(1)-colourable, as desired.

We start with L. For each U ⊆ XI1,I2 and i ∈ I2, consider the graph Li[U ] ⊆ L[U ] on

vertex set U formed by the edges of G that have fewer than γp2|Vi| common neighbours

in Vi. Setting W = Vi, note that the pair (U,W ) satisfies (15), by the definition of XI1,I2

and since i ∈ I2. By Lemma 5.3, it follows that Li[U ] has at most C|U | edges (for some

constant C = C(H, p, γ)) and hence has bounded average degree. Since L[U ] ⊆ ⋃i∈I2
Li[U ],

and |I2| 6 k, it follows that the graph L[U ] has bounded average degree. Since this holds

for every U ⊆ XI1,I2, it follows that L is O(1)-degenerate, as claimed.

The proof that J is O(1)-degenerate is almost the same as in [3, Theorem 7], and so we

shall only sketch the proof, skipping most of the details. Suppose first that

|I1| >
(

2r − 4

2r − 3

)

k .

In this case we shall show that |XI1,I2| = O(1), and thus J is trivially O(1)-degenerate. We

first claim that R[I1] contains a copy of Kr−1. Indeed, by our minimum degree condition on
24



R, we have

δ
(

R[I1]
)

> δ(R) −
(

k − |I1|
)

> |I1| −
(

2

2r − 3
− γ

)

k >

(

r − 3

r − 2
+ γ

)

|I1| ,

so R[I1] contains a copy of Kr−1, as claimed. Let {W1, . . . ,Wr−1} ⊆ {Vi : i ∈ I1} be the set

of parts corresponding to this copy of Kr−1.

Now let u ∈ XI1,I2, and recall that |N(u) ∩ Wi| > γp|Vi| for each i ∈ [r − 1], by the

definition of XI1,I2. By the (dense) Slicing and Counting Lemmas, it follows that G[N(u)]

contains at least Ω
(

n(r−1)v(H)
)

copies of Kr−1(v(H)). Since H 6⊆ G, by Lemma 5.5 we have

|XI1,I2| = O(1), as claimed.

So let us assume from now on that

|I1| <
(

2r − 4

2r − 3

)

k ,

and that G(n, p) has the following property: for each vertex set S of size at least n/(2k1),

the number of vertices that have more than (1+γ)p|S| neighbours in S is at most a constant

depending on p, γ and k1 (for constant p this holds with high probability by the Chernoff

bound). In particular this applies for S = Vi for each 1 6 i 6 k. Now if there is no vertex of

XI1,I2 which has at most (1 +γ)p|Vi| neighbours in each Vi, then this implies |XI1,I2| = O(1),

in which case J is trivially O(1)-degenerate. So suppose u ∈ XI1,I2 is a vertex with at most

(1 + γ)p|Vi| neighbours in Vi for every 0 6 i 6 k.

We claim that R[I2] contains a copy of Kr−2. Indeed, since δ(G) >
(

2r−5
2r−3

+ 3γ
)

pn, and

since |Vi| 6 n/k for each i ∈ [k] and |V0| 6 εn 6 γn/2, it follows that
(

2r − 5

2r − 3
+ 3γ

)

pn 6 d(u) 6

(

(1 + γ)|I2| +

(

1

2
+ γ

)

(

|I1| − |I2|
)

+ 2γk

)

pn

k
.

Hence, using our bound on |I1|, it follows that |I2| >
(

2r−6
2r−3

)

k. Thus

δ
(

R[I2]
)

> δ(R) −
(

k − |I2|
)

> |I2| −
(

2

2r − 3
− γ

)

k >

(

r − 4

r − 3
+ γ

)

|I2| ,

so R[I2] contains a copy of Kr−2, as claimed.

Finally, recall that the endpoints of each edge of J have at least γp2|Vi| common neighbours

in Vi for every i ∈ I2. By the (dense) Slicing and Counting Lemmas, it follows that each

edge of J is contained in Ω(nr−2) copies of Kr. Since H 6⊆ G, Lemma 5.6 tells us that J

is O(1)-degenerate. We have thus proved that both J and L are O(1)-degenerate, which

implies that χ
(

G[XI1,I2]
)

= O(1), as claimed. �

As noted earlier, the sets XI1,I2 partition the vertex set of G into at most 3k1 parts, and

hence the claim implies that χ(G) = O(1), as required. �

5.3. The proof of Proposition 5.2. We need the following lemma, which was essentially

proved in [3, Section 7]. The difference here is that we have to explicitly assume (d ) rather

than deducing it from a degree condition.
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Lemma 5.7. For each r > 3 and γ > 0, and each r-near-acyclic graph H with χ(H) = r,

there exist ε > 0, C > 0 and m0 ∈ N such that the following holds for every m > m0. If

G is a graph containing pairwise disjoint vertex sets X, Y, Z1, . . . , Zr−3 with the following

properties:

(a ) χ
(

G[X ]
)

> C,

(b ) |Y | = |Z1| = · · · = |Zr−3| = m,

(c ) |N(v) ∩ Y | > γm for every v ∈ X,

(d ) |N(u) ∩N(v) ∩ Zi| > γm for every uv ∈ E(G[X ]) and every i ∈ [r − 3],

(e ) each pair from Y, Z1, . . . , Zr−3 forms an ε-regular pair in G of density at least γ,

then H ⊆ G.

