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Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC),
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Abstract

Following the Perron theorem, the spectral radius of a primitive
matrix is a simple eigenvalue. It is shown that for a primitive matrix
A, there is a positive rank one matrix X such that B = A ◦X , where
◦ denotes the Hadamard product of matrices, and such that the row
(column) sums of matrix B are the same and equal to the Perron
root. An iterative algorithm is presented to obtain matrix B without
an explicit knowledge of X . The convergence rate of this algorithm
is similar to that of the power method but it uses less computational
load. A byproduct of the proposed algorithm is a new method for
calculating the first eigenvector.

Keywords: primitive matrix; Perron root; Markov chain; stochastic
matrix.
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1 Introduction

Given a nonnegative matrix, the problem of computing the first eigenvalue
and eigenvector is considered in this paper. For two matrices A = (aij)
and B = (bij) with the same number of rows and columns, their Hadamard
product is a matrix of elementwise products:

A ◦B = (aijbij) (1)

For scalars α and β:
αA ◦ βB = αβ(A ◦B) (2)

∗Email: doulaye@igbmc.fr
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If A and B are rank one matrices, i.e. A = uvT and B = xyT then

A ◦B = (uvT ) ◦ (xyT ) = (u ◦ x)(v ◦ y)T . (3)

Many properties for Hadamard product are given in [1],[2, chapter 5].
If A = (aij) ∈ R

n×n, then A is called positive if aij > 0, and nonnegative
if aij ≥ 0. Perron [3] showed that the spectral radius of a positive matrix
A is a simple eigenvalue [4, page 667] that dominates all other eigenvalues
in modulus. This eigenvalue, denoted ρ(A), is called the Perron root and
the associated normalized positive vector is called the Perron vector. Non-
negative matrices are frequently encountered in real life applications [5, 6].
Frobenius [7] extented Perron’s work on positive matrices to nonnegative
matrices. The spectral radius of a nonnegative matrix A is positive if it is
irreducible, i.e. (In +A)n−1 is a positive matrix [8, page 534], [4, page 672].
The dominant eigenvalue of an irreducible matrix is unique if it is primitive
[8, page 540], [4, page 674]. A nonnegative matrix is primitive if Am is a
positive matrix for some non nul m [8, page 540], [4, page 678]. Wielandt,
[9], showed that a nonnegative matrix A of order n is primitive if An2

−2n+2

is a positive matrix [8, page 543]. To verify primitivity of a nonnegative
matrix using Frobenius or Wielandt formula leads to huge calculations es-
pecially when n is high. It is shown in [8, page 544] that only some power
calculations of the matrix are necessary.

This paper is on the calculation of the Perron root. The power method
is generally used to obtain the eigenvalue with the maximum modulus and
associated eigenvector [8, page 545], [10, page 330], [4, page 533]. The
convergence rate of the power method depends on the ratio of the second
eigenvalue to the first [10, page 330], [4, page 533]. More iterations will
be required when the modulus of the second highest eigenvalue is close to
that of the first. Here, an iterative algorithm is proposed for calculating the
Perron root for primitive matrices. This algorithm is based on successive
improvement of bounds for the Perron root. There are many research works
on localization of the Perron root for nonnegative matrices [11, 12, 13, 14,
15]. Frobenius carried out the following bounds [8, page 521]:

min
i=1,...,n

{ri(A)} ≤ ρ(A) ≤ max
i=1,...,n

{ri(A)} (4)

min
j=1,...,n

{cj(A)} ≤ ρ(A) ≤ max
j=1,...,n

{cj(A)} (5)

where ri(A) =
∑n

j=1 aij and cj(A) =
∑n

i=1 aij are the row and column sums
of A, respectively. In (4) and (5), equalities occur when ρ(A) is equal to the
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row or column sums. The column sums of the matrix in (6) are both equal
to 3.

A =





0 1 0
3 0 3
0 2 0



 (6)

The matrix A in (6) is imprimitive and its eigenvalues are: 3, −3 and 0.
This example shows that equality in (4) or (5) can occur for an imprimitive
matrix.

