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Abstract. In this paper we consider efficient algorithms for solving the algebraic equation Aαu =
f , 0 < α < 1, where A is a properly scaled symmetric and positive definite matrix obtained from
finite difference or finite element approximations of second order elliptic problems in Rd, d = 1, 2, 3.
This solution is then written as u = Aβ−αF with F = A−βf with β positive integer. The approxi-
mate solution method we propose and study is based on the best uniform rational approximation
of the function tβ−α for 0 < t ≤ 1, and the assumption that one has at hand an efficient method
(e.g. multigrid, multilevel, or other fast algorithm) for solving equations like (A+ cI)u = F, c ≥ 0.
The provided numerical experiments confirm the efficiency of the proposed algorithms.
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1. Introduction

1.1. Motivation for our study. Let Ω be a bounded domain in Rd, d = 1, 2, 3, with polygonal
boundary Γ = ∂Ω = Γ̄D ∪ Γ̄N , where ΓD has positive measure. Let q(x) ≥ 0 in Ω, and a(x) ∈ Rd×d
be a symmetric and positive definite (SPD) matrix uniformly bounded in Ω, i.e.,

(1) cξT ξ ≤ ξTa(x) ξ ≤ CξT ξ ∀ξ ∈ Rd, ∀x ∈ Ω,

for some positive constants c and C. Next, on V × V , V := {v ∈ H1(Ω) : v(x) = 0 on ΓD} define
the bilinear form

(2) A(u, v) :=

∫
Ω

(
a(x)∇u(x) · ∇v(x) + q(x)u(x)v(x)

)
dx.

Under the assumptions on a(x), q, and Γ, the bilinear form is symmetric and coercive on V . Further,
introduce T : L2 := L2(Ω) → V , where for f ∈ L2(Ω) the function u = T f ∈ V is the unique
solution to A(u, φ) = (f, φ), ∀φ ∈ V, and (v, u), for u, v ∈ L2(Ω) is the inner product in L2(Ω).

The goal of this paper is to study methods and algorithms for solving the finite element approx-
imation of the operator equation

(3) Lαu = f, L = T −1, Lαu(x) =

∞∑
i=1

λαi ciψi(x), where u(x) =

∞∑
i=1

ciψi(x),

{ψi(x)}∞i=1 are the eigenfunctions of L, orthonormal in L2-inner product and {λi}∞i=1 are the cor-
responding eigenvalues that are real and positive.

This definition is general, but different from the definition of the fractional powers of elliptic
operators with homogeneous Dirichlet data defined through Riesz potentials, which generalizes the
concept of equally weighted left and right Riemann-Liouville fractional derivative defined in one
space dimension to the multidimensional case, see, e.g. [3]. There is ongoing research about the
relations of these two different definitions and their possible applications to problems in science and
engineering, see, e.g. [2]. However, we shall focus on the current definition and withhold comments
and references on such works.

Studying and numerically solving such problems is motivated by the recent development in the
fractional calculus and its numerous applications to Hamiltonian chaos, anomalous transport, and
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super-diffusion, [31], anomalous diffusion in complex systems such as turbulent plasma, convec-
tive rolls, and zonal flow system, [1], long-range interaction in elastic deformations, [25], nonlocal
electromagnetic fluid flows, [21], image processing, [10], nonlocal evolution equations arising in ma-
terials science, [2]. A recent discussion about various anomalous diffusion models, their properties
and applicability to chemistry and engineering one can find in [22]. These applications lead to var-
ious types of fractional order partial differential equations that involve in general non-symmetric
elliptic operators see, e.g. [17].

An important subclass of such problems are the fractional powers of self-adjoint elliptic operators
described below, which are nonlocal but self adjoint. Assume that a finite element method has been
applied to approximate the problem (3) and this resulted in a certain algebraic problem. The aim
of this paper is to address the issue of solving such systems. The rigorous error analysis of such
approximation is a difficult task that is outside the scope of this paper. Such error bounds are
derived under certain assumptions that are interplay between the data regularity, regularity pick-
up of L and the fractional power α. The needed justification is provided by the work of Bonito and
Pasciak, [3], for the problem (2) in the case when q = 0 and ΓD = ∂Ω, see also earlier work [20].

Following [3], one introduces Ḣα := {v ∈ L2 :
∑∞

j=1 λ
2α
j |(v, ψj)|2 < ∞} and shows that Ḣα is a

Hilbert space under the inner product Aα(v, w) := (Lα/2v,Lα/2w), for all v, w ∈ Ḣα. To set up a

finite element approximation of Lαu = f we first introduce its weak form: find u ∈ Ḣα such that

(4) Aα(u, v) = (f, v), ∀v ∈ Ḣα.

This problem has a unique solution

(5) u = T αf :=
∞∑
j=1

λ−αj (f, ψj)ψj .

Then for a finite elements space Vh ⊂ Ḣ1 of continuous piece-wise polynomial functions defined
on a quasi-uniform mesh with mesh size h one gets an approximate solution uh to (3) by setting

(6) Aαhuh = πhf, A−1
h = Th,

where Th : Vh → Vh is the solution operator to the FEM of finding uh ∈ Vh s. t.

A(uh, v) = (f, v) ≡ (πhf, v), ∀v ∈ Vh
and πh : L2(Ω)→ Vh is the orthogonal projection on Vh. Here for T αh we use an expression similar
to (5) but involving the eigenfunctions and eigenvalues of Th. As shown in [3], if the operator T
satisfies the regularity pick up, i.e., there is s ∈ (0, 1] s.t. ‖u‖Ḣ1+s(Ω) ≡ ‖T f‖Ḣ1+s(Ω) ≤ c‖f‖Ḣ−1+s(Ω)

and L is a bounded map of Ḣ1+s(Ω) into Ḣ−1+s(Ω), then for α > s one has

(7) ‖u− uh‖L2 = ‖T αf − T αh πhf‖L2 ≤ Ch2s‖f‖Ḣ2δ , δ ≥ 0.

The paper [3, see, Theorem 4.3] contains more refined results depending on the relationship between
smoothness of the data δ, the regularity pick up s and the fractional order α. In the case of full
regularity, s = 1, the best possible rate for f ∈ L2(Ω) is, cf. [3, Remark 4.1],

‖u− uh‖L2 ≤ Ch2α| lnh|‖f‖L2 .

The bottomline of the error estimates from [3] is that, if f ∈ L2(Ω) and s > α, then ‖u − uh‖L2

is essentially O(h2α). Therefore, the solution uh ∈ Vh of (6) is an approximation to the solution
u of (3). This fact makes our aim of solving the algebraic problem (6) justifiable. Finite element
approximations of the elliptic problem (3) and also more general non-symmetric problems were
recently considered and studied by Bonito and Pasciak in [4].

1.2. Algebraic problem under consideration. Now let N be the dimension of Vh and consider
that a standard nodal basis is used. Let A ∈ RN×N be a matrix representation of Ah = T −1

h

(defined in (3)) and ũ ∈ RN and f̃ ∈ RN be vector representations through the nodal values of
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uh ∈ Vh, and πhf ∈ Vh, respectively. Then we can recast the problem (6) in the following algebraic
form:

(8) find u ∈ RN such that Aαu = f̃ .

The matrix A is symmetric and positive definite. The fractional power Aα, 0 < α < 1, of a symmet-

ric positive definite matrix A is expressed through the eigenvalues and eigenvectors {(Λ̃i,Ψi)}Ni=1

of A. We assume that the eigenvectors are l2-orthonormal, i.e. ΨT
i Ψj = δij and Λ̃1 ≤ Λ̃2 ≤ . . . Λ̃N .

The spectral condition number k(A) = Λ̃N/Λ̃1 = O(h−2) for quasi-uniform meshes with mesh-size h.
Then A = WDW T and Aα = WDαW T , where W,D ∈ RN×N are defined as W = [ΨT

1 ,Ψ
T
2 , ...,Ψ

T
N ]

and D = diag(Λ̃1, . . . , Λ̃N ). Then A−α = WD−αW T and the solution of Aαu = f̃ can be expressed
as

(9) u = A−αf̃ = WD−αW T f̃ .

Obviously, we have the following standard equality for any β ∈ R:

‖u‖Aβ+α = ‖f̃‖Aβ−α with ‖u‖2Aγ = uTAγu, γ ∈ R.

The formula (9) could be used in practical computations if the eigenvectors and eigenvalues are
explicitly known and the matrix vector multiplication with W is equivalent to a Fast Fourier
Transform when A is a circulant matrix. In such cases the computational complexity is almost
linear, O(N logN). However, this limits the applications to problems with constant coefficients
in simple domains and to the lowest order finite element approximations. More general is the
approach using an approximation of A with H-matrices combined with Kronecker tensor-product
approximation. This allows computations with almost linear complexity of the inverse of fractional
power of a discrete elliptic operator in a hypercube (0, 1)d ∈ Rd, for more details, see [9]. First
attempt to apply H-matrices to solving fractional differential equations in one space variable is
done in [32].

This work is related also to the more difficult problem of stable computations of the matrix square
root and other functions of matrices, see, e.g. [7, 14, 16], where the stabilization of Newton method
is achieved by using suitable Padé iteration. However, in this paper we do not deal with evaluation

of Aα, instead we propose an efficient method for solving the algebraic system Aαu = f̃ , where
A is an SPD matrix generated by approximation of second order elliptic operators. Our research
is also connected with the work done in [15], where numerical approximation of a fractional-in-
space diffusion equation with non-homogeneous boundary conditions is considered. In [15], the
proposed solver of the arising algebraic system relies on Lanczos method. First, the adaptively
preconditioned thick restart Lanczos procedure is applied to a system with A. The gathered spectral
information is then used to solve the system with Aα. In [7] an extended Krylov subspace method
is proposed, originating by actions of the SPD matrix and its inverse. It is shown that for the
same approximation quality, the variant of the extended subspaces requires about the square root
of the dimension of the standard Krylov subspaces using only positive or negative matrix powers.
A drawback of this method is the memory required to store the full dense matrix W needed to
perform the reorthogonalization. Essentially, this approach and the method proposed and used in
[12] rely on polynomial approximation of t−α, and the efficiency of the methods depends on the
condition number of A and deteriorates substantially for ill-conditioned matrices.

1.3. Overview of existing methods. The numerical solution of nonlocal problems is rather
expensive. The following three approaches (A1 - A3) are based on transformation of the original
problem to a local elliptic or pseudo-parabolic problem, or on integral representation of the solution,
thus increasing the dimension of the original computational domain. The Poisson problem is
considered in the related papers refereed bellow.

A1 A Neumann to Dirichlet map is used in [5]. Then, the solution of fractional Laplacian
problem is obtained by u(x) = v(x, 0) where v : Ω× R+ → R is a solution of the equation

−div
(
y1−2α∇v(x, y)

)
= 0, (x, y) ∈ Ω× R+,
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where v(·, y) satisfies the boundary conditions of (2) ∀y ∈ R+, limy→∞ v(x, y) = 0, x ∈ Ω, as
well as limy→0+

(
−y1−2αvy(x, y)

)
= f(x), x ∈ Ω. The variational formulation of this equa-

tion is well posed in the related weighted Sobolev space. The finite element approximation
uses the rapid decay of the solution v(x, y) in the y direction, thus enabling truncation of
the semi-infinite cylinder to a bounded domain of modest size. The proposed multilevel
PCG method is based on the Xu-Zikatanov identity [30].

A2 A fractional Laplacian is considered in [27, 28] assuming the boundary condition

a(x)
∂u

∂n
+ µ(x)u = 0, x ∈ ∂Ω,

which ensures L = L∗ ≥ δI, δ > 0. Then the solution of the nonlocal problem u can
be found as u(x) = w(x, 1), w(x, 0) = δ−αf, where w(x, t), 0 < t < 1, is the solution of
pseudo-parabolic equation

(tD + δI)
dw

dt
+ αDw = 0,

and D = L− δI ≥ 0. Stability conditions are obtained for the fully discrete schemes under
consideration. A further development of this approach is presented in [18] where the case
of fractional order boundary conditions is studied.

A3 The following representation of the solution operator of (2) is used in [3]:

L−α =
2 sin(πα)

π

∫ ∞
0

t2α−1
(
I + t2L

)−1
dt

The authors introduce an exponentially convergent quadrature scheme. Then, (the approx-
imation of u only involves evaluations of (I + tiA)−1f , where ti ∈ (0,∞) is related to the
current quadrature node, and where I and A stand for the identity and the finite element
stiffness matrix corresponding to the Laplacian. A further development of this approach is
available in [4], where the theoretical analysis is extended to the class of regularly accretive
operators.

