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Abstract

The theory of graphons comes with a natural sampling procedure, which results in an inho-
mogeneous variant of the Erdős–Rényi random graph, called W -random graphs. We prove, via
the method of moments, a limit theorem for the number of r-cliques in such random graphs. We
show that, whereas in the case of dense Erdős–Rényi random graphs the fluctuations are nor-
mal of order nr−1, the fluctuations in the setting of W -random graphs may be of order 0, nr−1,
or nr−0.5. Furthermore, when the fluctuations are of order nr−0.5 they are normal, while when
the fluctuations are of order nr−1 they exhibit either normal or a particular type of chi-square
behavior whose parameters relate to spectral properties of W .

These results can also be deduced from a general setting [Janson and Nowicki, PTRF 1991],
based on the projection method. In addition to providing alternative proofs, our approach makes
direct links to the theory of graphons.

Keywords: graphons; inhomogeneous random graphs; limit theorems; subgraph counts; quasiran-
domness

1 Introduction

1.1 Subgraph counts in random graphs

The purpose of this work is to investigate the distribution of the number of fixed-size cliques in an
inhomogeneous variant of the Erdős–Rényi random graph G(n, p). The study of the Erdős–Rényi
random graph (see [11]) is over a half-century old. A central part in the development of the ran-
dom graph theory concerns methods for understanding the distribution of subgraph counts. Even
though “subgraphs” may be large-scale structures, like Hamilton cycles, here we are concerned
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with counting fixed-sized subgraphs. In particular, we want to describe the (bulk of the) distri-
bution of the random variable that counts the number of copies of a fixed subgraph H as n tends
to infinity or, in probabilistic language, to obtain a limit theorem for the distribution of subgraph
counts of H .

This problem has many variants (all copies of H , induced copies of H , joint distribution for sev-
eral subgraph counts, . . . ), and a variety of tools have been applied to tackle it, including Stein’s
method in [2], ideas from U-statistics in [16], and the method of moments in [19]. We refer the
reader to [11] for an entire chapter devoted to the topic and for further references.

Given graphs H and G, let N(H,G) denote the number of copies of H in G, i.e., the number of
subgraphs of G that are isomorphic to H , and consider a random variable

Xn := N(H,G(n)) ,

where G(n) is a model of random graphs on n vertices of interest. The asymptotic normality
of Xn in the Erdős–Rényi random graph model G(n) = G(n, p(n)), has been fully described by
Ruciński [19] already in 1988. When p(n) is constant it first appeared as a special case of a result
by Nowicki and Wierman [16] who showed that for any fixed graph H with at least one edge and
any p ∈ (0, 1),

Xn − E[Xn]√
Var[Xn]

d−→ Z ∼ N (0, 1).

(Here and below Zn
d−→Z denotes convergence in distribution.) Our result extends this result

in the case of cliques H = Kr, r ≥ 2 and fixed p by generalizing G(n, p) to the random graph
model G(n,W ) which plays a key role in the theory of dense graph limits introduced in [7, 15].
This model, which we formally define in Section 1.2, can be described as follows: each vertex
is assigned a random type and then each pair of vertices is independently included as an edge
in G(n,W ) with a probability that depends only on the types of the two vertices. The random
graph G(n, p) corresponds to a single type and hence the same probability p for every pair of
vertices.

Henceforth, we shall writeXn(H,W ) := N(H,G(n,W )). In Theorem 1.2, we state our main result,
a limit theorem forXn(H,W ) for eachH = Kr, r ≥ 2. However, since our main result Theorem 1.2
requires quite a few additional definitions, for a preview we state its implicit version, Theorem 1.1.
We start the next subsection by the minimum number of definitions.

1.2 Inhomogeneous random graphs and the simplified result statement

A graphon is a symmetric Lebesgue measurable function W : [0, 1]2 → [0, 1]. Graphons arise
as limits of sequences of large finite undirected graphs with respect to the so-called cut metric
(see [14, Part 3]). Intuitively, graphons may be thought of as graphs on the vertex set [0, 1] with
infinitesimally small vertices and with a W (x, y)-proportion of all possible edges being present
in the bipartite graph whose color classes are formed by a small neighbourhood of x and of y,
respectively.

Graphons come with a natural sampling procedure, which results in an inhomogeneous variant of
the Erdős–Rényi random graph. More precisely, given a graphonW , the random graph G(n,W ) is
a finite simple graph on n vertices, labelled by the set [n] := {1, . . . , n}, which is generated in two
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steps: in the first step we draw n numbers types) U1, . . . , Un independently from the interval [0, 1]
according to the uniform distribution and we identify their index set with the labels of the vertex
set of G(n,W ); in the second step, each pair of vertices i and j in G(n,W ) is connected indepen-
dently with probability W (Ui,Uj). Notice that if W (x, y) is constant, say, p ∈ [0, 1], then G(n,W )
is the same as the Erdős–Rényi random graph G(n, p). Inhomogeneous random graphs G(n,W )
provide substantial additional challenges compared to G(n, p). For example, while a standard
second moment argument shows that the clique number of G(n, p) satisfies ω(G(n, p)) ∼ 2 logn

log(1/p) ,
extending this formula to G(n,W ) required new techniques, [8]. Further work on inhomogeneous
random graphs so far ([6, 10]) was done in a more general, possibly sparse, model which we men-
tion in Section 5.