Let x = (x1, x2, . . . , xn) a vector with only positive values, xi > 0, and
Dx a diagonal matrix formed with x. The matrix B defined by:

B = D−1
x

ADx (7)

is diagonally similar to A [16], and we have:

Lemma 1.1. The matrices A and B in (7) have the same eigenvalues, and

a) if A is irreducible, then B is irreducible,

b) if A is primitive, then B is primitive,

Proof. a) if A is irreducible then (In+A)n−1 is a positive matrix. From (7),
we have:

In +B = In +D−1
x

ADx = D−1
x

(In +A)Dx (8)

(In +B)n−1 = D−1
x

(In +A)n−1Dx (9)

Dx has only positive values and (In+A)n−1 is a positive matrix. The matrix
(In +B)n−1 is then positive that implies irreducibility of the matrix B.

b) if A is a primitive matrix then there exists an integer m such that Am

is positive. Using (7) we have Bm = D−1
x

AmDx, that implies Bm is positive
and the result follows.

Using an improvement of bounds in (4) and (5) by Minc [17], relation (7)
and the uniqueness of eigenvalue with a maximum modulus for a primitite
matrix, an iterative algorithm is proposed to obtaining the Perron root.

2 Methods

Lemma 2.1. Let A = (aij) ∈ Rn×n a nonnegative matrix. If matrix A has
a row (column) with only zero entries, then A cannot be a primitive matrix.
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Proof. see an exercise on irreducible matrices in [8, page 522].

For a primitive matrix, from the Lemma 2.1 and relations (4)-(5), we
have the following two observations. The minimum value of the row (col-
umn) sums for a primitive matrix is greater than zero. The maximum value
of the row (column) sums for a primitive matrix is greater than or equal to
the Perron root.

Let us note Dr and Dc diagonal matrices formed with the row sums r =
(r1(A), r2(A), . . . , rn(A)) and the column sums c = (c1(A), c2(A), . . . , cn(A))
of A, respectively. The Frobenius bounds (4) and (5) have been improved
by Minc [17, page 27]:

min
i=1,...,n

{

ri(D
−1
r

ADr)
}

≤ ρ(A) ≤ max
i=1,...,n

{

ri(D
−1
r

ADr)
}

(10)

min
j=1,...,n

{

cj(D
−1
c

ADc)
}

≤ ρ(A) ≤ max
j=1,...,n

{

cj(D
−1
c

ADc)
}

(11)

In (10) and (11), equalities hold when the row or column sums are the
same and correspond to the Perron root. Using the row sums relation, (10)
allows to write:

D−1
r

ADr =















a11
r2
r1
a12

r3
r1
a13 . . . rn

r1
a1n

r1
r2
a21 a22

r3
r2
a23 . . . rn

r2
a2n

r1
r3
a31

r2
r3
a32 a33 . . . rn

r3
a3n

...
...

...
. . .

...
r1
rn
an1

r2
rn
an2

r3
rn
an3 . . . ann















(12)

=















a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann















◦















1 r2
r1

r3
r1

. . . rn
r1

r1
r2

1 r3
r2

. . . rn
r2

r1
r3

r2
r3

1 . . . rn
r3

...
...

...
. . .

...
r1
rn

r2
rn

r3
rn

. . . 1















= A ◦X (13)

where X is a positive matrix formed with:

xij =
rj(A)

ri(A)
; i, j = 1, 2 . . . , n (14)

The unicity of the Perron root for a primitive matrix and (13) suggest
that the components of the matrix X can be chosen to have the same row
sums for A ◦X. For a second order nonnegative matrix (n = 2), we have:

A ◦X =

(

a11 a12x
a21/x a22

)

(15)
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where x = r2(A)/r1(A), r1(A) = a11 + a12 and r2(A) = a21 + a22.
If the row sums in (15) are the same and equal to S, an expression can

be obtained for the parameter x:

x =
S − a11
a12

;
1

x
=

S − a22
a21

(16)

To have a value for x, a12 and a21 should be nonzero. Relation (16) allows
to have a second order equation which resolution leads to a value for S:

S2 − (a11 − a22)S + a11a22 − a12a21 = 0 (17)

The solution of (17) with the maximum modulus is:

S =
(

a11 + a22 +
√

(a11 − a22)2 + 4a12a21

)

/2 (18)

A second order nonnegative matrix A is primitive if a12, and a21 are both
nonzero, on the one hand. On the other hand, at least a11 or a22 should
be nonzero. Hence, for a second order primitive matrix, explicit expressions
can be obtained for matrix X (parameter x) and the Perron root, (18).
However, a direct search for components of the matrix X in (13) becomes
difficult when n > 2.

Lemma 2.2. Let A = (aij) a square matrix of order n, y = αx a vector
where α is a nonzero scalar and x is the eigenvector associated with eigen-
value λ of A. If all components of x have nonzero value, the row sums of
the matrix D−1

y
ADy are the same and equal to the eigenvalue λ of A.