There are various other problems leading to systems with fractional power of sparse symmetric
and positive definite matrices. For an illustration we give the following examples. Consider a
non-overlapping domain decomposition (DD) for the 2D model Laplacian problem on a regular
mesh with an interface along a single mesh line. The elimination of all degrees of freedom from the
interior of the two subdomains reduces the solution to a system of equations on the interface, or
the Schur complement system. The matrix of this system is spectrally equivalent to A1/2, where
A = h−1tridiag(−1, 2,−1), see, e.g. [23]. When in the preconditioned conjugate gradient (PCG)

method FFT is used to solve the system with A1/2, then the DD preconditioner has almost optimal
complexity.

In [12] the approach discussed in this paper was used to optimally solve the equation (8) with
α = 0.5, when A is an SPD matrix and belongs to a class of particular weighted graph Laplacian
models used in the volume constrained 2-phase segmentation of images. Then, after rescaling, so
that the spectrum of the rescaled matrix is in (Λ1, 1], the best uniform polynomial approximation

of t−1/2, t ∈ [Λ1, 1], Λ1 well separated from 0, was used to construct an optimal solver.

1.4. Our approach and contributions. In Section 2 we introduce the mathematical problem
and present the idea of the proposed algorithm. Let Λ be an upper bound for the spectrum of A,

namely, Λ̃j ≤ Λ, j = 1, . . . , N . We rescale the system to the form

(10) Aαu = f , where A = A/Λ and f = f̃/Λα,

so that the spectrum of A, Λj = Λ̃j/Λ, j = 1, · · · , N is in (0, 1]. We summarize the properties of
the rescaled matrix A in the following assumption.

Assumption 1.1. A is a symmetric, positive definite matrix and its spectrum is in the interval
(0, 1].
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Next, we argue that instead of the system Aαu = f one can solve the equivalent system
Aα−βu = A−βf with β ≥ 1 an integer. Then the idea is to approximately evaluate Aβ−αf by

Pk(A)(Qk(A))−1f , for k integer, where Pk(t)Q
−1
k (t) := rβα(t) is the best uniform rational approxi-

mation (BURA) of tβ−α on the interval (0, 1], see for more details Subsection 2.1. In Section 2 we

discuss the methods for computing rβα(t), its approximation properties and questions regarding the
implementation of Pk(A)(Qk(A))−1f .

The properties of the best rational approximation have been an object of numerous studies. In
particular, the distribution of the poles, zeros, and extreme points, and the asymptotic behavior of

the error Eα(k, k;β) = maxt∈[0,1]

∣∣∣tβ−α − rβα(t)
∣∣∣ when k → ∞ are given in [26]. For example, it is

known that all poles lie on the negative real line and the error decays exponentially in k, namely,

is O(e−c
√
k), c > 0, see, relation (14).

In Theorem 2.3 and Remark 2.4 we show that we can balance the finite element error (7) with

the error of the BURA (13) so that the total error is O(h2α) when k ≈ β2

π2(β−α)
| lnh|2. Thus,

the feasibility of the method will depend on the possibility to address two key issues: (1) for
a given 0 < α < 1 and chosen k integer, compute the BURA Pk(t)/Qk(t) and (2) implement
Pk(A)(Qk(A))−1f efficiently.

To find the BURA for tβ−α we apply the modified Remez algorithm, see, [19, 6]. The main
difficulty in implementing the algorithm is its instability for large k, outlined for example in [8].
Our experience shows that for moderate k = 5, 6, 7 we can compute the BURA using double
precision and equivalent representation by Chebyshev polynomials (18). We note that for α < 0.5
we have better approximation and the algorithms for finding BURA have better stability, but still
an outstanding issue is the stability of the computations for k > 9.

Due to Lemma 2.5 (see also [24, Lemma 2.1]) one can represent the rational function as a sum of
partial fractions, so that the implementation of Pk(A)(Qk(A))−1 will involve inversion of A− djI,
dj ≤ 0 for j = 0, 1, . . . , k, see representation (15). The integer parameter k ≥ 1 is the number of
partial fractions of the best uniform rational approximation r1

α(t) of t1−α on the interval (0, 1]. The
most general form of this method for β = 1 leads to (16). The nonpositivity of dj ensures that
the systems with A− djI, dj ≤ 0 can be solved efficiently having at hand some efficient solver for
systems with A. The positivity of cj means that the BURA approximation r1

α(A) is positive. The
behavior of cj > 0 and the related numerical round-off stability is further discussed in Remark 2.6.
Since we can compute BURA efficiently for k ≤ 10 and small α we have developed, studied and
experimented with a new concept of multi-step BURA algorithm, outlined in Section 4.

Finally, in Section 5 we present numerical experiments that illustrate the efficiency of the pro-
posed algorithms. The first group of tests concerns scaled (normalized) matrices corresponding to
1D Poisson equation where the exact solution is known and the BURA approximations are exactly
computed. This setting allows numerically confirming the sharpness of theoretical estimates. In
particular, some promising approximation properties are observed when different powers of A are
involved in the multi-step BURA. The experiments with 2D fractional Laplacian illustrate the the-
oretical results concerning balancing the rescaling effect in (13). Finally, we present 3D numerical
experiments involving jumping coefficients. The solution u is unknown, while ur is computed by a
preconditioned conjugate gradient (PCG) solver that uses algebraic multigrid as a preconditioner.
A multi-step setting of BURA is used to confirm the robustness with respect to the PCG accuracy.

2. Solution strategy

2.1. The idea and theoretical justification of the method. The goal of this study is to
present a new robust solver of optimal complexity for solving the system (8) for a large class of
sparse SPD matrices assuming that such a solver is available for α = 1. This assumption holds in
a very general setting, when A is generated by finite element or finite difference approximation of
second order elliptic operators. Such matrices are used in the numerical tests presented in Section
5. Note that Aα is dense and in general not known. This means in particular that the standard
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iterative solution methods are not applicable since even in the case when Aαv is computable just
one such computation requires O(N2) arithmetic operations.

We consider the class of rational functions

R(m, k) := {r(t) = Pm(t)/Qk(t) : Pm ∈ Pm, Qk ∈ Pk},

where Pk is the set of all polynomials of degree k. For a given univariate function g(t), 0 ≤ t ≤ 1,

the minimizer r∗(t) = P ∗m(t)
Q∗k(t) ∈ R(m, k) of the problem

(11) min
r∈R(m,k)

max
t∈[0,1]

|g(t)− r(t)| = max
t∈[0,1]

|g(t)− r∗(t)|

is called Best Uniform Rational Approximation (BURA) of g(t).

Deffinition 2.1. The minimizer rβα(t) = P ∗m(t)
Q∗k(t) for g(t) = tβ−α is called β-Best Uniform Rational

Approximation (β-BURA) and its error is denoted by

Eα(m, k;β) := max
t∈[0,1]

∣∣∣tβ−α − rβα(t)
∣∣∣ .

Our algorithm is based on the following Lemma:

Lemma 2.1. Let A satisfy the assumption 1.1 and F = A−βf so that u = Aβ−αF. Let rβα(t)

be the best uniform rational approximation of tβ−α on [0, 1] and consider ur = rβα(A)F to be an
approximation to u. Then the following bound for the error holds true

‖ur − u‖Aγ ≤ Eα(m, k;β)‖f‖Aγ−2β ∀γ ∈ R.(12)

Proof. Consider the representation of F with respect to the eigenvectors of A, F =
∑N

i=1 FiΨi so

that ‖F‖2Aγ =
∑N

i=1 Λγi F
2
i , for any γ ∈ R. Since rβα is analytic in (0, 1], it has convergent Maclaurin

expansion there and therefore rβα(A)Ψi = rβα(Λi)Ψi, i = 1, . . . , N . Using the orthonormal property
of the eigenvectors ΨT

i Ψj := 〈Ψi,Ψj〉 = δij we get easily

‖ur − u‖2Aγ = ‖rβα(A)F−Aβ−αF‖2Aγ

=

〈
N∑
i=1

(Aγ(rβα(A)−Aβ−α)FiΨi,
N∑
i=1

(rβα(A)−Aβ−α)FiΨi

〉

=
N∑
i=1

F 2
i Λγi

(
rβα(Λi)− Λβ−αi

)2
≤ max

t∈[0,1]
|rβα(t)− tβ−α|2

N∑
i=1

Λγi F
2
i

≤ Eα(m, k;β)‖F‖2Aγ .

To complete the proof take into account that F = A−βf . �

It is important to keep in mind that the above estimate is for the scaled system (10), where

f = f̃/Λα and A = A/Λ. As a corollary we get the following bound for the solution through the
original (unscaled) data:

Corollary 2.2. The following estimate holds true for the solution of (8):

(13) ‖ur − u‖Aγ ≤ Eα(m, k;β)Λβ−α‖f̃‖Aγ−2β .

Among various classes of best rational approximations, the diagonal sequences r ∈ R(k, k) of
the Walsh table of tα, 0 < α < 1 are studied in greatest detail, see, e.g. [26, 29]. The existence of
best uniform rational approximation, the distribution of the poles, zeros, and extreme points, and
the asymptotic behavior of Eα(k, k;β) when k →∞ are well known. For example, Theorem 1 from
[26] shows that

lim
k→∞

e2π
√

(β−α)kEα(k, k;β) = 41+β−α| sinπ(β − α)|
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holds for any 0 < α < 1 ≤ β, β integer. This could be written as an approximate relation (used in
practice)

(14) Eα(k, k;β) ≈ 41+β−α| sinπ(β − α)|e−2π
√

(β−α)k.

In order to convince ourselves in the feasibility of practical use of (14) in Table 1 we present the
obtained results for Eα(k, k;β) for various k and β when the BURA P ∗k (t)/Q∗k(t) is computed using
the Remez algorithm, see for more details Section 3. The results show that for relatively small k
we can get good approximation Eα(k, k;β). It is quite clear from this table that Eα(k, k;β) is a
couple of orders of magnitude smaller for β = 3 compared with β = 1. However, this comes at a
cost. From (13) we observe that: (1) the errors are measured in two different ways and (2) the
scaling factor enters into the play with a negative impact on the accuracy for larger β. Thus, the
values β = 2 and β = 3 have not been used in our computations, we are giving the approximation
properties of BURA for these values just for comparison. In Table 1 in parenthesis we show the
computed values from the asymptotic formula (14). These and other computations, see e.g. [29,
Tables 2.1 – 2.7], show that asymptotic formula is quite accurate and the relation (14) could be
used for fairly low k.

α Eα(5, 5; 1) Eα(6, 6; 1) Eα(7, 7; 1) Eα(5, 5; 2) Eα(5, 5; 3)
0.75 2.7348E-3 (3.60E-3) 1.4312E-3 7.8650E-4 (9.82E-4) 1.9015E-6 6.8813E-8
0.50 2.6896E-4 (3.88E-4) 1.0747E-4 4.6037E-5 (6.28E-5) 9.5789E-7 5.5837E-8
0.25 2.8676E-5 (4.16E-5) 9.2522E-6 3.2566E-6 (4.47E-6) 2.8067E-7 2.4665E-8

Table 1. Errors Eα(k, k;β) of BURA P ∗k (t)/Q∗k(t) of tβ−α on [0, 1]

The theoretical foundation of the proposed method is the following lemma, that is an immediate
consequence of Corollary 2.2:

Lemma 2.3. For β ≥ 1 integer there is a constant Cα,β > 0 and an integer k0 ≥ 1 such that for
k ≥ k0 the following error bound holds true

‖ur − u‖Aγ ≤ Cα,βΛβ−αe−2π
√

(β−α)k‖f̃‖Aγ−2β .

Remark 2.4. The error in solving the algebraic problem (8) using the proposed method should
be balanced with the approximation error given by (7). In the case of second order problems on a
quasi-uniform mesh with size h we have Λ ≈ h−2. Then in case of best possible convergence rate of
the finite element solution, namely, O(h2α| lnh|), cf. [3, Remark 4.1], we can take

k ≈ β2

π2(β − α)
| lnh|2,

and get the total error O(h2α| lnh|) (this includes the finite element approximation error and error
of approximately solving the algebraic problem).

This represents the foundation of the method we propose and study in this paper. The feasibility

of such approach depends substantially on the possibility to efficiently compute rβα(A)f . One
possible implementation is proposed in next subsection.