The proof of Lemma 5.7 is roughly as follows. We proceed as in the proof of [3, Theo-

rem 34]: We apply [3, Proposition 26] (the so-called ‘paired VC-dimension’ argument), [3,

Lemma 24] (an inductive double counting argument) and [3, Proposition 36] (which uses

the Counting Lemma and the pigeonhole principle), followed by [3, Lemma 25] (which uses

the fact that high degree graphs contain all trees). The only point where some extra care is

needed is in the application of [3, Proposition 36], since this proposition requires that every

vertex of the set X has at least
(

1
2

+ γ
)

m neighbours in each set Zi. However, the only use

made of this condition is to deduce that each edge of G[X ] has a common neighbourhood

of size at least γm in each Zi, which is assumption (d ) above, so the conclusion we need

follows from exactly the same proof. For a complete proof of Lemma 5.7, see Appendix A.

The deduction of Proposition 5.2 from Lemma 5.7 follows the same outline as the proof

of Proposition 5.1 above.

Proof of Proposition 5.2. Let H be r-near-acyclic, let γ > 0, and let G be an H-free spanning

subgraph of G(n, p) with

(22) δ(G) >

(

r − 3

r − 2
+ 2γ

)

pn .

Applying the sparse minimum degree form of Szemerédi’s Regularity Lemma to G, with

k0 = r/γ, d = γ and ε sufficiently small, we obtain a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk

with k0 6 k 6 k1 = O(1) such that the reduced graph R satisfies

δ(R) >

(

r − 3

r − 2
+ γ

)

k .

We define sets XI1,I2 for each I2 ⊆ I1 ⊆ [k] exactly as in (21). Since, again, the number of

parts XI1,I2 is at most 3k1, the following claim completes the proof of the proposition.

Claim. χ
(

G[XI1,I2]
)

= O(1) for every I2 ⊆ I1 ⊆ [k].

Proof of Claim. We partition the edges of G[XI1,I2] into graphs J = JI1,I2 and L = LI1,I2,

exactly as in the proof of Proposition 5.1. That is, we let J consist of those edges whose

endpoints have at least γp2|Vi| common neighbours in each of the clusters {Vi : i ∈ I2}. The

proof that L is O(1)-degenerate (using Lemma 5.3) is exactly the same as before, since it

does not use the minimum degree condition on G (and thus R), and we omit it.
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The proof that J is O(1)-chromatic is somewhat different to that in Section 5.2, so let

us give the details. As before, with high probability for each S of size at least n/(2k1), the

number of vertices in G(n, p) with more than (1 + γ)p|S| neighbours in S is O(1) and in

particular the number of vertices with more than (1 + γ)p|Vi| neighbours in any Vi with

0 6 i 6 k is O(1). Again, this implies that either |XI1,I2| = O(1) and thus J is trivially

O(1)-degenerate, or there exists u ∈ XI1,I2 with at most (1 + γ)p|Vi| neighbours in Vi for

every 0 6 i 6 k. In this latter case we claim that R[I1] contains a pair of disjoint copies of

Kr−2, each with at least r − 3 vertices in I2.

Indeed, counting neighbours of u, we obtain
(

(1 + γ)|I1| + γ ·
(

k − |I1|
)

+ 2εk

)

pn

k
> d(u) >

(

r − 3

r − 2
+ 2γ

)

pn ,

and hence |I1| >
(

r−3
r−2

)

k. Similarly,
(

(1 + γ)|I2| +

(

1

2
+ γ

)

(

k − |I2|
)

+ 2εk

)

pn

k
>

(

r − 3

r − 2
+ 2γ

)

pn ,

which implies that |I2| >
(

r−4
r−2

)

k. By our minimum degree condition on R, it follows that

we can choose (greedily) two disjoint cliques in R[I1] as claimed.