Corollary 10.4 in [14] implies that Xn(H,W ) obeys the law of large numbers, that is, for every
ε > 0,

lim
n→∞

P {Xn(H,W ) = (1± ε)E[Xn(H,W )]} = 1. (1)

This is one of the key results in the theory of limits of dense graph sequences because it shows that
each graphon can be approximated by finite graphs with similar subgraph densities. In this article
we aim to understand the nature of fluctuations of Xn(H,W ) around its expectation.

Fix r ≥ 2 and write Xn = Xn(Kr,W ) for the number of r-cliques in G(n,W ). Since every r-set of
vertices in G(n,W ) induces a random graph distributed as G(r,W ), every r-set of vertices induces
a clique with probability

t(Kr,W ) := P {G(r,W ) = Kr} .

If we prescribe type x to one of the vertices in an r-set, then this r-set induces a clique with proba-
bility

t(x) = tx(Kr,W ) := P
{
G(r,W ) = Kr

∣∣ U1 = x
}
.

Clearly, t(Kr,W ) =
∫ 1

0
t(x)dx.

For a measurable function f : [0, 1]k → R we say f is constant and denote f ≡ c whenever f(x) = c
for almost every x ∈ [0, 1]k.

We start with a simplified version of our main result. The additional information provided by the
complete version, that is, Theorem 1.2, is the description of constants σ and c0, c1, . . . in terms of
the graphon W .

Theorem 1.1. For t(Kr,W ), t(x), and Xn defined above, the following holds.

(a) If t(Kr,W ) = 0 or t(Kr,W ) = 1, then almost surely Xn = 0 or Xn =
(
n
r

)
, respectively.

(b) If t(x) is not constant, then there is a constant σ > 0 such that

Xn − E[Xn]

nr−1/2
d−→ σZ , (2)

where Z is a standard normal random variable.

(c) If t(x) is constant (but other than 0 or 1), then there are real numbers c0, c1, . . . , such that
∑
i c

2
i ∈

(0,∞) and
Xn − E[Xn]

nr−1
d−→ c0Z0 +

∑
i≥1

ci(Z
2
i − 1) , (3)
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where Z0, Z1, . . . are independent standard normal random variables. The series on the right-hand
side of (3) converges a.s. and in L2.

Proof. Theorem 1.2 implies all the claims of Theorem 1.1 except for the fact that
∑
i c

2
i > 0, which

follows from Remark 1.6.

We note that non-normal limit theorem occurs even in G(n, p) with p fixed, but for induced sub-
graph counts, see [11, Theorem 6.52].

A toy instance of Theorem 1.1(c). The proof of Theorem 1.1(c) proceeds by the method of mo-
ments and thus in itself does not provide much intuition for the asserted non-normal limit fluc-
tuations. This behavior is however suggested by the following simple example. Let r ≥ 2 be
arbitrary. Consider W which is a ‘disjoint union of two equally-sized cliques’, that is W (x, y) = 1
if (x, y) ∈ [0, 12 )2 ∪ [ 12 , 1]2 and W (x, y) = 0 otherwise. It is easy to verify that t(x) = 2−r+1 for
each x ∈ [0, 1], in particular, t(x) is constant. Now, the graph G(n,W ) is determined already
after the first step of the construction, that is, after sampling U1, . . . , Un. Indeed, G(n,W ) will
consist of two disconnected cliques, one consisting of the vertices V1 := {i : Ui ∈ [0, 12 )} and the
other one consisting of the vertices V2 := {i : Ui ∈ [ 12 , 1]}. By the central limit theorem, we have
|V1| ≈ n

2 + N ·
√
n, where N is a normal random variable with mean 0 and variance 1

4 . Determinis-
tically, |V2| = n− |V1| ≈ n

2 − N ·
√
n. Hence, the number of Kr’s in G(n,W ) is equal to(

|V1|
r

)
+

(
|V2|
r

)
≈
(n

2 + N ·
√
n

r

)
+

(n
2 − N ·

√
n

r

)
≈ 1

r!
·
((n

2
+ N ·

√
n
)r

+
(n

2
− N ·

√
n
)r)

.

The first terms in the binomial expansions of these two summands add up to 2nr

2r which is non-
random (and hence does not contribute to fluctuations). The second terms in the binomial ex-
pansions cancel out. Hence the main part of the fluctuations comes from the sum of the third
terms, (

r

2

)
(n2 )r−2(N ·

√
n)2 +

(
r

2

)
(n2 )r−2(−N ·

√
n)2 = 23−r

(
r

2

)
· N2 · nr−1 .