2.2. Efficient implementation of the method. We first bring some important facts about the
best uniform rational approximation r1

α(t), m = k, of t1−α on [0, 1] for 0 < α < 1, see, e.g. [24, 26].

Lemma 2.5. ([24, Lemma 2.1]) Let m = k and 0 < α < 1. Then the following statements are
valid:

(1) The best rational approximation r1
α(t) has numerator and denominator of exact degree k;

(2) All k zeros ζ1, . . . , ζk and poles d1, . . . , dk of r1
α are real and negative and are interlacing,

i.e. with appropriate numbering one has

0 > ζ1 > d1 > ζ2 > d2 > · · · > ζk > dk > −∞;
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(3) The function t1−α− r1
α(t) has exactly 2k+ 2 extreme points η1, . . . , η2k+2 on [0, 1] and with

appropriate numbering we have

0 = η1 < η2 < · · · < η2k+2 = 1,

η1−α
j − r1

α(ηj) = (−1)jEα(k, k; 1), j = 1, . . . , 2k + 2.

Then we introduce d0 = 0 so that r1
α(t) is represented as a sum of partial fractions

(15) t−1r1
α(t) :=

1

t

P ∗k (t)

Q∗k(t)
=

1

t

∑k
j=0 pjt

j∑k
j=0 qjt

j
=

k∑
j=0

cj
t− dj

.

These notations are used in the tables below.
This Lemma allows us to have the following implementation of the method:

Step 1: Find all poles 0 = d0 > d1 > d2 > · · · > dk;
Step 2: Find the representation (15) of r1

k(t) as a sum of partial fractions;
Step 3: Compute the approximate solution by

(16) ur := A−1r1
α(A)f =

k∑
j=0

cj(A− djI)−1f

This shows that to find ur = r1
α(A)A−1f we need to solve one system Av = f and k separate

independent systems (A− diI)v = f for i = 1, . . . k with SPD matrices A− diI.

Remark 2.6. Our numerical tests show that often we achieve accuracy of Eα(k, k; 1) ≈ 10−4 or
better with k = 5. For example, for α = 0.5 and k = 5 we get Eα(k, k; 1) = 2.69 ∗ 10−4. The
coefficients of the 1-BURA are given in Table 3 and they result in the following partial fractions
representation:

r1
0.5(t)

t
=

P ∗5 (t)

tQ∗5(t)
=

0.0002689

t
+

0.0055848

t+ 0.0000122
+

0.0272036

t+ 0.0006621
(17)

+
0.0965749

t+ 0.0127955
+

0.3202068

t+ 0.1626313
+

2.5105702

t+ 3.2129222
.

We note that the nonpositivity of dj ensure that the sytems (A − djI)v = f can be solved
efficiently and the positivity of cj , shown in [11, Theorem 1], guarantees no loss of significant digits
due to subtraction of large numbers.

Remark 2.7. Using representation of r1
α(t) by partial fractions is just one possible way to compute

r1
α(A)A−1f . Another possibility is to use the zeros and the poles to compute consecutively the factors

in the formula

r1
α(A)A−1f = c0

k∏
j=1

(A− ζjI)(A− djI)−1A−1f .

Due to the interlacing of the zeroes and the poles this will lead to stable computations. Moreover,
it will preserve the monotonicity of the solution (see [11]), which is a desired feature in some
applications. The only substantial difference is that the computations with partial fractions can be
done in parallel.

Now we present some examples of BURA r1
α within the class R(k, k) for α = 0.75, 0.5, 0.25. In

Tables 2 - 4 we show the computed coefficients (15) of r1
α for α = 0.75, 0.5, 0.25.

Based on these results we can make the following observations:

(1) Tables 2 - 4 show that the approximation of the action of A−α via the application of the
operator A−1r1

α(A) involves solving six systems of linear equations with SPD matrices; we
have assumed that each evaluation of (A−djI)−1f can be computed approximately by PCG
method with optimal complexity.

(2) Summing these six solutions is a stable process since the coefficients in the sum of fractions
(17) are small and positive and there should not expect any loss of accuracy (or stability)
that might come from subtracting large numbers.
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j pj qj cj dj
0 1.98976E-20 7.27576E-18 2.73478E-03 0.00000E+00
1 5.72723E-12 2.23068E-10 2.28202E-02 -3.27111E-08
2 1.76902E-06 1.96679E-05 6.31334E-02 -1.14734E-05
3 5.86823E-03 2.45055E-02 1.45484E-01 -8.15164E-04
4 4.89312E-01 8.76333E-01 3.05748E-01 -2.80630E-02
5 1.40048E+00 1.00000E+00 8.60558E-01 -8.47443E-01

Table 2. The coefficients in the representation (15) of the best rational ap-
proximation P ∗5 (t)/Q∗5(t) of t1−α on [0, 1], α = 0.75; from Table 1 we have
Eα(5, 5; 1) =2.7348E-3

j pj qj cj dj
0 1.45636E-14 5.41485E-11 2.68957E-04 0.00000E+00
1 2.87192E-08 4.51317E-06 5.58483E-03 -1.22320E-05
2 2.69846E-04 7.06745E-03 2.72036E-02 -6.62106E-04
3 8.87796E-02 5.67999E-01 9.65749E-02 -1.27955E-02
4 1.91330E+00 3.38902E+00 3.20207E-01 -1.62631E-01
5 2.96041E+00 1.00000E+00 2.51057E+00 -3.21292E+00

Table 3. The coefficients in the representation (15) of the best rational ap-
proximation P ∗5 (t)/Q∗5(t) of t1−α on [0, 1], α = 0.5; from Table 1 we have
Eα(5, 5; 1) =2.6896E-4

j pj qj cj dj
0 3.45490E-12 1.20483E-07 2.86755E-05 0.00000E+00
1 1.58841E-06 7.90871E-04 1.27509E-03 -1.59055E-04
2 4.13469E-03 2.10628E-01 9.58752E-03 -3.96701E-03
3 5.71109E-01 4.81422E+00 4.86842E-02 -4.47241E-02
4 7.40426E+00 1.11966E+01 2.55382E-01 -3.97136E-01
5 9.24225E+00 1.00000E+00 8.92729E+00 -1.07506E+01

Table 4. The coefficients in the representation (15) of the best rational ap-
proximation P ∗5 (t)/Q∗5(t) of t1−α on [0, 1], α = 0.25; from Table 1 we have
Eα(5, 5; 1) =2.8676E-5

3. Best uniform rational approximation of tβ−α

3.1. Theoretical background and numerical methods. Let rβα(t) = P ∗m(t)
Q∗k(t) be the β-BURA of

tβ−α for t ∈ [0, 1]. For given k and m, the rational function has the following representation:

(18)
P ∗m(t)

Q∗k(t)
=

m∑
j=0

pjt
j

k∑
j=0

qjtj
=

m∑
j=0

p̄jTj(2t− 1)

k∑
j=0

q̄jTj(2t− 1)

=
P̄ ∗m(s)

Q̄∗k(s)

where T0(s) = 1, T1(s) = s, . . . , Tj(s) = 2sTj−1(s) − Tj−2(s), j = 2, 3, . . . ; s ∈ [−1, 1] are
orthogonal base functions. These are the well-known Chebyshev polynomials and in our case
s = 2t− 1, since t ∈ [0, 1].

According to the theory, for the class of continuous functions on [0, 1] the element of best uniform
approximation exists. Due to the equioscillation theorem, there are at least (m + k + 2) points
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{ηi}m+k+2
1 , where the error rβα(t)− tβ−α have extremes and the sign alternates. We use orthogonal

base functions, because there are numerical difficulties (instabilities) for finding rβα in the standard
monomial basis {tj} (see [8]). The benefits of working in Chebyshev basis are illustrated in Ta-
ble 5, where the maximal values of m and k for which the element of best uniform approximation
of t1−α can be successfully computed (the algorithm converges) are documented. The left pairs
in the table correspond to best polynomial approximation (k = 0), while the right ones corre-
spond to best (k, k)-rational approximation (m = k). It is evident that apart from the choice of
base functions, calculations heavily depend on the used precision for arithmetic operations (single,
double, quadruple). This is due to the non-differentiability of t1−α at zero. The function is only

(1−α)-Hölder continuous (i.e. in C0,1−α[0, 1]) and as a result most of the extreme points {ηi}2k+2
1

of r1
α are clustered in a neighborhood of zero to account for the steep slope there. For example,

when k = 5 and α = 0.75 the first two points are η1 = 0 and η2 ≈ 3 · 10−9, while the ninth point
value is still just η9 ≈ 0.05. Therefore, to accurately compute {ηi} and capture the sign changes
of r1

α(t) − t1−α between them one must use high precision arithmetics. This fact has been known
and attempts to compute the BURA and the error Eα(k, k;β) for large k has required using high
precision arithmetic, e.g., see [29].

Precision Base α = 0.25 α = 0.50 α = 0.75
Single tj (8,0), (4,4) (8,0), (4,4) (8,0), (2,2)
Single Tj(s) (40,0), (3,3) (50,0), (2,2) (50,0), (2,2)
Double tj (19,0), (6,6) (19,0), (4,4) (19,0), (2,2)
Double Tj(s) (60,0), (5,5) (60,0), (5,5) (50,0), (4,4)
Quadro tj (35,0), (6,6) (35,0), (4,4) (35,0), (2,2)
Quadro Tj(s) (95,0), (11,11) (95,0), (11,11) (95,0), (7,7)

Table 5. Maximal values (m, k) for which Algorithm 3.1 converges.

3.2. Modified Remez algorithm for computing BURA. We suggest the following (modified
Remez) algorithm for finding the β-BURA of tβ−α on [0, 1]. To improve the stability of the approx-

imation method we use the presentation (18), so that we work with the function f(s) =
(

1+s
2

)β−α
for s ∈ [−1, 1] (see [19], [6]).

Algorithm 3.1. Input: (α, β), (m, k), N (maximal number of algorithm iterations), V (maximal
number of inside iterations for solving the non-linear system in Step 3(ii)), δ > 0 (accuracy).

Initialization: `, s(0), and r̄0, satisfying

• ` = m+ k + 2.

•
{
s

(0)
i

}`
i=1

– strictly monotonically increasing sequence in [−1, 1].

• r̄0(s) = P̄m(s)
Q̄k(s)

:
(
f(s

(0)
i )− r̄0(s

(0)
i )
)
/
(
f(s

(0)
i+1)− r̄0(s

(0)
i+1)

)
< 0, ∀i = 1, . . . , `− 1.

FOR n = 1, 2, . . . DO

(1) Updating the equioscillation point set: FOR i = 1, . . . , ` DO

(i)
¯
τ

(n)
i := sup

−1≤τ≤s(n−1)
i

{f(τ) = r̄n−1(τ)} , τ̄
(n)
i := inf

s
(n−1)
i ≤τ≤1

{f(τ) = r̄n−1(τ)} .

(ii) s
(n)
i = argmax

¯
τ
(n)
i ≤s≤τ̄

(n)
i

|f(s)− r̄n−1(s)|, η
(n)
i = |f(s

(n)
i )− r̄n−1(s

(n)
i )|. END FOR

(iii) s
(n)
∗ = argmax

−1≤s≤1
|f(s)− r̄n−1(s)|, η

(n)
∗ = |f(s

(n)
∗ )− r̄n−1(s

(n)
∗ )|.
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(iv) IF
(
s

(n)
∗ /∈ {s(n)

i }`1
)

THEN FIND j s.t. s
(n)
j < s

(n)
∗ < s

(n)
j+1.

IF
(

sgn
(
f(s

(n)
∗ )− r̄n−1(s

(n)
∗ )
)

= sgn
(
f(s

(n)
j )− r̄n−1(s

(n)
j )
))

THEN s
(n)
j = s

(n)
∗ .

ELSE s
(n)
j+1 = s

(n)
∗ .

(2) Convergence check: IF
(

maxi η
(n)
i −mini η

(n)
i < δ

)
OR (n = N + 1) STOP. ELSE

(3) Updating the rational approximation: Solve iteratively the non-linear system(
f
(
s

(n)
i

)
− r̄n

(
s

(n)
i

))
= (−1)iEn, i = 1, . . . , `

for the unknown En and the coefficients of r̄n:
(i) (E0

n , r̄
0
n) = (En−1 , r̄n−1).