Let the clusters corresponding to the vertices of our two cliques be respectively Y ∈ I1
and Z1, . . . , Zr−3 ∈ I2 (for one), and Y ′ ∈ I1 and Z ′

1, . . . , Z
′
r−3 ∈ I2 (for the other). Set

X1 = XI1,I2 \
(

Y ∪ Z1 ∪ · · · ∪ Zr−3

)

,

and X2 = XI1,I2 \ X1, and suppose first that χ
(

J [X1]
)

> C, where C = C(r, γp2) is the

constant in Lemma 5.7. Note that X1 is disjoint from Y, Z1, . . . , Zr−3, by definition, and

moreover we have

(a ) χ
(

J [X1]
)

> C, by assumption,

(b ) |Y | = |Z1| = · · · = |Zr−3| > n/2k, since each is a part of the Szemerédi partition,

(c ) |N(v) ∩ Y | > γp|Vi| for every v ∈ X1, by the definition of XI1,I2,

(d ) |N(u) ∩N(v) ∩ Zi| > γp2|Vi| for every uv ∈ E(J [X ]), by the definition of J , and

(e ) each pair from Y, Z1, . . . , Zr−3 forms an ε-regular pair in G of density at least γp, since

Z1, . . . , Zr−3 and Y form a clique in R, and d = γ.

Therefore, by Lemma 5.7, it follows that H ⊆ G, which is a contradiction. On the other hand,

if χ
(

J [X2]
)

> C, then the same argument (with Y, Z1, . . . , Zr−3 replaced by Y ′, Z ′
1, . . . , Z

′
r−3)

gives the same contradiction. Hence χ(J) 6 2C, as required. �

As noted earlier, this completes the proof of Proposition 5.2, and hence of Theorem 1.2. �

6. Determining δ∗χ(H)

In this section we sketch the proof of Theorem 1.9, which states that

(23) δ∗χ(H) = min
{

δχ(H ′) : there exists a homomorphism from H to H ′
}

for every graph H . We begin with the upper bound.
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Proposition 6.1. If H is any graph homomorphic to H ′, then δ∗χ(H) 6 δχ(H ′).

We will use the following lemma, which follows from the result of Erdős [14] that the

Turán density of any k-partite k-uniform hypergraph is zero.

Lemma 6.2. For any graph H ′ and any t ∈ N and c > 0, if n = v(G) is large enough and

G contains cnv(H′) copies of H ′, then G contains the t-blow-up of H ′.

Proof. Take a uniform random partition of V (G) into v(H ′) parts, and let F be a v(H ′)-

uniform hypergraph on V (G) whose edges correspond to copies of H ′ in G with the ith

vertex of H ′ in the ith part of the partition for each i. In expectation, F contains at least

v(H ′)−v(H′)cnv(H′) edges, and by the result of Erdős [14] any F with so many edges contains

a copy of the complete v(H ′)-partite hypergraph with parts of size t, giving the desired

t-blow-up of H ′ in G. �

Proof of Proposition 6.1. Note that H is contained in the v(H)-blow-up of H ′. Recall that,

by the definition of δχ(H ′), for each γ > 0 there exists C = C(γ) such that any H ′-free graph

G′ with minimum degree at least
(

δχ(H ′) + γ
)

v(G′) has chromatic number at most C. We

claim that, for any ε > 0, every sufficiently large H-free graph G with minimum degree at

least
(

δχ(H ′) + 2γ
)

v(G) can be made C-partite by deleting at most εv(G)2 edges.

To see this, fix ε > 0 and choose µ > 0 sufficiently small. By the Graph Removal Lemma

(see, e.g., [20]), there exists c > 0 such that any n-vertex graph G either contains at least

cnv(H′) copies of H ′, or can be made H ′-free by deleting at most µn2 edges. By Lemma 6.2,

we conclude that for all sufficiently large n, the graph G can be made H ′-free by deleting at

most µn2 edges.

Let G′ be obtained from G by deleting µn2 edges in order to destroy all copies of H ′, and

then sequentially vertices of degree less than
(

δχ(H ′) + γ
)

n until no more remain. Since µ

was chosen sufficiently small, this process terminates having deleted fewer than εn/2 vertices.

Thus G′ is an H ′-free graph with minimum degree at least
(

δχ(H ′) + γ
)

v(G′), and hence it

has chromatic number at most C. Moreover, the total number of edges deleted from G to

obtain G′ is at most µn2 + εn2/2 < εn2, as required. �

To complete the proof of (23), we will show that a simple modification of the constructions

from [3] suffices to prove the claimed lower bound on δ∗χ(H). We will use the following variant

of Lemma 3.5, which also follows from Propositions 5 and 35 and Theorem 16 of [3].

Lemma 6.3. For every graph H ′, integer s ∈ N and constants C, γ > 0, there exists K =

K(H ′, s, γ, C) > 0 such that the following holds. For all sufficiently large n, there exists a

graph G on n vertices with the following properties:

(a ) δ(G) >
(

δχ(H ′) − γ
)

n.

(b ) There exists a set X ⊆ V (G), with |X| = K, such that χ
(

G[X ]
)

> C.

(c ) δχ(H∗) < δχ(H ′) for every subgraph of H∗ ⊆ G with at most s vertices.

Given H , let H ′ be a graph which minimises δχ(H ′) such that there exists a homomorphism

from H to H ′. We claim that δ∗χ(H) > δχ(H ′), i.e., that for every γ > 0 and C > 0, there
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exists ε > 0 and infinitely many H-free graphs G with δ(G) >
(

δχ(H ′) − 2γ
)

v(G) which

cannot be made C-colourable by removing at most εn2 edges.