A similar result is obtained using AT or the column sums.

Proof. Using the definition of the eigenvalue, the component i of Ax = λx
is:

n
∑

j=1

aijxj = λxi (19)

The component i of the row sums of the matrix D−1
y

ADy is:

ri =
1

xi





n
∑

j=1

aijxj



 (20)

By replacing the right hand expression of (19) in (20) the result follows.
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Compared to the Frobenius bounds (4) and (5), the bounds in (10) and
11 are based on a modification of the initial matrix. This process can be
repeated to further sharpen the bounds. From the unicity of the Perron
root for a primitive matrix, a repeative improvement of the Minc bounds
will lead to equalities of the row (column) sums. The main result of this
paper is the following.

Theorem 2.1. Let A be a primitive matrix of order n. There exists a
positive rank one matrix X of the form

X =















1 x2/x1 x3/x1 . . . xn/x1
x1/x2 1 x3/x2 . . . xn/x2
x1/x3 x2/x3 1 . . . xn/x3

...
...

...
. . .

...
x1/xn x2/xn x3/xn . . . 1















(21)

such that the matrix B = A ◦ X is similar to A. In addition, the row
(column) sums of B are the same and equal to the Perron root of A.

Proof. The row sums are used for the proof, the column sums can also be
used in a similar way.

Let us note A(0) the initial matrix and its row sums vector as r(0). Re-
lation (10) allows to write:

A(t) = D−1
r(t−1)A

(t−1)D
r(t−1) ; t = 1, 2, . . . (22)

From (13) and (14), the components of matrix A(t) and its row sums are:

a
(t)
ij =

r
(t−1)
j (A(t−1))

r
(t−1)
i (A(t−1))

a
(t−1)
ij ; i, j = 1, 2, . . . , n (23)

r
(t)
i (A(t)) =

n
∑

j=1

a
(t)
ij ; i = 1, 2, . . . , n (24)

At iteration t, A(t) is similar to A(t−1). From the Minc relation (10), the
bounds with A(t) are improved compared to those with A(t−1). Hence,
when t → ∞, equalies hold in (10) for primitive matrix and the row sums

r
(t)
i (A(t)), i = 1, 2, . . . , n, have the same value which is equal to ρ(A), thank
to Lemma 2.2.
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From (22) and the notation in (13), we can write:

A(1) = A(0) ◦X(0) = A ◦X(0) (25)

A(2) = A(1) ◦X(1) = A ◦X(0) ◦X(1) (26)

...

A(t) = A ◦X(0) ◦X(1) ◦ . . . ◦X(t−2) ◦X(t−1) (27)

At the convergence iteration t, X(t) is formed with only 1. Then, from (27)
we have

B = A(t) = A ◦X (28)

where:

X = X(0) ◦X(1) ◦ . . . ◦X(t−2) ◦X(t−1) (29)

xij =

t−1
∏

s=0

r
(s)
j (A(s))

r
(s)
i (A(s))

; i, j = 1, 2, . . . , n (30)

Relation (28) is another form of (12), then matrix B is similar to matrix A.
Since the row sums of matrix B are the same, equalities occur in (4) and
lead to the Perron root.

The matrix X in (21) can be write as a product of two vectors:

X = xyT (31)

where x = (1, x1/x2, . . . , x1/xn)
T and y = (1, x2/x1, . . . , xn/x1)

T , i.e. the
first column and first row of the matrix X, respectively. X is then a rank one
matrix, and is also positive because formed with the row sums of a primitive
matrix, see Lemma 2.1.

Corollary 2.1. Vector y allowing to obtain the matrix X in (31) is in the
space spanned by the Perron vector of a primitive matrix A.

Proof. Use (12), (13) and Lemma 2.2.

2.1 Convergence of the proposed algorithm

Theorem 2.2. The iterative algorithm based on a successive improvement
of the Minc bounds is convergent for a primitive matrix.
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Proof. At iteration t, the row sum vectors associated with matrices A(t) and
A(t−1) are r(t)(A(t)) and r(t−1)(A(t−1)), respectively. From the Minc theorem
[17, page 27], we have:

min
i

{

r
(t)
i (A(t))

}

≥ min
i

{

r
(t−1)
i (A(t−1))

}

(32)

max
i

{

r
(t)
i (A(t))

}

≤ max
i

{

r
(t−1)
i (A(t−1))

}

(33)

Let us define two decreasing sequences as follows:

ξ(t) = ρ(A)−min
i

{

r
(t)
i (A(t))

}

(34)