(ii) FOR v = 1, 2, . . . DO: Solve the `× ` linear system of equations

m∑
j=0

p̄
(n,v)
j Tj(s

(n)
i )−

(
f(s

(n)
i )− (−1)iE(v−1)

n

) k∑
j=1

q̄
(n,v)
j Tj(s

(n)
i ) + (−1)iE(v)

n = f(s
(n)
i ).

IF
∣∣∣E(v)

n − E(v−1)
n

∣∣∣ < ε, OR v > V GO to (iii). ELSE v = v + 1 and REPEAT.

(iii) r̄n(s) =
(∑m

j=0 p̄
(n,v)
j Tj(s)

)
/
(

1 +
∑k

j=1 q̄
(n,v)
j Tj(s)

)
.

(iv) En = E
(v)
n .

(4) n = n+ 1. GO to Step 1.

Output: n; r̄βα(s) = r̄n; Eα(m, k;β) = |En|; s∗ = {s(n)
i }`i=1.

Then we take η = (s∗ + 1)/2 and get rβα(t) from r̄βα(s) using (18).
Several remarks, concerning the computer implementation of the proposed algorithm are in order:

(1) In the Initialization step, we usually take s(0) to be uniformly sampled on [−1, 1], while for the
derivation of an admissible r̄0 we apply least-squares optimization techniques. All the rational
functions r̄n are normalized with respect to the constant term in the denominator, i.e.,

r̄n(s) =

 m∑
j=0

p̄
(n)
j Tj(s)

 /

1 +

k∑
j=1

q̄
(n)
j Tj(s)

 ∀n ≥ 0.

(2) In order to increase the computational efficiency of the algorithm, we compute neither the

sequences
¯
τ (n) and τ̄ (n) in Step 1(i) nor the local extrema s(n) in Step 1(ii). Instead, we search

for the maximal value of |f(s) − r̄n−1(s)| on a small, discretized interval around s
(n−1)
i , decrease

the mesh size, and repeat the process several times around the current maximizer. Such simple
localization techniques seem to work fine for our numerical examples.

(3) In Step 3(ii) we apply Aitken-Steffensen acceleration but instead of E
(v−1)
n for the system

splitting we use a combination of the values{E(v−i)
n }3i=1 from the previous three steps.

4. Numerical accuracy and Multi-step BURA method

In this section we investigate the numerical accuracy of the proposed algorithm and a multi-
step generalization of the BURA-method. The analysis, presented here is theoretical in nature,
so we consider the full generality of the proposed solution strategy, namely the (m, k) β-BURA
approximation.

4.1. Properties of the fractional decomposition. For given (m, k, β) the partial fraction de-

composition of t−βrβα(t) has the general form

(19) t−βrβα(t) =

m−k−β∑
j=0

bj t
j +

β∑
j=1

c0,j

tj
+

p1∑
j=1

cj
t− dj

+

p2∑
j=1

Bjt+ Cj
(t− Fj)2 +D2

j
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where k = p1 + 2 p2. We always consider triples for which m < k + β. One reason for such a

parameter constraint comes from the fact that t−βrβα has a leading term of degree tm−k−β, while
it approximates the power function t−α, α > 0. Another reason is the numerical simplification
of (19), where the index set for the first sum becomes empty. In all our numerical examples the

denominator of rβα has no complex roots, thus we concentrate on the case p2 = 0 from now on.
Then β-BURA can be rewritten in the following way:

(20)
1

tβ
P ∗m(t)

Q∗k(t)
=

m∑
j=0

pj t
j

tβ

(
k∑
j=0

qj tj

) =

β∑
j=1

c0,j

tj
+

k∑
j=1

cj
t− dj

.

The first representation in (20) is the best approximation written as a standard rational function,
while the second one is its partial fraction decomposition (19), the way this approximation is used
in the implementation of the method.

Let

P ∗m(t)

Q∗k(t)
=

β−1∑
j=0

b∗j t
j +

k∑
j=1

c∗j
t− dj

.

We have used that β > m − k and we set the extra coefficients {b∗j}
β−1
m−k+1 to zero whenever

m− k < β − 1. Then, straightforward computations give rise to

(21)
1

tβ
P ∗m(t)

Q∗k(t)
=

β∑
j=1

b∗β−j
tj

+
k∑
j=1

(
c∗j/d

β
j

t− dj
−

β∑
i=1

c∗j/d
β−i+1
j

ti

)
Comparing the coefficients in front of the corresponding terms in (20) and (21), we derive

(22) c0,j = b∗β−j −
k∑
i=1

c∗i /d
β−j+1
i , cj = c∗j/d

β
j .

Various useful identities follow from (22). We want to highlight a couple of them. Due to the
Chebyshev’s equioscillation theorem

(23) c0,β = b∗0 −
k∑
i=1

c∗j/dj =
P ∗m(0)

Q∗k(0)
=
p0

q0
= ±Eα(m, k;β).

In particular, for (k, k; 1) we have c0 = Eα(k, k; 1) due to Lemma 2.5.
The second one is

(24) c0,1 +
k∑
i=1

ci = b∗β−1 =

{
pm/qk, m− k = β − 1;
0, m− k < β − 1.

Finally, (22) allows for stable numerical computations of the coefficients {cj}, as the fractional

decomposition of rβα can be accurately derived in Chebyshev basis.

4.2. Accuracy Analysis. In this subsection we briefly discuss issues related to the numerical
accuracy of the developed framework. We do not go into details, since thorough analysis of the
algorithm is outside the scope of the paper. However, certain observations in this direction are
worth mentioning, so that the reader can make conclusions for the full picture.

Lemma 2.1 quantifies the error between ur = rβα(A)A−βf and u = A−αf . All the estimations
are under the assumption that ur can be exactly computed by an optimal numerical solver. Within
the adopted setup m < k + β and p2 = 0, ur has the following representation

(25) ur =

β∑
i=1

c0,iA−if +

k∑
i=1

ci(A− diI)−1f :=

β∑
i=1

c0,iv0,i +

k∑
i=1

civi,
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which is the corresponding simplification of (16). The practical derivation of ur involves k + β
applications of such a solver, that independently solves each of the involved large-scale linear
systems with a right-hand-side f . The numerical stability of each solution process depends on the
condition number of the underlined linear operator.

Remark 4.1. The matrix A− diI is better conditioned than A whenever di < 0 or di > Λ1 + ΛN .
If di > Λ1 + ΛN , the condition numler k(−A+ diI) is uniformly bounded dependinding only on di.

Since we are interested in operators A which spectrum is normalized to lie inside (0, 1], and is not

well-separated from zero, in every numerical example we have Λ1 ≈ 0 and ΛN ≈ 1. The poles of rβα
are outside of (a neighborhood of) the unit interval [0, 1], therefore all the di’s naturally satisfy the
condition in Remark 4.1. Thus, the numerical computation vMG

i of vi = (A−diI)−1f , i = 1, . . . , k
is a stable process.

When β = 1, using the notation (15), we observe that the most time-consuming procedure is the
derivation of vMG

0 that corresponds to inverting A (v0 = A−1f). In our numerical experiments, we
use algebraic multigrid (AMG) [13] as a preconditioner in a CG method. The same preconditioner
can be used to operators like A−diI. We already observed that, provided m = k, all the coefficients
ci are positive and sum to pm/qm (see (24)). The ratio pm/qm increases with α (see Tables 2 - 4 for
m = k = 5) but seems to always be O(1). Therefore, for this setting the accuracy of the numerical
derivation of uMG

r is proportional to the accuracy of inverting A. Hence, numerics are trustworthy
in general and unsubstantial additional errors for uMG

r − u are accumulated.

4.3. Further analysis in the case β > 1. When β > 1, since k(Aβ) = k(A)β, we need to find
an approximate solution of a system with much worst condition number than the original system.
This could cause loss of stability (or loss of accuracy). Since we solve Aβv = f iteratively via
β consecutive applications of the AMG solver as a preconditioner for A, we need to analyze the
stability of such computational strategy.

Lemma 4.2. Let µ, ν, ε > 0 be given and v = A−nf , where n ≥ 2. Assume that zMG is a
numerical solution for z = A−(n−1)f , while vMG is a numerical solution for v̄ = A−1zMG. Then

(26)
‖zMG − z‖A−1

‖z‖A−1

≤ µε, ‖vMG − v̄‖A
‖v̄‖A

≤ νε imply
‖vMG − v‖A
‖v‖A

≤ (µ+ ν + µνε) ε.

Proof. Applying triangle inequality, we derive

‖vMG − v‖A ≤ ‖vMG − v̄‖A + ‖v̄ − v‖A ≤ νε‖v̄‖A + ‖v̄ − v‖A
≤ νε‖v‖A + (1 + νε)‖v̄ − v‖A;

‖v̄ − v‖A = ‖A−1(zMG − z)‖A = ‖zMG − z‖A−1 ≤ µε‖z‖A−1 = µε‖Av‖A−1 = µε‖v‖A.

These imply ‖vMG − v‖A ≤ (µ+ ν + µνε) ε‖v‖A, which completes the proof. �

Note that z serves as a right-hand-side for the linear system Av = z. Thus, for the stability in
computing v the z-related quantities need to be measured in the ‖ · ‖A−1 norm.

Now we are ready to quantify the accuracy of the numerical derivation of v0,β = A−βf under the

proposed above computational strategy. Iteratively, we define vMG
0,1 to be the output of the applied

optimal solver (the notation MG doesn’t mean that only multigrid solver can be used) to the linear
system v0,1 = A−1f and

vMG
0,j+1 – numerical solution of Av = vMG

0,j , j = 1, . . . , β − 1.

Corollary 4.3. Let β ≥ 1 and vMG
0,β be derived as described above. Assume that a numerical solver

for the system Av = z, with arbitrary v, z ∈ RN has computed vMG with guaranteed relative error
ε, i.e.

‖vMG − v‖A/‖v‖A ≤ ε.
Then

‖vMG
0,β − v0,β‖A/‖v0,β‖A ≤ aβε with aβ+1 = 1 + (1 + ε)k(A)aβ, a1 = 1.

Consequently, aβ = O(k(A)β−1).
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Proof. The proof is by induction. For β = 1, we have that vMG
0,1 is the solver output for v0,1 = A−1f .

Thus, a1 = 1 follows directly from the assumption on the solver accuracy. Now, let

‖vMG
0,β − v0,β‖A/‖v0,β‖A ≤ aβε

holds true for β. Denote by v̄0,β+1 := A−1vMG
0,β . Again, due to the solver accuracy, we have

‖vMG
0,β+1 − v̄0,β+1‖A/‖v̄0,β+1‖A ≤ ε.

Applying the obvious inequalities Λ2
1〈A−1v,v〉 ≤ 〈Av,v〉 ≤ Λ2

N 〈A−1v,v〉 we obtain

‖vMG
0,β − v0,β‖A−1

‖v0,β‖A−1

≤
Λ−1

1 ‖vMG
0,β − v0,β‖A

Λ−1
N ‖v0,β‖A

≤ k(A)
‖vMG

0,β − v0,β‖A
‖v0,β‖A

≤ k(A)aβε.

The result follows from Lemma 4.2 which we apply with µ = k(A)aβ and ν = 1. �

The coefficient c0,β = ±Eα(m, k;β), due to (23). Therefore the numerical accuracy for the

computation of the term c0,βv0,β in ur (see (25)) depends on the product Eα(m, k;β)k(A)β−1. For
β > 1 this product contains two factors that behave differently when β grows: the first decreases
(see, Table 1) while the second increases. As a result, we conclude that computing with β = 1 is a
reasonable practical choice.

4.4. Multi-step BURA approximation. From Table 1 we observe that when α increases, so
does the error Eα(k, k;β). In particular, for β = 1, the quantities E0.25(k, k; 1), E0.50(k, k; 1) and
E0.75(k, k; 1) are all of different order. This is due to the steeper slopes in a neighborhood of zero for
the function t1−α, which results in higher and more frequent oscillations of the residual r1

α(t)− t1−α
there. Apart from such theoretical drawbacks, there are also additional numerical difficulties with
the convergence of Algorithm 3.1 as the set of extreme points {ηi}2k+2

1 for the residual cluster
around zero (see [24, Theorem 4]). Indeed, higher numerical precision is needed for the correct
separation of the extreme points, as well as more internal and external iterations are executed for
solving the ill-conditioned linear systems in Step 3(ii) and for reaching the stopping criterion of the
Algorithm, respectively. As an alternative approach, we study the possibility to replace the action
of r1

α by the joint action of several r1
αi rational functions, where each αi is smaller than the original

α, thus r1
αi is cheaper to be generated and its approximation error Eαi(k, k; 1) is smaller.