To prove this, first let G′ be the graph (on n vertices) given by Lemma 6.3 with inputs

H ′, s = v(H), C and γ. We construct a graph G by blowing up each vertex of X to size µn

for some constant µ > 0. Now, if µ < γ/K, then

δ(G) > δ(G′) >
(

δχ(H) − γ
)

n >
(

δχ(H) − 2γ
)

v(G),

since v(G) 6
(

1+µK
)

n, and if µ >
√
ε then the chromatic number of G cannot be decreased

by removing fewer than µ2n2 > εn2 edges. Thus it only remains to show that G is H-free.

Suppose that G is not H-free, and fix a copy of H in G. We can construct a subgraph

H∗ ⊆ G′ by taking all vertices of this copy of H lying outside the blow-up of X in G, and

each vertex of X in G′ whose blow-up in G contains one or more vertices of H . Note that H

is homomorphic to H∗, by construction. But H∗ has at most v(H) vertices, and therefore

δχ(H∗) < δχ(H ′), by Lemma 6.3(c), which contradicts our choice of H ′. Hence G is H-free,

and this completes the proof of Theorem 1.9.

Appendix A. The proof of Lemma 5.7

Before beginning, we should stress that the proof consists only of small and obvious modi-

fications to the argument in [3]: in fact, the only changes are a modification to the statement

and proof of Proposition A.7 below, and the proof of Lemma 5.7 itself which is essentially

contained in the proof of ‘Theorem 34’ there. Most of this appendix is copied unchanged

from [3], and it exists only to facilitate the sceptical reader’s verification of Lemma 5.7.

Definition A.1 (Definition 19 of [3], Modified Zykov graphs). Let T1, . . . , Tℓ be (disjoint)

trees, and let Tj have bipartition Aj∪Bj . We define Zℓ(T1, . . . , Tℓ) to be the graph on vertex

set

V
(

Zℓ(T1, . . . , Tℓ)
)

:=

(

⋃

j∈[ℓ]

Aj ∪Bj

)

∪
{

uI : I ⊆ [ℓ]
}

and with edge set

E
(

Zℓ(T1, . . . , Tℓ)
)

:=

ℓ
⋃

j=1

(

E(Tj) ∪
⋃

j∈I⊆[ℓ]

K
(

uI , Aj

)

∪
⋃

j 6∈I⊆[ℓ]

K
(

uI , Bj

)

)

.

For each r > 3 and t ∈ N, the modified Zykov graph Zr,t
ℓ (T1, . . . , Tℓ) is the graph obtained

from Zℓ(T1, . . . , Tℓ) by performing the following two operations:

(a ) Add vertices W = {w1, . . . , wr−3}, and all edges with an endpoint in W .

(b ) Blow up each vertex uI with I ⊆ [ℓ] and each vertex wj in W to a set SI or S ′
j ,

respectively, of size t.

Finally, we shall write Zr,t
ℓ for the modified Zykov graph obtained when each tree Ti, i ∈ [ℓ],

is a single edge; that is, Zr,t
ℓ = Zr,t

ℓ (e1, . . . , eℓ).

Observation A.2 (Observation 20 of [3]). Let χ(H) = r. Then H is r-near-acyclic if and

only if there exist trees T1, . . . , Tℓ and t ∈ N such that H is a subgraph of Zr,t
ℓ (T1, . . . , Tℓ).
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It will be convenient for us to provide a compact piece of notation for the adjacencies in

Zr,t
ℓ . For this purpose, given a graph G and a set Y ⊆ V (G), and integers ℓ, t ∈ N and r > 3,

define Gr,t
ℓ (Y ) to be the collection of functions

S : 2[ℓ] ∪ [r − 3] →
(

Y

t

)

.

It is natural to think of S as a family {SI : I ⊆ [ℓ]} ∪ {S ′
j : j ∈ [r − 3]} of subsets of Y

of size t. We say that S ∈ Gr,t
ℓ (Y ) is proper if these sets are pairwise disjoint and E(G)

contains all edges xy with x ∈ SI ∪ S ′
j and y ∈ S ′

j′, whenever j 6= j′. We shall write

F r,t
ℓ (Y ) for the collection of proper functions in Gr,t

ℓ (Y ). The idea behind this definition is

that we will later want to consider a vertex set Y ⊆ V (G) and a family of disjoint subsets

{SI : I ⊆ [ℓ]} ∪ {S ′
j : j ∈ [r − 3]} of size t in Y that we want to extend to a copy of Zr,t

ℓ .

For an ordered pair (x, y) of vertices of G, a function S ∈ F r,t
ℓ (Y ), and i ∈ [ℓ], we write

(x, y) →i S, if S ′
j ⊆ N(x, y) for every j ∈ [r − 3] and

⋃

I : i∈I

SI ⊆ N(x) and
⋃

I : i 6∈I

SI ⊆ N(y) .