ζ(t) = max
i

{

r
(t)
i (A(t))

}

− ρ(A) (35)

From (33) and (35), we have

ζ(t) = max
i

{

r
(t)
i (A)

}

− ρ(A) ≤ max
i

{

r
(t−1)
i (A)

}

− ρ(A) = ζ(t−1)(36)

ζ(t) ≤ c(t)ζ(t−1) (37)

where 0 < c(t) ≤ 1. Let ζ(0) denotes the initial value obtained using (35).
From relation (37) we have:

ζ(t) ≤
(

t
∏

i=1

c(i)

)

ζ(0) (38)

Since c(i), i = 1, 2, . . . , t, are positive numbers not all equal to 1, we have

lim
t→∞

ζ(t) = 0 (39)

A similar reasoning using (32) and (34) leads to limt→∞ ξ(t) = 0. Hence,
when the number of iteration goes to infinity, relations (34) and (35) show
that the row sums obtained with the algorithm converges to the Perron root.
Referring to Lemma 2.2, it is like a vector with only ones is used to obtaining
to Perron root.

Relation (38) can be used to estimate the minimum number of iterations
required by the algorithm before convergence when an error level α is set.
Assuming that E(c(i)) = c is the mean of the c(i) coefficients, relation (38)
becomes ζ(t) = ctζ(0) and we have

ct ≤ α⇒ t ≥ log(α)

log(c)
(40)
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Corollary 2.2. For primitive matrices, the convergence rate of the pro-
posed algorithm is similar to that of the power method and depends on the
magnitude of the second highest eigenvalue.

Proof. The matrix A can be write as the sum of rank one matrices using its
eigenvalues and eigenvectors:

A = UΛU−1 = UΛV T (41)

= λ1u1v
T
1 + λ2u2v

T
2 + . . . λnunv

T
n (42)

From (42), (31) and (3) we have:

A◦X = λ1(u1◦x)(v1◦y)T +λ2(u2◦x)(v2◦y)T +. . . λnun◦x)(vn◦y)T (43)

Using (41) and (42), an expression for power k of matrix A is

Ak = λk
1u1v

T
1 + λk

2u2v
T
2 + . . . λk

nunv
T
n (44)

This expression allows to have another one similar to (43). Then, the row
sums at the first step of the algorithm using Ak are:

(Ak ◦X(0))1 = λk
1δ1z1 + λk

2δ2z2 + . . . + λk
nδnzn (45)

= λk
1δ1

(

z1 +
δ2
δ1

(

λ2

λ1

)k

z2 + . . .+
δn
δ1

(

λn

λ1

)k

zn

)

(46)

where δi = (vi ◦ y(0))T1, zi = (ui ◦ x(0)), i = 1, 2, . . . , n,

x(0) =

(

1,
r
(0)
1

r
(0)
2

,
r
(0)
1

r
(0)
3

, . . . ,
r
(0)
1

r
(0)
n

)T

and y(0) =

(

1,
r
(0)
2

r
(0)
1

,
r
(0)
3

r
(0)
1

, . . . , r
(0)
n

r
(0)
1

)T

From corollary 2.1, vector (A ◦X)1 ∈ span
{

(Ak ◦X(0))1
}

then,

dist (span(A ◦X)1, span(z1)) = O
(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k
)

(47)

2.2 Algorithm and implementation

Relations (23) and (24) allow to obtain an algorithm for computing the
matrix B in Theorem 2.1. A convergence test is based on the difference
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between the maximum and the minimum values of the row or column sums,
i.e. the range value.

error = max
i=1,...,n

{

r
(t)
i (A(t))

}

− min
i=1,...,n

{

r
(t)
i (A(t))

}

(48)

error = max
j=1,...,n

{

c
(t)
j (A(t))

}

− min
j=1,...,n

{

c
(t)
j (A(t))

}

(49)

Another convergence test can be based on the examination of the minimum
and maximum row sum values, i.e. by using the decreasing sequences ξ(t)

and ζ(t) defined in Theorem 2.2.

2.2.1 Algorithm A (using row sums): Perron root only

1. Initialization

• set: t← 0, a
(t)
ij ← aij , calculate the row sums using (24)

• set stopping rules: eps (the acceptable error), maxIter (the max-
imum number of iterations), compute the initial error value using
(48)

2. while (error > eps and t < maxIter)

• update matrix: (23)

• calculate row sums: (24)

• compute error: (48)

• increase iteration number: t← t+ 1

Remark 2.1. As mentioned, Theorem 2.1 is also valid using column sums.
In the implementation, one can compute the row and column sums and per-
form the next step using the sum where the initial error is the lowest.