Our idea is to apply a multi-step procedure, based on the identity

A−αf = A−αn ◦ A−αn−1 ◦ · · · ◦ A−α1f ,
n∑
i=1

αi = α.

First, we approximate A−α1f by u1 := r1
α1

(A)A−1f . Then we approximate A−α2 ◦ A−α1f by

u2 := r1
α2

(A)A−1u1 and so on. Finally, we approximate u = A−αf by un = r1
αn(A)A−1un−1.

Following (13) and setting γ = 1 we are interested in the theoretical and numerical behavior of the
error ratio ‖un − u‖A/‖f‖A−1 .

The theoretical error analysis is based on Lemma 2.1. Denote by εi(t) the residual of r1
αi(t) with

respect to t1−αi . Then, for each i = 1, . . . , n we have

(27) r1
αi(t) = t1−αi + εi(t), |εi(t)| ≤ Eαi(k, k; 1) ∀t ∈ [0, 1].

The multi-step approximation un can be rewritten in the form

un =
n∏
i=1

r1
αi(A)A−nf =

(
An−1

n∏
i=1

r1
αi(A)

)
A−1f .

Therefore the proof of Lemma 2.1 implies that we need to estimate the approximation error

(28) Eα1...αn(k, k; 1) := max
t∈{Λi}N1

∣∣∣∣r1
α1

(t)r1
α2

(t) . . . r1
αn(t)

tn−1
− t1−α

∣∣∣∣ .
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Consider n = 2. Using (27) we obtain

r1
α1

(t)r1
α2

(t)

t
= t1−α + t−α1ε2(t) + t−α2ε1(t) + t−1ε1(t)ε2(t).

Denote by Eαi = Eαi(k, k; 1), i = 1, 2. Since the spectrum of A is normalized and ΛN ≤ 1, so that
t−αi ≤ Λ−αi1 ≈ k(A)αi and from (28) we conclude

(29) Eα1α2(k, k; 1) ≤ Eα2k(A)α1 + Eα1k(A)α2 + Eα1Eα2k(A).

Comparing with the error estimate Eα(k, k; 1) we observe that unlike the direct approach, the two-
step approximation error depends on the condition number of A, thus is not dimension-invariant in
general. Therefore, the benefits from the proposed multi-step procedure for computing A−αf are
limited in theory since the overall error is magnified by the condition number of A.

On the other hand, the multi-step BURA method possesses several interesting properties that
are worth investigating further. First of all, it provides good approximation on the high part of the
spectrum of A. From Lemma 2.5 we know that(

r1
αi(t)− t

1−αi
) ∣∣
t=1

= −Eαi , i = 1, 2,

so for f = ΨN we get

‖u2 −A−αΨN‖A/‖ΨN‖A−1 ≈ Eα1 + Eα2 − Eα1Eα2 ,

since ΛN ≈ 1. This is much better than Eα(k, k; 1). Thus, as N → ∞, the approach is beneficial
when f ∈ span{ΨN−`, . . . ,ΨN} for some `� N . Second of all, especially if α1 6= α2, Eα1α2 might
remain significantly smaller than the right-hand-side of (29). Indeed, the extreme points of r1

α1

and r1
α2

are with high probability disjoint sets, therefore |ε1(t)| and |ε2(t)| cannot simultaneously
attend their maximums, meaning that the factor Eα1Eα2 in front of k(A) is an overestimate.

5. Numerical tests

A comparative analysis of the numerical accuracy of the proposed solvers and the related theo-
retical estimates are presented in this section. The first group of tests concerns normalized matrices
obtained from a three-point approximation of the Poisson equation in one space dimension. For this
setting we are able to directly compute the exact solution u = A−αf , as well as the approximate

solution ur = rβα(A)A−βf , thus no additional numerical errors are accumulated in the process. The
first experimental set is devoted to the numerical validation of Lemma 2.1. The second one studies
possible improvements in the accuracy of the approximation ur for larger α when a multi-step
approximation process that involves smaller α’s is applied. A third experiment deals with a 2D
fractional Laplacian operator and illustrates the rescaling effect in (13). Finally, we confirm the ac-
curacy analysis in Section 4.2 by running 3D numerical experiments, where u is unknown, while ur
is computed by a numerical solver that uses algebraic multigrid as a preconditioner in the conjugate
gradient method. In all the experiments we take m+ 1 = k+β, thus we solve m+ 1 linear systems

α Eα(5, 5; 1) Eα(5, 4; 2) Eα(5, 3; 3) Eα(7, 7; 1) Eα(7, 6; 2) Eα(7, 5; 3)
0.75 2.7348E-3 3.8415E-6 4.6657E-7 7.8650E-4 2.0108E-7 6.6194E-9
0.50 2.6896E-4 2.0349E-6 4.0421E-7 4.6037E-5 7.8577E-8 4.3899E-9
0.25 2.8676E-5 6.2333E-7 1.8958E-7 3.2566E-6 1.8043E-8 1.5792E-9
0.10 4.9432E-6 1.7490E-7 6.7114E-8 4.5139E-7 4.2824E-9 4.7675E-10

Table 6. Errors Eα(m,m+ 1−β;β) of BURA P ∗m(t)/Q∗m+1−β(t) of tβ−α on [0, 1]
for m = 5, 7.

in order to determine ur (see (16)). We consider m = {5, 7}, β = {1, 2}, and α = {0.25, 0.5, 0.75}.
For each of the corresponding BURA functions all the zeros di of the denominator are real and of
multiplicity one, so only systems of the type (A− diI)−1f appear. The approximation errors are



16 S. HARIZANOV, R. LAZAROV, P. MARINOV, S. MARGENOV, Y. VUTOV

summarized in Table 6. In the discussion below the Euclidean norm of a vector in RN is denoted
as `2-norm.

5.1. Numerical validation of Lemma 2.1. We consider the N × N stiffness matrix A, corre-
sponding to a three-point finite difference approximation (or FE approximation with linear ele-
ments) of the operator Lu = −u′′ with zero Dirichet boundary conditions on a uniform partitioning
of (0, 1) with mesh-size h = 1/(N + 1). The tridiagonal matrix is normalized so that its spec-
trum lies inside [0, 1] and has enrties 1/2 on the main diagonal and −1/4 on the upper and lower
co-diagonals.

The eigenvalues and eigenvectors of A are

Λi = sin2

(
iπ

2(N + 1)

)
, Ψi =

{
sin

ikπ

N + 1

}N
k=1

, i = 1, . . . , N.

Note that all the eigenvectors Ψi are of the same length, due to

‖Ψi‖22 = 〈Ψi,Ψi〉 =
N∑
k=1

sin2 ikπ

N + 1
=
N

2
− 1

2

N∑
k=1

cos
2ikπ

N + 1
=
N + 1

2

so we do not normalize them.
Numerical results for m = 7, β = 1, 2 are summarized in Fig. 1. As suggested by (12), we

measure the relative error ‖ur − u‖A/‖f‖A−1 for β = 1 and the relative error ‖ur − u‖A/‖f‖A−3

for β = 2. We use as input the coefficient vector of f with respect to the basis {Ψi}Ni=1, so the
derivation of the exact solution u as well as the computation of the norms ‖f‖A−1 , respectively
‖f‖A−3 , is straightforward. In order to compute the approximated solution ur, we first generate
the coefficient vector of f with respect to the standard basis {δik}Ni,k=1 and then solve exactly the
corresponding m+β tridiagonal linear systems that originate from the fractional decomposition of

t−βrβα(t). Randomness is with respect to the entries of the input coefficient vector.
We study four different error quantities: the maximal error over the eigenvectors {Ψi}Ni=1, which

coincides with the true estimate of the approximation error; the maximal error over a randomized set
of 1000 f ’s, which is the numerical approach for estimating the former; the averaged error over the
eigenvectors; and the averaged error over the random right-hand-side set. The last two quantities
provide information about the general behavior of the error and its expectation value. The main
observation is that the errors, related to the eigenvectors set behave quite stably with respect to
the size of A, unlike the errors related to random vector input. Such “dimension-invariance” of the
results from the first class is due to the almost uniform distribution of the eigenvalues {Λi}Ni=1 of
A along the interval [0, 1] and that for every β-BURA function the endpoints 0 and 1 are extreme

points for the residual rβα(t) − tβ−α (i.e., {0, 1} ⊂ {ηi}m+k+2
1 ). As N → ∞, we have Λ1 → 0,

ΛN → 1 and we observe that all the maximal norm ratio errors for eigenvectors input tend to the
corresponding univariate error Eα(m, k;β). The β-BURA functions oscillate mainly close to 0 and

are stable close to 1, making rapid convergence |rβα(ΛN ) − Λβ−αN | → Eα(m, k;β). Therefore, the

placement of the remaining spectrum {Λi}N−1
i=1 of A with respect to {ηi} is not significant for this

quantity. On the other hand, it is practically impossible to generate (a rescaled version of) ΨN

at random, so the randomized errors heavily depend on the placement of the whole spectrum of
A with respect to the extreme points of the β-BURA function. As a result, both maximal and
averaged random errors can be anywhere in the interval between the minimal and maximal error of
the eigenvectors. We generated various random sets of different size (e.g., 103, 104) and checked that
for a fixed N the two errors behave stably with respect to the choice of randomness. This allows
us to conclude that the “dimension-instability” phenomenon is indeed fully due to the specifics of
the spatial distribution of the spectrum of A.

5.2. Multi-step 1-BURA approximation for α = {0.5, 0.75}. The second series of numerical
experiments are devoted to the multi-step generalization of the method. The presented numerical
experiments for A = tridiag(−0.25, 0.5,−0.25) as in Section 5.1, k = {5, 7} and α = {0.5, 0.75}
confirm the theoretical analysis in Section 4.4. The related results are summarized in Fig. 2. When



SOLUTION OF SYSTEMS WITH FRACTIONAL POWER OF SPD MATRICES 17

   1.4E-06

   1.6E-06

   1.8E-06

   2.0E-06

   2.2E-06

   2.4E-06

   2.6E-06

   2.8E-06

   3.0E-06

   3.2E-06

   3.4E-06

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

e
rr

o
r

h
-1

α=0.25

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.25(7,7;1)

   2.0E-09

   4.0E-09

   6.0E-09

   8.0E-09

   1.0E-08

   1.2E-08

   1.4E-08

   1.6E-08

   1.8E-08

2
3

2
4

2
5

2
6

2
7

2
8

2
9

e
rr

o
r

h
-1

α=0.25

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.25(7,6;2)

   2.5E-05

   3.0E-05

   3.5E-05

   4.0E-05

   4.5E-05

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

e
rr

o
r

h
-1

α=0.50

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.50(7,7;1)
   4.0E-08

   4.5E-08

   5.0E-08

   5.5E-08

   6.0E-08

   6.5E-08

   7.0E-08

   7.5E-08

   8.0E-08

2
3

2
4

2
5

2
6

2
7

2
8

2
9

e
rr

o
r

h
-1

α=0.50

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.50(7,6;2)

   3.5E-04

   4.0E-04

   4.5E-04

   5.0E-04

   5.5E-04

   6.0E-04

   6.5E-04

   7.0E-04

   7.5E-04

   8.0E-04

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

e
rr

o
r

h
-1

α=0.75

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.75(7,7;1)

   5.0E-08

   1.0E-07

   1.5E-07

   2.0E-07

2
3

2
4

2
5

2
6

2
7

2
8

2
9

e
rr

o
r

h
-1

α=0.75

Maximal basis error

Averaged basis error

Maximal random error

Averaged random error

E0.75(7,6;2)

Figure 1. 1D numerical validation of Lemma 2.1 for m = 7. Left: (7, 7; 1). Right:
(7, 6; 2). Error is measured as indicated in (12)

.
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Figure 2. 1D numerical error analysis for the multi-step case. The relative errors
‖ur − u‖A/‖f‖A−1 are plotted.
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α = 0.5, we study the two step procedure based on α1 = α2 = 0.25. When α = 0.75, we investigate
both the two step procedure with (α1, α2) = (0.5, 0.25) and the three step procedure based on
α1 = α2 = α3 = 0.25. In the latter case, it is straightforward to derive the three-step analogous
formula to (29), which in the particular setup implies

(30) E0.25 0.25 0.25(k, k; 1) = E3
0.25k2(A) + 3E2

0.25k5/4(A) + 3E0.25k1/2(A).