For an edge e = xy ∈ E(G), we write e →i S if either (x, y) →i S or (y, x) →i S. Recall

that eℓ denotes the ℓ-tuple (e1, . . . , eℓ), with e0 the empty tuple. Define

eℓ → S ⇔ ei →i S for each i ∈ [ℓ] .

Observe that the graph Zr,t
ℓ consists of a set of pairwise disjoint edges e1, . . . , eℓ and an

S ∈ F r,t
ℓ (Y ) such that eℓ → S. An advantage of this notation is that we can write eℓ → S

even if the edges in eℓ are not pairwise disjoint.

We shall show how to find a well-structured set of many copies of Zr,t
ℓ inside a graph with

high minimum degree and high chromatic number. The following definition (in which we

shall make use of the compact notation just defined) makes the concept of ‘well-structured’

precise. Given X ⊆ V (G), we write E(X) for the edge set of G[X ], and if D ⊆ E(G), then

δ(D) denotes the minimum degree of the graph G[D].

In the following definition, the reader should think of the sets D(ej) as a ‘hierarchy’ of

graphs: we have a different graph D(ej+1) associated to each edge of D(ej). Note that if

the vector ej and the edge ej+1 are contained in the same statement, then ej+1 is assumed

to be their concatenation.

Definition A.3 (Definition 21 of [3], (C, α)-rich in copies of Zr,t
ℓ ). Let X and Y be disjoint

vertex sets in a graph G, let C ∈ N and α > 0, and let s := (2ℓ + r−3)t. We say that (X, Y )

is (C, α)-rich in copies of Zr,t
ℓ if

∃D = D(e0) ⊆ E(X) ∀ e1 ∈ D ∃D(e1) ⊆ E(X) ∀ e2 ∈ D(e1) . . .

. . . ∀ eℓ−1 ∈ D(eℓ−2) ∃D(eℓ−1) ⊆ E(X) ∀ eℓ ∈ D(eℓ−1)

the following properties hold:

(a ) δ(D), δ
(

D(e1)
)

, . . . , δ
(

D(eℓ−1)
)

> C, and

(b )
∣

∣

{

S ∈ F r,t
ℓ (Y ) : eℓ → S

}
∣

∣ > α|Y |s.
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The point of this definition is that since Zℓ(3, t) is quite a simple graph, we require only

quite weak properties of (X, Y ) in order to show that (X, Y ) is (C, α)-rich in copies of Z3,t
ℓ .

This is the content of the following proposition, whose proof is a ‘paired VC-dimension’

argument.

Proposition A.4 (Proposition 26 of [3]). For every ℓ, t ∈ N and d > 0, there exists α > 0

such that, for every C ∈ N, there exists C ′ ∈ N such that the following holds. Let G be a

graph and let X and Y be disjoint subsets of V (G), such that |N(x) ∩ Y | > d|Y | for every

x ∈ X.

Then either χ
(

G[X ]
)

6 C ′, or (X, Y ) is (C, α)-rich in copies of Z3,t
ℓ .

Unfortunately, it is not easy to work with the concept of (C, α)-richness. The reason for

this is the quantifier alternation in the definition: we would like to construct a tree T1 in

D, but different edges e1 of D may give us entirely different sets D(e1), and we need to

construct a tree T2 which is in D(e1) for each e1 ∈ T1. The next definition eliminates this

quantifier alternation. We write d(E) for the average degree of E, i.e. 2|E| divided by the

number of vertices contained in some edge of E.

Definition A.5 (Definition 23 of [3], Good function, (C, α)-dense). A function S ∈ F r,t
ℓ (Y )

is (r, ℓ, t, C, α)-good for (X, Y ) if there exist sets

E1, . . . , Eℓ ⊆ E(X), with d(Ej) > 2−ℓαC for each 1 6 j 6 ℓ ,

such that for every e1 ∈ E1, . . . , eℓ ∈ Eℓ, we have eℓ → S.

The pair (X, Y ) is (C, α)-dense in copies of Zr,t
ℓ if there exist at least 2−ℓα|Y |s families

S ∈ F(Y ) which are (r, ℓ, t, C, α)-good for (X, Y ).

To go with this definition we have the following lemma, whose proof is an inductive double

counting argument, which converts richness into the more useable denseness.

Lemma A.6 (Lemma 24 of [3]). If (X, Y ) is (C, α)-rich in copies of Zr,t
ℓ , then (X, Y ) is

(C, α)-dense in copies of Zr,t
ℓ .

Since we only obtain richness in copies of Z3,t
ℓ from Proposition A.4, but the conclusion

of Lemma 5.7 which we want to prove speaks of Zr,t
ℓ for all r > 3, if r > 4 we need at some

point to ‘upgrade’ the structure we have. The lemma which permits us to do this is the

following. It is a small modification of Proposition 36 in [3].