Remark 2.2. From an iteration to the next, the error should decrease by an
amount that depends on the convergence rate. Otherwise, we must stop the
algorithm because the matrix does not seem to be primitive. This observation
can be used as an indirect test for primitivity of a matrix.

Indeed, if the spectral radius is not simple (case of an irreducible im-
primitive matrix) there may be at least two eigenvectors associated with
eigenvalues having the same modulus.

Remark 2.3. With the proposed algorithm, the diagonal entries of A remain
unchanged, only the off-diagonal components are modified. The Gerschgorin
discs [8, page 388] associated with a matrix allow to illustrate this.
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Let us consider an example:

A =

(

3
√
3√

3 1

)

; A(1) =

(

3 1
3 1

)

(50)

The off-diagonal components of A are modified in such a way all discs cross
the same highest point on the x-axis (4 for this example). To show this, let
us write:

A = DA + P (51)

where DA is a diagonal matrix formed with the diagonal elements of A and
P is matrix A where the diagonal elements are set to zero. From (28), we
have:

B = DA + P ◦X (52)

Hence, the row sums of matrix B are given by:

ri(B) = ri(DA) + ri(P ◦X) = aii + pT
i.xi. (53)

where pi. and xi. are vectors formed with row i of matrices P and X, re-
spectively.

Remark 2.4. Compared to the power method, there is no initial vector to
set. The results obtained using the power method are the Perron root and the
associated eigenvalue. Only the Perron root is obtained using this algorithm.
However, since the row (column) sums of the matrix B in (28) are the same,
a vector 1 formed with only ones is an eigenvector of B (BT ).

B1 = ρ(A)1 = (A ◦X)1 (54)

Remark 2.5. The proposed algorithm uses another matrix in compari-
son with the power method. At each iteration, the total numbers of mul-
tiplications and additions of the matrix-vector multiplication by the power
method are equal to the total number of operations for the proposed algo-
rithm. Hence, using the power method, the additional arithmetic operations
used for calculating the eigenvector and the eigenvalue are extra computa-
tional load compared to the proposed algorithm.

2.2.2 Algorithm B (using row sums): Perron root and vector

Instead of the algorithm A (2.2.1), another one can consist in searching for
a vector y similar to the Perron vector. For this purpose, the matrix B is
initially equal to A and the vector y is set to 1, then, the row sums of B are
calculated. At iteration t, a vector y(t) is formed using row sums and the
matrix B is updated. At the convergence, we should have y(t) ≈ 1.

11



1. Initialization

• set: t← 0, B ← A, y← 1 and compute row sums r
(0)
i of B,

• calculate initial error: max(r
(0)
i )−min(r

(0)
i ).

• set stopping rules: eps and maxIter (see Algorithm A)

2. while (error > eps and t < maxIter)

• form y(t) using row sums r
(t)
i

• update y: y ◦ y(t)

• form x (1/y) and update matrix B: A ◦ (x ∗ yT )

• compute error: max |y(t) − 1|
• increase iteration number: t← t+ 1

• calculate row sums r
(t)
i of B

The convergence test of this algorithm consists to have only ones for
vector y. Instead, the convergence test can be based on the examination
of the minimum and maximum row sum values of the decreasing sequences
ξ(t) and ζ(t) defined in Theorem 2.2. The code in appendix A.1 is the R
implementations of algorithm B using this test. An input matrix should be
square, nonnegative and each row sum should be greater than zero.

2.2.3 Application to row-stochastic matrices

Let us consider Markov chains modeling a dynamic system with finite dis-
crete n states. At each time t, this system is in one state. When the system
is in state i, the move to state j or to stay in state i is controlled by the prob-
ability pij ≥ 0,

∑n
j=1 pij = 1. The probabilities are organized in a transition

matrix P which is nonnegative. Interestingly, the power k of matrix P is
also a transition matrix which element pij corresponds to the probability to
move from state i to state j at time t+k. The Markov chains are used in: (a)
biological sequences analysis [18, 19], (b) internet traffic or search engines
[20, 21, 22], (c) . . . The state occupied by the Markov chain process at time
t + k depends on the nature of transition matrix P : reducible/irreducible,
imprimitive/primitive. In some applications, the observed transition matrix
is modified to be primitive [20]. For this particular case, the power of the
modified matrix P̂ converges to a matrix formed with the same vector u
verifying: uT P̂ = uT . The vector u is the left-hand vector of the matrix P̂ .
In the search engines based on the Markov chains, the components of the
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vector u allow to hierarchize the information. Applying algorithm B (2.2.2)
to the transposed of the row-stochastic (modified transition) matrix lead to
a vector y which components are then normalized in a way that their sum
is 1. This normalized vector corresponds to u.