Again, as in (29), we use the short notation E0.25 for E0.25(k, k; 1).
We set h−1 = N+1 = 2i, i ∈ {3, 4, . . . , 10} and plot various errors. Namely, for α = 0.5 those are:

the theoretically estimated two-step error (29), the true two-step error estimate that coincides with
the maximal error over the eigenvectors {Ψi}Ni=1, the averaged two-step error over the eigenvectors,
the maximal and averaged two-step errors over a thousand randomly generated vectors, and the
one-step error E0.50(k, k; 1). For α = 0.75 we plot the theoretically estimated two and three step
errors (29)-(30), the true two and three step error estimates, the corresponding averaged errors of
random right-hand-side data, and the one-step error E0.75(k, k; 1).

From the plots in Fig. 2 we observe that when the αi’s coincide the true multi-step error estimate
reaches the theoretical bound for particular sizes of A. This happens when Λ1 hits an extreme point

of r1
0.25, i.e., |r1

0.25(Λ1) − Λ
3/4
1 | ≈ E0.25, as for h = 2−7, k = 5 and h = {2−4, 2−9}, k = 7. When

α1 6= α2 we confirm that the theoretical bound E0.25 0.50 is an overestimation of the true maximal
error, since the sets of internal extreme points for r1

0.25 and r1
0.50 are disjoint and it is not possible

for Λ1 to simultaneously hit both. Note that Λ1 tends to zero as N →∞ but it never reaches zero
and the heavy oscillations of the residual in this area do not allow the maximal basis error to reach
E0.25 0.50 even for A of size 1023× 1023.

Unlike the first experimental setup, here we witness similar behavior among the theoretical error,
the maximal random error, and the averaged random error, meaning that the measured quantity is
stable and does not heavily depend on f . This is due to the specifics of the multi-step procedure and
the existence of pole at zero for the product rational approximation. Hence, whenever 〈f ,Ψ1〉 6= 0
this component dominates the overall error value. Because of that, the averaged basis error do not
provide reliable information about the error in the general (worst) case, since the eigenvectors of
A are mutually orthogonal. This error remains substantially below the one-step error E0.50 in all
conducted experiments.

As k increases, the two-step error remains better than the one-step error for a larger set of matrix
sizes. For α = 0.5 and k = 5 the two-step error overpasses E0.50 for h = 2−7, while for k = 7 this
happens for h = 2−9. For α = 0.75 the benefits of the two-step process are bigger, as the two-
step error remains in vicinity of E0.75 even for h = 2−10. However, as in the theoretical analysis,
we clearly see the dimension-dependence of the multi-step errors. Nevertheless, with respect to
controlling the ratio ‖ur −u‖A/‖f‖A−1 in the cases when r1

α cannot be numerically computed, the
proposed two-step procedure seems a better asymptotic choice than r2

α, since

‖r2
α(A)A−2f −A−αf‖A

‖f‖A−1

≤ ‖r
2
α(A)A−2f −A−αf‖A

‖f‖A−3

k(A) ≤ Eα(k, k; 2)k(A)

and, comparing to (29), we experimentally observe that Eα1(k, k; 1)Eα2(k, k; 1) < Eα(k, k; 2) if
α1 + α2 = α.

5.3. Comparison BURA and the method of Bonito and Pasciak, [3]. In this Subsection
we experimentally compare the numerical efficiency of the BURA solver with the one, developed
in [3] on a test example taken from their paper [3]. We consider the problem

(31) (−∆)αu = f, u∂Ω = 0, Ω = [0, 1]× [0, 1]

and its finite element approximation on a uniform rectangular grid with mesh-size h = 1/(N + 1).
This leads to a 5-point stencil approximation A of −∆ of the form

A = h−2tridiag (−IN ,Ai,i,−IN ) , Ai,i = tridiag(−1, 4,−1), ∀i = 1, . . . , N.
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α = 0.25, k = 9 α = 0.5 k = 8 α = 0.75, k = 7

Figure 3. 1-BURA-approximation of A−αf̃ for h = 2−10

Then we have the algebraic problem (10) with A = h2A/8, where A is an N2 × N2 SPD matrix
with spectrum in the interval (0, 1] and f is the vector of the values of f(x, y) at the grid points
scaled by h2/8 (using lexicographical ordering).

For the right-hand-side f we use the checkerboard function on Ω \ ∂Ω = (0, 1)× (0, 1)

(32) f(x, y) =

{
1, if (x− 0.5)(y − 0.5) > 0,
−1, otherwise.

In [3, Remark 3.1] it is observed that in order to balance all the three exponential terms in their

error estimate, the optimal quadrature approximate of A−αf̃ is

uQ =
2k′ sin(πα)

π

M∑
`=−m

e2(α−1)`k′
(
e−2`k′I + A

)−1
f , m =

⌈
π2

4αk′2

⌉
, M =

⌈
π2

4(1− α)k′2

⌉
,

where k′ > 0 is a free parameter. The number of linear systems to be solved in order to compute
uQ can be trivially estimated via

# systems = M +m+ 1 ≥ kQ + 1, kQ :=
π2

4α(1− α)k′2
.

For the (k, k) 1-BURA approximation ur we need to solve k + 1 linear systems. Note that in
both approaches all systems correspond to positive diagonal shifts of A, thus they possess similar
computational complexity. Therefore, in order to perform comparison analysis on the numerical
efficiency of the two solvers we need to take kQ ∼ k.

As a reference solution uref for (31) we consider the solution uQ for h = 2−10 with k′ = 1/3,
which guarantees O(10−7) error, see [3, Table 3].

In the numerical experiments we use the following parameters: h = 2−10 ≈ 10−3 and k = {9, 8, 7}
for α = {0.25, 0.5, 0.75}, respectively. The corresponding 1-BURA-approximations of A−αf̃ are
illustrated on Fig. 3. Furthermore, we restrict our analysis to integer kQ. Note that both kQ and

the positive shifts e−2`k′ are continuous functions of k′, meaning that there is a whole interval of
values k′ leading to the same number of systems to be solved for uQ and each k′ gives rise to
different shift parameters, thus different quadrature rule, respectively approximation error. For us

it is not clear which choice of k′ will lead to the smallest ‖u− uQ‖2/‖f̃‖2.
Straighforward computations for the considered three choices of α and uQ imply

# systems = d(1− α)kQe+ dαkQe+ 1 =

{
kQ + 1 + dkQ (mod 4)e, α = {0.25, 0.75};
kQ + 1 + dkQ (mod 2)e, α = 0.50.

Therefore, for α = 0.25 uQ can never consist of k + 1 = 10 summands, like ur; for α = 0.5 both
kQ = {7, 8} lead to k + 1 = 9 linear systems for uQ; for α = 0.75 only kQ = 6 leads to k + 1 = 8
linear systems for uQ.

Relative `2 errors are documented in Table 7. To get the approximate solution uQ we consider
kQ = {9, 7, 6}, when α = {0.25, 0.5, 0.75}. We observe that in all three cases the relative error of



SOLUTION OF SYSTEMS WITH FRACTIONAL POWER OF SPD MATRICES 21

Table 7. Relative `2 errors for 2-D fractional diffusion. Top: (k, k) 1-BURA. Bot-
tom: The [3] solver.

α = 0.25 α = 0.5 α = 0.75

‖uref − ur‖2/‖f̃‖2 1.756E-4 3.833E-4 4.180E-4

‖uref − uQ‖2/‖f̃‖2 9.375E-3 2.830E-3 1.088E-3

α = 0.25, k = 9 α = 0.5, k = 8 α = 0.75, k = 7
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Figure 4. Relative `2 errors for uQ as functions on the number of solved linear systems.
.

the BURA approximate solution ur is smaller than the error of uQ. Furthermore, for each α we
keep on increasing kQ by one until the corresponding relative `2 error of uQ becomes smaller than
the approximate solution ur obtained for (k, k) 1-BURA method. For α = 0.25, we get kQ = 38
to be the smallest such integer, meaning that we need to solve 4 times more linear systems (40
compared to 10) in order to beat the numerical accuracy of BURA. For α = 0.5, we get kQ = 20,
thus we need to solve 21 linear systems if we apply [3] instead of 9, when we apply the BURA
solver. Finally, for α = 0.75, we get kQ = 13 and 15 linear systems to be solved, compared to
8 in the BURA case. The relative errors as functions of the number of linear systems in uQ are
presented on Figure 4.

5.4. 1D and 3D numerical tests with approximate solving of Au = f by PCG method.
In higher spatial dimensions, when the domain Ω in (2) is a subset of Rd, d > 1, we cannot compute
the exact solution u = A−αf . In general, we don’t have explicitly the eigenvalues and eigenvectors
of A. Thus, in the analysis of the numerical tests, we cannot apply error estimates of the form
(12). In order to numerically validate our theoretical estimates we use the two-step procedure from
Section 4.4 through the following obvious identity

(33) f = A
(
A−(1−α)

(
A−αf

))
,

that holds true for an arbitrary vector f ∈ RN . In (29) we argued that taking a product of
two rational functions as an approximation of tβ−α with β = 1 the corresponding approximation
error depends on the condition number of A. For the multivariate validation of Lemma 2.1 such
dimension-dependence is not acceptable, so we choose β = 2 here. In particular, we treat r1

1−αr
1
α

as a 2-uniform rational approximation (this is not BURA, since the approximation error is not
optimal) for the function t2−1 = t on the unit interval (0, 1]. Applying (12) with γ = 2 we deduce

(34) ‖r1
1−α(A)r1

α(A)A−2f −A−1f‖A2 ≤ E1−α,α(k, k; 2)‖f‖A−2 .

To avoid additional numerical inaccuracies, it is more convenient from a computational point of
view to introduce the approximation vector fr of f in (33), i.e.,

fr = A
(
r1

1−α(A)r1
α(A)A−2f

)
:= Aur.
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Then we can rewrite the estimate (34) in the form

(35) ‖fr − f‖/‖A−1f‖ ≤ E1−α,α(k, k; 2).

We estimate the two-step error E1−α,α(k, k; 2) with the help of (27), as in (28). The function r1
1−αr

1
α

has no poles in [0, 1], thus we need not restrict ourselves to the spectrum of A:

E1−α,α(k, k; 2) = max
t∈[0,1]

|r1
1−α(t)r1

α(t)− t| = max
t∈[0,1]

|tαεα(t) + t1−αε1−α(t) + εα(t)ε1−α(t)|

≤ E1−α(k, k; 1) + Eα(k, k; 1) + E1−α(k, k; 1)Eα(k, k; 1).

In practice, however, we observe that the residuals εα and ε1−α are negative and monotonically
decreasing in [0.8, 1]. Due to this sign pattern and the following equalities εα(1) = −Eα(k, k; 1),
ε1−α(1) = −E1−α(k, k; 1), we can improve the two-step error estimate and conclude that:

(36) ‖fr − f‖/‖A−1f‖ ≤ E1−α + Eα − E1−αEα.

The last estimate has been numerically confirmed as sharp for k = {5, 7}. Inspecting closely
the above proof, we realize that the two-step residual is of order E1−αEα or lower around zero.
Furthermore, unlike the equioscillation BURA setting for the one-step process, the two-step residual
reaches its maximum in absolute value only at t = 1 and the amplitudes of its other oscillations
gradually decrease as t approaches zero. As a result, the numerically computed values for the
maximal and averaged random errors w.r.t. (36) are closer to E1−αEα than to E1−α+Eα, meaning
that the typical error is significantly smaller than the worst case scenario E1−α,α.

We investigate two particular choices for f , namely f1 = (1, . . . , 1) and f0 = (1, 0, . . . , 0). In 1D,
the matrix A remains tridiag(−0.25, 0.5,−0.25) and as before we exactly solve the corrsponding
linear systems. In 3D, we use the finite element method in space with linear conforming tetrahedral
finite elements and an algebraic multigrid (AMG) preconditioner in the PCG solutions of the
corresponding linear systems. To be more precise, the BoomerAMG implementation, e.g. [13], is
utilized in the presented numerical tests. We consider Ω = [0, 1]3 and A to be the stiffness matrix
from the FE discretization of the problem (2) with a = a(x)I, with I the identity matrix in Rd
and a(x) is a piece-wise constant function in Ω. In this case, the jump of the coefficient a(x) is
introduced via the scaling factor 0 < µ ≤ 1.