Proposition A.7. For every r > 3, ℓ, t ∈ N and d, γ > 0 there exist ℓ∗, t∗ ∈ N such that for

every α > 0 and C ∈ N, there exist ε1 > 0 and C∗ ∈ N, such that for every 0 < ε < ε1 the

following holds.

Let G be a graph, and let X, Y and Z1, . . . , Zr−3 be disjoint subsets of V (G), with |Y | = |Zj|
for each j ∈ [r − 3]. Let Z := Z1 ∪ · · · ∪ Zr−3. Suppose that (Y, Zj) and (Zi, Zj) are (ε, d)-

regular for each i 6= j, and that for each e ∈ G[X ] and j ∈ [r − 3], the edge e has at least

γ|Zj| common neighbours in Zj.

If (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ , then there is some S ∈ F r,t
ℓ (Y ∪Z) such that

S is (r, ℓ, t, C, α)-good for (X, Y ∪ Z).
31



The change here, as compared to [3], is that we insist that each edge e ∈ G[X ] has common

neighbourhood γ|Zj| in each Zj, as opposed to that each vertex of X has neighbourhood at

least
(

1
2

+ γ
)

|Zj| in Zj, which latter obviously implies the former. The change in the proof

is similarly trivial: the only use made of the stronger condition in [3] is to imply the weaker

condition. Nevertheless, we give the details.

For the proof, we combine an application of the Counting Lemma and two uses of the

pigeonhole principle. As a preparation for these steps we need to show that there exists a

family S∗ ∈ F3,t∗

ℓ∗ which is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ) and ‘well-behaved’ in the following

sense. For each of the sets S∗
I ⊆ Y given by S∗

I only a small positive fraction of the (r− 3)t-

element sets in Z has a common neighbourhood in S∗
I of less than t vertices. To this end we

shall use the following lemma.

Recall that for a set T of vertices in a graph G, we write

N(T ) : =
⋂

x∈T

N(x) .

Lemma A.8 (Lemma 37 of [3]). For all r, t ∈ N and µ, d > 0, there exist t∗ = t∗(r, t, µ, d) ∈
N and ε0 = ε0(r, t, µ, d) > 0 such that for all 0 < ε < ε0 the following holds.

Let G be a graph, and suppose that Y and Z1, . . . , Zr−3 are disjoint subsets of V (G) such

that (Y, Zj) is (ε, d)-regular for each j ∈ [r − 3]. Let Z := Z1 ∪ . . . ∪ Zr−3, and define

B(S) :=
{

T ∈
(

Z

(r − 3)t

)

: |N(T ) ∩ S| < t
}

for each S ⊆ Y . Then we have

S :=
{

S ∈
(

Y

t∗

)

: |B(S)| > µ|Z|(r−3)t
}

6
√
ε|Y |t∗ .

We shall now prove Proposition A.7.

Proof of Proposition A.7. We start by defining the constants. Given r > 3, ℓ, t ∈ N and

γ, d > 0, we set

(24) µ :=
γ(r−3)t

8
(

(r − 3)t
)

!(r − 3)(r−3)t

(d

2

)(r−3

2
)t2

and ℓ∗ :=
ℓ

2µ
.

Let t∗ and ε0 be given by Lemma A.8 with input r, t, µ′ := 2−ℓ∗µ, d. Given α > 0 and C, we

choose

(25) ε1 := min
( α2

24ℓ∗+1
,

dγ

4(γ + 1)(r − 3)t
, ε0

)

and C∗ :=
2ℓ∗C

αµ
.

Now let 0 < ε < ε1, let G be a graph, and let X , Y and Z1, . . . , Zr−3 be disjoint subsets

of V (G) as described in the statement, so in particular, (X, Y ) is (C∗, α)-dense in copies of

Z3,t∗

ℓ∗ . The goal is to show that there exists S ∈ F r,t
ℓ (Y ∪Z) such that S is (r, ℓ, t, C, α)-good

for (X, Y ∪ Z).

Our first step is to show that there is a ‘well-behaved’ function S∗ ∈ F3,t∗

ℓ∗ (Y ).
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Claim 3. There is a function S∗ ∈ F3,t∗

ℓ∗ (Y ) which is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ) and

has the property that for every I ⊆ [ℓ∗], the set

B(S∗
I ) =

{

T ∈
(

Z

(r − 3)t

)

:
∣

∣N(T ) ∩ S∗
I

∣

∣ 6 t
}

in
(

Z
(r−3)t

)

has size at most 2−ℓ∗µ|Z|(r−3)t.