3 Results and conclusions

All calculations were performed on the same computer (a laptop equipped
with i7-66600U processor, 16 GB of RAM, under Microsoft Windows 10)
and R version 3.6.2. The default error level was arbitrarily set to 1.0E-8.

The first example is:

A =





2 1 0
0.5 3 2
1 2 4



 (55)

The range values for the row and the column sums are 4 and 2.5 respectively.
The algorithm is performed using the column sums. Figure 1 presents the

−2 0 2 4 6

−
4

−
2

0
2

4

x x x o

Figure 1: Gerschgorin’s discs: thin plot lines for A and A(t) before conver-
gence, bold plot lines for A(t) at convergence

Gerschgorin discs for all iterations. The Perron root for this example is
5.739952, the proposed algorithm and the power method require 17 and 19
iterations, respectively. Figure 1 shows that the major modifications of the
off-diagonal elements of the matrix A are done during the first five iterations.
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For all of the tests performed, the algorithm proposed and the power
method have close number of iterations. Worse results, in term of the num-
ber of iterations, were obtained using a tridiagonal matrix. Let T (n; c, a, b)
a tridiagonal matrix of order n, where a is the value for the diagonal compo-
nents, b is the value for the upper diagonal components and c is the value for
the under diagonal components. An explicit expression relating eigenvalues
of matrix T is available [23]:

λk = a+ 2
√
bc cos

kπ

n+ 1
(56)

The ratio λ2/λ1 for T is near 1 when n is high. For n = 50, a = 3, b = 2
and c = 1 the first two eigenvalues of matrix T are: 5.823063 and 5.806989.
The proposed algorithm took 5, 890 (algorithm A) or 5, 174 (algorithm B)
iterations to calculate the Perron root. The power method need 5, 159 iter-
ations.

Except the cases where the modulus of the second eigenvalue is near to
that of the first, the algorithm proposed converges after few iterations, espe-
cially when the first eigenvalue is largely dominant. The proposed method
has been succesfully used for a matrix of order 15, 515 that results from
high-throughput biological data.

With a convergence rate similar to that of the classic power method, the
proposed algorithm for computing the Perron root is computationally less
demanding. But, it applies to only primitive matrices. However, it can be
used as a low cost primitivity test compared to the matrix power calculations
involved in the Frobenius and Wielandt tests.
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A R code using row sums

A.1 Algorithm B

## This function computes iteratively the Perron root

## and the eigenvector of matrix A using row sums

#

# A: nonnegative square matrix (all row sums are > 0)

# tol: error level used (stopping criterion)

# maxIter: maximum number of iterations (stooping criterion)

#

# Returned
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# B: matrix which has the same row sums (B = A o X)

# pfr: minimum and maximum row sum, that defines to the Perron root

# y: vector (leading to have the eigenvector and matrix X)

# iter: number of iterations performed

# rmin: sequences with minimum row sum values for iterations

# rmax: sequences with maximum row sum values for iterations

calcPRc <- function(A, tol=1.0e-8, maxIter=50) {

n <- nrow(A); m <- ncol(A)

ri <- apply(A, 1, sum)

ko <- (sum(A<0) || (min(ri)==0))

if ((n != m) || (ko)) {

stop("calcPRc(): for nonnegative primitive matrices")

}

y <- rep(1,n)

iter <- 1; B <- A

rmin <- c(); erMin <- rmin[iter] <- min(ri)

rmax <- c(); erMax <- rmax[iter] <- max(ri)

erIter <- ((erMin > tol) || (erMax > tol))

while (erIter && (iter < maxIter)) {

yt <- ri/ri[1]; y <- y*yt

B <- A * ((1/y) %*% t(y))

ri <- apply(B, 1, sum)

iter <- iter + 1

rmin[iter] <- ri.min <- min(ri)

rmax[iter] <- ri.max <- max(ri)

erMin <- rmin[iter] - rmin[iter-1]

erMax <- rmax[iter-1] - rmax[iter]

erIter <- ((erMin > tol) || (erMax > tol))

}

pfr <- c(ri.min, ri.max)

list(B=B, pfr=pfr, y=y, iter=iter-1, rmin=rmin, rmax=rmax)

}
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