The motivation for choosing these particular f ’s comes from the 1D case. Since for i = 1, . . . , N

〈Ψi, f
1〉 =

{
0, i is even
cot (iπh/2), i is odd

〈Ψi, f
0〉 = sin(iπh) = Ψ1,i,

the decompositions of the two vectors with respect to the eigen-vectors {Ψi}Ni=1 are

f1 =
∑

i is odd

2h cot(iπh/2)Ψi =
∑

i is even

4

iπ

iπh/2

tan(iπh/2)
Ψi; f0 =

N∑
i=1

2h sin(iπh)Ψi.(37)

Therefore, from x/ tan(x) < 1 in (0, π/2), we derive that the coefficients in the f1-decomposition
(37) rapidly decay as i increases, meaning that the Ψ1 component dominates and the two-step
residual at Λ1 determines the behavior of the error ratio ‖f1

r − f1‖/‖A−1f1‖. To summarize

(38) ‖f1
r − f1‖/‖A−1f1‖ ≈

∣∣r1
1−α(Λ1)r1

α(Λ1)− Λ1

∣∣ −−−→
h→0

E1−αEα.

Such asymptotic behavior of the `2-norm error ratio of f1 is numerically confirmed by the con-
ducted 1D and 3D numerical experiments with k = {5, 7} and α = {0.25, 0.5}, as illustrated on
the left of Fig. 5. In 3D we run simulations up to h = 2−8, which corresponds to N = 6(h−1 + 1)3,
while in 1D we go up to h = 2−20, and corresponding number of degrees of freedom N = h−1 + 1.

Clearly, the error tends to E1−αEα as Λ1 → 0. We observe that in the 3D case with homogeneous
coefficient (L is the Laplacian) the error for mesh-size h−1 ∈ [26, 28] mimics the 1D error for mesh-
size h−1 ∈ [29, 212]. For the heterogeneous 3D case, when in a half the unit cube the diffusion
coefficients are scaled by µ = 10−3, k(A) is increased (approximately) by a factor of µ−1, implying
that Λ1 is closer to zero than in the homogeneous case. As a result, the 3D error for the mesh-size
h−1 ∈ [26, 28] mimics the 1D error for the mesh-size h−1 ∈ [214, 217].
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Figure 5. 1D and 3D numerical error analysis. Left: f1 = (1, 1, . . . , 1). Right:
f0 = (1, 0, . . . , 0). The relative errors ‖fr − f‖/‖A−1f‖ are plotted.
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The coefficients in the f0-decomposition (37) have symmetry due to the relations 2h sin(iπh) =
2h sin((N + 1 − i)πh with h = 1/(N + 1). Unlike for f1 case, the contribution of Ψ1 here is
negligible and the behavior of the relative error ‖f0

r − f0‖/‖A−1f0‖ is dominated by the error
|r1

1−α(0.5)r1
α(0.5) − 0.5|. This effect weakens with h → 0, because the coefficients depend on

the mesh-size and their distribution spreads away (standard deviation increases) when the grid is
refined. The two-step residual is stable around t = 1/2 and the coefficients decay proportionally to
the refinement scale, which results in monotone linear behavior of the error as a function of h−1.
The numerical results perfectly agree with this argument and, similar to the 1D–3D correspondence
for f1, we observe that the slope of the error decay is steeper in 3D and the error decreases in the
case of piece-wise constant coefficient a(x).

In the presented numerical tests, as a stopping criteria for the BoomerAMG PCG solver we have
used a relative error less or equal to 10−12. However, we want to note that the numerical results are
practically not affected by using stopping criteria 10−6, instead. Furthermore, for precision 10−12

the order of applying the 1-BURA functions r1
0.25 and r1

0.75 (i.e., taking α = 0.25 or α = 0.75 first)
seems irrelevant and the corresponding relative errors have the same first five meaningful digits.
This implies that the main numerical difficulties are related to the performance of Algorithm 3.1

and the correctness of the subsequent representation of rβα as a sum of partial fractions.

6. Concluding remarks

In this paper we propose algorithms of optimal complexity for solving the linear algebraic system
Aαu = f , 0 < α < 1, where A is a sparse SPD matrix. The target class of applied problems A
obtained by a finite difference or finite element discretization of a second order elliptic problem. Our
main assumption is that the system Au = f can be solved with optimal computational complexity,
e.g. by multi-grid, multi-level or other efficient solution technique. The proposed in the paper
method is applicable also when the matrix is not given explicitly, but one has at hand an optimal
solution procedure for the linear system Au = f and a upper bound for the spectrum of A.

The method is based on best uniform rational approximations (BURA) of tβ−α for 0 ≤ t ≤ 1 and
natural β. Bigger β means stronger regularity assumptions and this is the reason to concentrate
our considerations mostly to the cases β ∈ {1, 2}. Depending on α, β and the degree k of best
uniform rational approximation a relative accuracy of the method between O(10−3) and O(10−7)
can be obtained for k ∈ {5, 6, 7}. Then solution of Aαu = f reduces to solving k+β problems with
sparse SPD matrices of the form A+ cI, c ≥ 0.

The method has been extensively tested on a number system arising in finite element approx-
imation of one- and three-dimensional elliptic problems of second order. In the 3D examples we
have used BoomerAMG PCG solver, [13], of optimal complexity.

Unlike the integral quadrature formula method from [3], the approximation properties of BURA
algorithm are not symmetric with respect to α = 0.5, α ∈ (0, 1). Some favorable results are
presented for the standard (one-step) 1-BURA, m = k, in the case of smaller α. For larger
α, the multi-step algorithm has some promising features. Future theoretical and experimental
investigations are needed for better understanding the observed superior convergence of two-step
BURA when α1 6= α2.

The method and the integral quadrature formula method from [3] have been experimentally
compared. The test setup has been taken from [3, Section 4.1] with h = 2−10 ≈ 10−3. The BURA
method performs better in all numerical experiments and this effect increases as α decreases.
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7. Appendix

Table 8. The coefficients in the representation (20) of 1-BURA P ∗
7 (t)/Q∗

7(t) of t1−α on [0, 1]

j
α = 0.25 α = 0.5 α = 0.75

cj dj cj dj cj dj
0 3.25659E-06 0.00000E+00 4.60366E-05 0.00000E+00 7.85127E-04 0.00000E+00
1 1.44761E-04 -8.74568E-06 9.55918E-04 -3.58368E-07 6.54730E-03 -2.21777E-10
2 1.08271E-03 -2.17427E-04 4.65253E-03 -1.93872E-05 1.81424E-02 -7.80406E-08
3 5.25468E-03 -2.38575E-03 1.63200E-02 -3.71546E-04 4.17928E-02 -5.55397E-06
4 2.05418E-02 -1.77397E-02 4.80082E-02 -4.34363E-03 8.61599E-02 -1.88388E-04
5 7.43766E-02 -1.07563E-01 1.28889E-01 -3.80180E-02 1.65247E-01 -4.07531E-03
6 3.36848E-01 -6.71407E-01 3.73943E-01 -3.00901E-01 3.11865E-01 -6.65806E-02
7 1.16449E+01 -1.55256E+01 2.94945E+00 -4.68768E+00 8.94453E-01 -1.30039E+00

Table 9. The coefficients in the representation (20) of 2-BURA P ∗
5 (t)/Q∗

4(t) of t2−α on [0, 1]

j
α = 0.25 α = 0.5 α = 0.75

cj dj cj dj cj dj
0,1 3.37593E-03 0.00000E+00 2.34402E-02 0.00000E+00 1.42137E-01 0.00000E+00
0,2 -6.2333E-07 0.00000E+00 -2.0349E-06 0.00000E+00 -3.8415E-06 0.00000E+00
1 2.40583E-02 -1.47434E-02 7.84172E-02 -8.08787E-03 1.69113E-01 -3.82073E-03
2 8.72123E-02 -1.22415E-01 1.75667E-01 -7.81739E-02 2.20935E-01 -4.55009E-02
3 3.80068E-01 -7.92754E-01 4.54976E-01 -5.27883E-01 3.41427E-01 -3.37721E-01
4 1.30317E+01 -1.80742E+01 3.58723E+00 -7.18890E+00 1.04996E+00 -3.71162E+00

Table 10. The coefficients in the representation (20) of 2-BURA P ∗
7 (t)/Q∗

6(t) of t2−α on [0, 1]

j
α = 0.25 α = 0.5 α = 0.75

cj dj cj dj cj dj
0,1 7.38825E-04 0.00000E+00 7.91901E-03 0.00000E+00 7.87824E-02 0.00000E+00
0,2 -1.8043E-08 0.00000E+00 -7.8577E-08 0.00000E+00 -2.0108E-07 0.00000E+00
1 5.14919E-03 -1.91822E-03 2.62088E-02 -9.16055E-04 9.33258E-02 -3.59264E-04
2 1.66782E-02 -1.48538E-02 5.50057E-02 -8.44288E-03 1.17911E-01 -4.15349E-03
3 4.59429E-02 -7.22366E-02 1.06623E-01 -4.61173E-02 1.53620E-01 -2.65144E-02
4 1.29584E-01 -2.99678E-01 2.11649E-01 -2.05570E-01 2.09664E-01 -1.31566E-0
5 5.25079E-01 -1.41237E+00 5.39001E-01 -9.66103E-01 3.42629E-01 -6.42203E-01
6 1.81241E+01 -2.83519E+01 4.40913E+00 -1.12571E+01 1.13935E+00 -5.82558E+00
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Table 11. Numerical error ε in (12) for (m, k) = (7, 7) and β = 1. For each α the left

column shows the results for f consisting of eigenvectors, while the right column is the error

for f taken as 1000 random eigenvector combinations. In each box averaged error (top) and

the maximal error (bottom) are reported.

h−1
α = 0.25 α = 0.5 α = 0.75

Eα(7, 7; 1) =3.2566E-06 Eα(7, 7; 1) =4.6037E-05 Eα(7, 7; 1) =7.8966E-04

{Ψi}Ni=1 rand1000 {Ψi}Ni=1 rand1000 {Ψi}Ni=1 rand1000

8
1.9565E-06 1.7915E-06 2.8431E-05 2.7493E-05 5.6995E-04 6.9670E-04
3.2061E-06 2.9876E-06 4.6024E-05 4.5356E-05 7.6989E-04 7.6437E-04

16
2.0032E-06 2.4354E-06 2.6759E-05 2.3804E-05 5.2532E-04 6.5826E-04
3.1948E-06 2.9711E-06 4.5812E-05 3.7222E-05 7.8518E-04 7.0151E-04

32
2.1362E-06 2.7011E-06 2.9166E-05 3.3229E-05 5.0559E-04 5.9927E-04
3.2522E-06 2.9153E-06 4.5720E-05 3.7850E-05 7.8286E-04 6.4667E-04

64
2.0616E-06 1.9800E-06 2.9487E-05 3.9642E-05 4.9911E-04 4.8683E-04
3.2564E-06 2.8259E-06 4.6035E-05 4.3436E-05 7.8744E-04 6.3295E-04

128
2.0567E-06 1.5541E-06 2.9505E-05 4.0691E-05 4.9672E-04 3.5982E-04
3.2565E-06 2.6089E-06 4.6033E-05 4.4048E-05 7.8922E-04 6.7316E-04

256
2.0675E-06 1.8786E-06 2.9370E-05 3.8431E-05 4.9953E-04 4.4143E-04
3.2566E-06 2.6313E-06 4.6029E-05 4.3061E-05 7.8959E-04 7.0087E-04

512
2.0734E-06 2.6468E-06 2.9312E-05 3.0132E-05 5.0116E-04 6.3817E-04
3.2566E-06 3.0750E-06 4.6036E-05 3.9441E-05 7.8965E-04 7.4051E-04

1024
2.0736E-06 2.3078E-06 2.9288E-05 2.3497E-05 5.0152E-04 6.3749E-04
3.2566E-06 2.9537E-06 4.6037E-05 3.7366E-05 7.8965E-04 7.1731E-04

Table 12. Numerical error ε in (12) for (m, k) = (7, 6) and β = 2. For each α the left

column shows the results for f consisting of eigenvectors, while the right column is the error

for f taken as 1000 random eigenvector combinations. In each box averaged error (top) and

the maximal error (bottom) are reported.

h−1
α = 0.25 α = 0.5 α = 0.75

Eα(7, 6; 2) =1.8043E-08 Eα(7, 6; 2) =7.8577E-08 Eα(7, 6; 2) =2.0108E-07

{Ψi}Ni=1 rand1000 {Ψi}Ni=1 rand1000 {Ψi}Ni=1 rand1000

8
1.0632E-08 1.0631E-08 5.9400E-08 6.0261E-08 1.0966E-07 1.0468E-07
1.5547E-08 1.2642E-08 7.8416E-08 6.9105E-08 2.01E00-07 1.5912E-07

16
9.5732E-09 1.3119E-08 5.4368E-08 5.3487E-08 1.1609E-07 1.7237E-07
1.7828E-08 1.3955E-08 7.7768E-08 7.6782E-08 2.0032E-07 1.8421E-07

32
1.1235E-08 3.6625E-09 5.1080E-08 7.5291E-08 1.2520E-07 6.2571E-08
1.8049E-08 1.5797E-08 7.8585E-08 7.8456E-08 2.0100E-07 1.9484E-07

64
1.1198E-08 3.2757E-09 5.1082E-08 7.7033E-08 1.2412E-07 2.8021E-08
1.8040E-08 1.0433E-08 7.8644E-08 7.8491E-08 2.0090E-07 9.7132E-08

128
1.1468E-08 1.6223E-08 5.0090E-08 6.7111E-08 1.2665E-07 5.8966E-08
1.8066E-08 1.7177E-08 7.8573E-08 7.7379E-08 2.0110E-07 1.4951E-07

256
1.1446E-08 3.8759E-09 4.9977E-08 4.4867E-08 1.2795E-07 1.8929E-07
1.8062E-08 1.7213E-08 7.8638E-08 6.9319E-08 2.0111E-07 2.0039E-07

512
1.1473E-08 1.1522E-08 4.9994E-08 3.1754E-08 1.2783E-07 6.5736E-08
1.8065E-08 1.2699E-08 7.8647E-08 7.0909E-08 2.0111E-07 1.9958E-07
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Table 13. Numerical error ε in (12) for the multi-step case (m, k) = (5, 5) and β = 1.