Proof of Claim 3. By Lemma A.8 (with input r, t, µ′ = 2−ℓ∗µ, d), the total number of ‘bad’

t∗-subsets S ′ of Y , i.e., those for which B(S ′) > 2−ℓ∗µ|Z|(r−3)t, is at most
√
ε|Y |t∗ . Let S be

the set of functions S∗ in F3,t∗

ℓ∗ (Y ) which do not have the property that for every I ⊆ [ℓ∗]

we have B(S∗
I ) < 2−ℓ∗µ|Z|(r−3)t. We can obtain any function S∗ in S by taking a set I ⊆ [ℓ∗]

and one of the at most
√
ε|Y |t∗ ‘bad’ t∗-sets to be S∗

I , and choosing the 2ℓ∗ − 1 remaining

sets of S∗ in any way from
(

Y
t∗

)

. It follows that

|S| 6 2ℓ∗
√
ε|Y |t∗|Y |(2ℓ

∗

−1)t∗ = 2ℓ∗
√
ε|Y |2ℓ

∗

t∗ .

Since (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ , there are at least 2−ℓ∗α|Y |2ℓ
∗

t∗ functions in

F3,t∗

ℓ∗ (Y ) which are (3, ℓ∗, t∗, C∗, α)-good for (X, Y ). Since by (25) we have 2−ℓ∗α > 2ℓ∗
√
ε,

at least one of these functions is not in S, as required. �

For the remainder of the proof, S∗ will be a fixed function satisfying the conclusion of

Claim 3. Since S∗ is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ), there exist sets

E∗
1 , . . . , E

∗
ℓ∗ ⊆ E(X), with d(E∗

j ) > 2−ℓ∗αC∗ for each 1 6 j 6 ℓ∗ ,

such that for every e1 ∈ E∗
1 , . . . , eℓ∗ ∈ E∗

ℓ∗ , we have eℓ
∗ → S∗.

Our next claim comprises two applications of the pigeonhole principle to find a copy of

Kr−3(t) in Z.

Claim 4. There exists a copy T of Kr−3(t) with t vertices in Zj for each j ∈ [r − 3], and a

set L ⊆ [ℓ∗] of size |L| = ℓ such that:

(i ) |N(T ) ∩ S∗
I | > t for every I ⊆ [ℓ∗],

(ii ) N(T ) contains at least µ|E∗
j | edges of E∗

j , for each j ∈ L.

Proof of Claim 4. By assumption, each edge e ∈ E∗
1 ∪ . . . ∪ E∗

ℓ∗ has at least γ|Zj| common

neighbours in Zj . By the Slicing Lemma, the common neighbours of e in Zi and Zj form an

(ε/γ, d)-regular pair for each 1 6 i < j 6 r− 3. By (25) we have d− ε− (r− 3)tε/γ > d/2.

Hence, applying the Counting Lemma with ε replaced by ε/γ to the graph H = Kr−3(t), it

follows that there are at least

1

Aut(H)

(

d− ε

γ
v(H)

)e(H)( γ|Z|
r − 3

)v(H)

>
1

(

(r − 3)t
)

!

(d

2

)(r−3

2
)t2( γ|Z|

r − 3

)(r−3)t (24)

> 8µ|Z|(r−3)t

copies of Kr−3(t) in N(e) ∩ Z, each with t vertices in each Zj.
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There are therefore, for each j ∈ [ℓ∗], at least 8µ|Z|(r−3)t|E∗
j | pairs (e, T ), where e ∈ E∗

j

and T is a copy of Kr−3(t) as described, such that T ⊆ N(e), or equivalently e ⊆ N(T ).

Since we have

8µ|Z|(r−3)t|E∗
j | = 4µ|Z|(r−3)t|E∗

j | + 4µ|E∗
j ||Z|(r−3)t ,

by the pigeonhole principle, it follows that there are at least 4µ|Z|(r−3)t copies of Kr−3(t) in Z

each of which has at least 4µ|E∗
j | edges of E∗

j in its common neighbourhood. Let us denote by

Tj the collection of such copies of Kr−3(t). For a copy T of Kr−3(t), let L(T ) =
{

j : T ∈ Tj

}

.

We claim that there is a set T containing at least 2µ|Z|(r−3)t copies T of Kr−3(t) in Z,

each with |L(T )| > ℓ. Indeed, this follows once again by the pigeonhole principle, since there

are at least

ℓ∗ · 4µ|Z|(r−3)t (24)
= ℓ|Z|(r−3)t + ℓ∗ · 2µ|Z|(r−3)t

pairs (T, j) with T ∈ Tj .

Now, recall that S∗ satisfies the conclusion of Claim 3, i.e., for each I ⊆ [ℓ∗], there are

at most 2−ℓ∗µ|Z|(r−3)t sets T ∈
(

Z
(r−3)t

)

such that |N(T ) ∩ S∗
I | 6 t. Since |T | > 2µ|Z|(r−3)t,

there is a copy T of Kr−3(t) ∈ T such that for each I ⊆ [ℓ∗], we have |N(T )∩ S∗
I | > t. If we

let L be any subset of L(T ) of size ℓ, then T and L satisfy the conclusions of the claim. �

Let T and L be as given by Claim 4 and for each j ∈ L let Ej ⊆ X be a set of µ|E∗
j | edges

of E∗
j contained in N(T ) as promised by Claim 4(ii ). We construct a function S ∈ F r,t

ℓ (Y )

by choosing, for each I ⊆ L, a subset SI ⊆ S∗
I of size t in N(T ) ∩ Y (which is possible by

Claim 4(i )), and letting the sets Si, i ∈ [r − 3], be the parts of T .