For each setup the left column shows the results for f consisting of eigenvectors, while the

right column is the error for f taken as 1000 random eigenvector combinations. In each box

averaged error (top) and the maximal error (bottom) are reported.

h−1
α = 0.5 α = 0.75 α = 0.75

ur = A−0.25
(
A−0.25f

)
ur = A−0.25

(
A−0.25

(
A−0.25f

) )
ur = A−0.25

(
A−0.50f

)
{Ψi)}Ni=1 rand1000 {Ψi)}Ni=1 rand1000 {Ψi)}Ni=1 rand1000

16
4.1065E-05 4.1827E-05 8.7666E-05 1.2954E-04 1.9972E-04 1.7173E-04
9.4745E-05 7.2813E-05 2.3891E-04 2.2187E-04 3.9098E-04 3.3170E-04

32
4.7118E-05 5.1558E-05 1.0939E-04 2.0585E-04 2.1337E-04 2.3155E-04
1.2093E-04 1.0361E-04 4.8074E-04 3.9256E-04 5.0294E-04 4.1310E-04

64
5.1447E-05 1.0267E-04 1.4007E-04 7.7816E-04 2.3385E-04 4.5311E-04
2.0432E-04 1.5404E-04 1.1396E-03 9.9375E-04 5.6349E-04 5.4832E-04

128
5.7422E-05 3.2390E-04 2.0400E-04 4.1774E-03 2.3648E-04 4.0115E-04
4.5572E-04 4.3974E-04 6.2524E-03 6.0171E-03 5.9066E-04 5.4683E-04

256
5.9104E-05 4.3670E-04 2.3325E-04 7.4754E-03 2.3848E-04 7.7769E-04
5.3831E-04 5.2302E-04 1.0097E-02 9.7472E-03 1.0680E-03 1.0328E-03

512
5.9310E-05 5.9445E-04 2.4906E-04 1.3916E-02 2.4811E-04 3.8679E-03
7.7978E-04 7.5465E-04 1.9729E-02 1.9016E-02 5.8996E-03 5.6791E-03

1024
5.9021E-05 4.1906E-04 2.4148E-04 9.6104E-03 2.5064E-04 5.3558E-03
8.0305E-04 7.2124E-04 1.9733E-02 1.7263E-02 6.8130E-03 6.5918E-03

Table 14. Numerical error ε in (12) for the multi-step case (m, k) = (7, 7) and β = 1.

For each setup the left column shows the results for f consisting of eigenvectors, while the

right column is the error for f taken as 1000 random eigenvector combinations. In each box

averaged error (top) and the maximal error (bottom) are reported.

h−1
α = 0.5 α = 0.75 α = 0.75

ur = A−0.25
(
A−0.25f

)
ur = A−0.25

(
A−0.25

(
A−0.25f

) )
ur = A−0.25

(
A−0.50f

)
{Ψi)}Ni=1 rand1000 {Ψi)}Ni=1 rand1000 {Ψi)}Ni=1 rand1000

8
5.0192E-06 5.1628E-06 1.0010E-05 1.1877E-05 3.6246E-05 4.0301E-05
9.8128E-06 9.6002E-06 2.5169E-05 2.4547E-05 7.0309E-05 6.8761E-05

16
5.8605E-06 1.4026E-05 1.5501E-05 6.6467E-05 3.4149E-05 3.7829E-05
1.9834E-05 1.9260E-05 9.7937E-05 9.4949E-05 6.6285E-05 5.2376E-05

32
6.7145E-06 2.0145E-05 2.0351E-05 1.2619E-04 3.9973E-05 8.4991E-05
2.5714E-05 2.5005E-05 1.7685E-04 1.7140E-04 1.1430E-04 1.1152E-04

64
6.3275E-06 1.8390E-05 1.9405E-05 1.4991E-04 4.3354E-05 1.6584E-04
2.6754E-05 2.3775E-05 1.8260E-04 1.7894E-04 2.2211E-04 2.1671E-04

128
6.3162E-06 1.7655E-05 1.9982E-05 1.9293E-04 4.5322E-05 2.5209E-04
2.7195E-05 2.1459E-05 2.3671E-04 2.3119E-04 3.2535E-04 3.1700E-04

256
6.5595E-06 3.5085E-05 2.4035E-05 5.9986E-04 4.5112E-05 2.3879E-04
4.5202E-05 4.4046E-05 8.6567E-04 8.3841E-04 3.1927E-04 2.9358E-04

512
6.7797E-06 8.1866E-05 2.9931E-05 2.1139E-03 4.6091E-05 4.4815E-04
1.1361E-04 1.0915E-04 3.1081E-03 2.9789E-03 5.7114E-04 5.5602E-04

1024
6.8055E-06 9.0098E-05 3.1472E-05 3.0128E-03 4.7830E-05 1.1992E-03
1.1366E-04 1.0352E-04 3.9165E-03 3.8048E-03 1.6865E-03 1.6425E-03



SOLUTION OF SYSTEMS WITH FRACTIONAL POWER OF SPD MATRICES 29

Table 15. Numerical `2-error ε for h−1 = 2n based on (36) for f reconstruction with

(m, k) = (5, 5) and β = 1. For each setup the left column shows the results for f consisting

of eigenvectors, while in the middle and right columns are the errors for f taken as 1000

random eigenvector combinations. In each box averaged error (top) and the maximal error

(bottom) are reported.

h−1
A(A−0.25(A−0.75f)) A(A−0.5(A−0.5f))

E0.75 + E0.25 − E0.75E0.25 =2.7448E-03 2E0.5 − E2
0.5 =5.3784E-04

{Ψi)}Ni=1 rand1000 rand1000 {Ψi)}Ni=1 rand1000 rand1000

16
4.7354E-04 7.5219E-05 7.5147E-05 1.0598E-04 8.7507E-06 8.6706E-06
2.4855E-03 8.1696E-05 8.2122E-05 4.8149E-04 1.3993E-05 1.5610E-05

32
4.7350E-04 2.4231E-05 2.4240E-05 1.0689E-04 4.0082E-06 3.9951E-06
2.6751E-03 2.5452E-05 2.5517E-05 5.1127E-04 6.8881E-06 6.7313E-06

64
4.7775E-04 3.4729E-06 3.4744E-06 1.0850E-04 6.9353E-06 6.9349E-06
2.7268E-03 4.0236E-06 3.9443E-06 5.3095E-04 7.3211E-06 7.2493E-06

128
4.7955E-04 6.0366E-07 6.0448E-07 1.0878E-04 6.2346E-06 6.2351E-06
2.7402E-03 8.7980E-07 9.4323E-07 5.3609E-04 6.2777E-06 6.2911E-06

256
4.8034E-04 5.7357E-07 5.7343E-07 1.0891E-04 2.5050E-06 2.5049E-06
2.7437E-03 5.8741E-07 5.8982E-07 5.3740E-04 2.5149E-06 2.5144E-06

512
4.8074E-04 1.2493E-06 1.2493E-06 1.0895E-04 6.7062E-07 6.7059E-07
2.7445E-03 1.2496E-06 1.2496E-06 5.3773E-04 6.7463E-07 6.7458E-07

1024
4.8094E-04 2.0673E-07 2.0677E-07 1.0898E-04 6.9352E-07 6.9357E-07
2.7447E-03 2.0885E-07 2.0924E-07 5.3781E-04 6.9625E-07 6.9637E-07

2048
4.8104E-04 4.1620E-07 4.1620E-07 1.0899E-04 2.8010E-07 2.8010E-07
2.7448E-03 4.1646E-07 4.1649E-07 5.3783E-04 2.8034E-07 2.8027E-07

4096
4.8109E-04 5.3275E-07 5.3275E-07 1.0900E-04 3.6167E-08 3.6185E-08
2.7448E-03 5.3281E-07 5.3282E-07 5.3784E-04 3.7534E-08 3.7333E-08

Table 16. Numerical `2-error ε for h−1 = 2n based on (36) for f reconstruction with

(m, k) = (7, 7) and β = 1. For each setup the left column shows the results for f consisting

of eigenvectors, while in the middle and right columns are the errors for f taken as 1000

random eigenvector combinations. In each box averaged error (top) and the maximal error

(bottom) are reported.

h−1
A(A−0.25(A−0.75f)) A(A−0.5(A−0.5f))

E0.75 + E0.25 − E0.75E0.25 =7.9291E-04 2E0.5 − E2
0.5 =9.2071E-05

{Ψi)}Ni=1 rand1000 rand1000 {Ψi)}Ni=1 rand1000 rand1000

16
2.7428E-04 1.9574E-05 1.9581E-05 3.6147E-05 3.6776E-06 3.6796E-06
6.9284E-04 2.2126E-05 2.1900E-05 8.3254E-05 3.9151E-06 3.9819E-06

32
2.7502E-04 5.8770E-06 5.8751E-06 3.7098E-05 3.6259E-06 3.6258E-06
7.6589E-04 6.5626E-06 6.3826E-06 8.5885E-05 3.7467E-06 3.7298E-06

64
2.7683E-04 1.3628E-06 1.3604E-06 3.7178E-05 2.1428E-06 2.1423E-06
7.8591E-04 1.5488E-06 1.5196E-06 9.0463E-05 2.1745E-06 2.1682E-06

128
2.7801E-04 2.2851E-07 2.3003E-07 3.7255E-05 1.0873E-06 1.0873E-06
7.9113E-04 3.2669E-07 3.2927E-07 9.1662E-05 1.0939E-06 1.0921E-06

256
2.7853E-04 3.4135E-07 3.4141E-07 3.7286E-05 4.9867E-07 4.9869E-07
7.9246E-04 3.5032E-07 3.5252E-07 9.1968E-05 4.9986E-07 5.0030E-07

512
2.7875E-04 3.0366E-07 3.0365E-07 3.7300E-05 1.4905E-07 1.4905E-07
7.9280E-04 3.0476E-07 3.0452E-07 9.2045E-05 1.4975E-07 1.4971E-07

1024
2.7886E-04 1.2014E-07 1.2014E-07 3.7307E-05 4.3477E-08 4.3476E-08
7.9288E-04 1.2029E-07 1.2030E-07 9.2065E-05 4.4327E-08 4.4182E-08

2048
2.7892E-04 7.9001E-08 7.9001E-08 3.7312E-05 7.2197E-08 7.2198E-08
7.9290E-04 7.9031E-08 7.9026E-08 9.2069E-05 7.2315E-08 7.2295E-08

4096
2.7895E-04 5.2692E-09 5.2567E-09 3.7314E-05 1.1877E-08 1.1875E-08
7.9291E-04 5.8000E-09 5.6822E-09 9.2071E-05 1.1928E-08 1.1916E-08
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