Claim 5. S is (r, ℓ, t, C, α)-good for (X, Y ∪ Z).

Proof of Claim 5. Recall that |L| = ℓ, and assume without loss of generality that L =

{1, . . . , ℓ}. By the choice of T and the definition of the sets SI with I ⊆ L and the sets Si

with i ∈ [r − 3], we have that Si is completely adjacent to each Si′ with i 6= i′, to each SI ,

and to each edge e ∈ ⋃j∈L Ej. Since eℓ
∗ → S∗ for each eℓ

∗ ∈ E∗
1 × . . .× E∗

ℓ∗ , it follows that

eℓ → S for each eℓ ∈ E1 × . . .×Eℓ. Finally, for each j ∈ L, since |Ej | > µ|E∗
j |, we have

d(Ej) > µd(E∗
j ) > µ2−ℓ∗αC∗ (25)

= C ,

as required. �

Thus there exists a function S ∈ F r,t
ℓ (Y ) which is (r, ℓ, t, C, α)-good for (X, Y ∪ Z), as

required. �

Our final lemma states that the existence of a good function as provided by the previous

proposition indeed implies the existence of the desired r-near-acyclic graph.

Lemma A.9 (Lemma 25 of [3]). Let X and Y be disjoint vertex sets in G. Given r, ℓ, t ∈ N,

α > 0, and trees T1, . . . , Tℓ, if C > 2ℓ+3α−1
∑ℓ

i=1 |Ti| and S ∈ F r,t
ℓ (Y ) is (r, ℓ, t, C, α)-good

for (X, Y ), then Zr,t
ℓ (T1, . . . , Tℓ) ⊆ G.

We can now complete the proof of Lemma 5.7.
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Proof of Lemma 5.7. Let H be an r-near-acyclic graph, with r > 3, and let γ > 0. We set

d = γ = γ. Because H is r-near-acyclic, by Observation A.2 there exist trees T1, . . . , Tℓ and

a number t ∈ N such that H ⊆ Zr,t
ℓ (T1, . . . , Tℓ). We now set constants as follows. First,

we choose d = γ. Given r, ℓ, t, d and γ, Proposition A.7 returns integers ℓ∗ and t∗. Now

Proposition A.4, with input ℓ∗, t∗ and d, returns α > 0. Next, consistent with Lemma A.9

we set C := 2ℓ+3α−1
∑ℓ

i=1 |Ti|. Feeding α and C into Proposition A.7 yields ε > 0 and C∗.

Putting C∗ into Proposition A.4 yields a constant D = C ′.

Now suppose we are given a graph G containing pairwise disjoint vertex sets X , Y ,

Z1, . . . , Zr−2 such that G[X ] has chromatic number at least D + 1, and such that |Y | =

|Z1| = · · · = |Zr−2| = m, such that each vertex of X has at least γm neighbours in Y and

each edge of G[X ] has at least γm common neighbour in each Z1, . . . , Zr−2, and such that

each pair from Y, Z1, . . . , Zr−2 forms an ε-regular pair in G of density at least γ. Our aim is

to prove H ⊆ G.

We apply Proposition A.4, with input ℓ∗, t∗, d and C∗, to (X, Y ). By assumption, we

have |N(x) ∩ Y | > d|Y | for each x ∈ X . Since χ
(

G[X ]
)

> D + 1, so (X, Y ) is (C∗, α)-rich

in copies of Z3,t∗

ℓ∗ .

By Lemma A.6 the pair (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ . We now apply Proposi-

tion A.7, with input r, ℓ, t, d, γ, α, C, and ε to X, Y, Z1, . . . , Zr−3. By assumption, each edge

of G[X ] has at least γ|Zi| common neighbours in each Zi, and any pair of Y, Z1, . . . , Zr−3 is

(ε, d)-regular. By Proposition A.7, there exists a function S ∈ F r,t
ℓ (Y ∪Z1∪· · ·∪Zr−3) which

is (r, ℓ, t, C, α)-good for (X, Y ∪ Z1 ∪ · · · ∪ Zr−3). Finally, we apply Lemma A.9, with input

r, ℓ, t, α and T1, . . . , Tℓ, to X and Y ∪ Z1 ∪ · · · ∪ Zr−3 with the function S. By the definition

of C, this lemma gives that Zr,t
ℓ (T1, . . . , Tℓ) is contained in G, and so H ⊆ G as desired. �
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