In particular, we see that these fluctuations are of order nr−1 and involve the square of a normal
random variable.

Connection to generalized U-statistics. During the post-submission revision the authors be-
came aware of a result by Janson and Nowicki [12] on orthogonal decomposition of generalized
U-statistics of independent random variables indexed by both vertices and edges of a graph (see
also [13]). In particular, Theorem 2 in [12] implies Theorem 1.1. To see this, one has to realize
that the clique count can be expressed as a U-statistic by generating independent uniform random
variables Yuv ∈ [0, 1] (independent of U1, ..., Un) and defining G(n,W ) as the graph with edge
set

{uv : Yuv ≤W (Uu, Uv)},

where Uv, v ∈ [n] are the random types as defined above.

The contribution of this paper is thus (i) a direct proof of limit distribution using the method of
moments; (ii) explicit description of the limit distribution in terms of the graphonW (which admit-
tedly also can be read out relatively easily from the result of Janson and Nowicki); (iii) establishing
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a link between asymptotic normality of clique counts and quasirandomness (see Conjecture 1.4
and the following comment).

Before stating the explicit version of Theorem 1.1 we need to introduce some definitions about
spectra of graphons and more advanced concepts related to subgraph densities. On the way, we
also recall facts that will be useful for the proof of the main theorem.

1.3 Spectrum of a graphon and cycle densities

Much of the spectral theory of graphs carries over to the dense graph limit setting, where graphons
play the role that adjacency matrices of graphs play in algebraic graph theory. Spectral properties
of graphons will be crucial in stating and proving the explicit version of Theorem 1.1(c).

In this section, we follow [14, Section 7.5], where details and proofs can be found. We work with
the real Hilbert space L2[0, 1]. Suppose thatW : [0, 1]2 → [0, 1] is a graphon. Then we can associate
with W its kernel operator TW : L2[0, 1]→ L2[0, 1] by setting

(TW f)(x) =

∫ 1

0

W (x, y)f(y) dy

for each f ∈ L2[0, 1]. The operator TW is a Hilbert–Schmidt operator and that has a discrete
spectrum. That is, there exists a countable multiset, denoted Spec(W ), of non-zero real eigenvalues
associated with W . Moreover, we have that∑

λ∈Spec(W )

λ2 =

∫
[0,1]2

W (x, y)2 dx dy ≤ 1. (4)

The degree function of a graphon W is the function degW : [0, 1] → [0, 1] defined as degW (x) =∫
y
W (x, y)dy. In order to gain some intuition about the degree function, the reader should note

that if a vertex in G(n,W ) is conditioned to have type x, it has expected degree (n− 1) · degW (x).
We say that W is regular if degW (x) ≡ d for some constant d. (Note that in such case d =∫
[0,1]2

W (x, y) dx dy.)

Observe that if W is regular, then f ≡ 1 is an eigenfunction of TW with eigenvalue d. In this case,
let Spec−(W ) be Spec(W ) with the multiplicity of d decreased by 1. (It can also be shown that all
eigenvalues are at most d in absolute value, but this is not necessary for our proof.)

One of the most useful properties of eigenvalues of a graphon is that they give a simple expression
for cycle densities. Recall that C` is a cycle on ` vertices (with C2 being a multigraph consisting of
a double edge). We have (see [14, (7.22), (7.23)]) that

t(C`,W ) =
∑

λ∈Spec(W )

λ`, for ` ≥ 2 . (5)

Note that for ` = 2, the formula (5) is exactly (4).

The formula (5) plays a key part in the proof Theorem 1.2(c), and is the only fact that we use from
the spectral theory of graphons.
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1.4 Conditional densities, Kr-regular graphons and V
(r)
W

If H is a fixed multigraph and W is a graphon, the density (usually called homomorphism density) of
H in W is defined as

t(H,W ) := E
∏

{i,j}∈E(H)

W (Ui, Uj) . (6)

(Notice that if the edge {i, j} has multiplicity m in H , then the corresponding contribution to the
density equals W (Ui, Uj)

m.) When H is a simple graph on k vertices, then the constant t(H,W ) ∈
[0, 1] is the probability that a particular copy of H is present in G(n,W ), which implies

E[Xn(H,W )] =
(n)k

aut(H)
t(H,W ),

where aut(H) is the number of automorphisms of H , and (n)k = n · (n − 1) · . . . · (n − k + 1).
In particular we have that EXn(Kr,W ) =

(
n
r

)
t(Kr,W ), a fact that will be used several times

throughout the paper.

For a natural number k, we write [k] := {1, 2, . . . , k}. Given an integer ` ≤ k, let
(
[k]
`

)
denote all

`-element subsets of [k]. Let J ∈
(
[k]
`

)
and suppose that H is a graph on the vertex set [k] for which

the vertices from the set J are considered as marked. Given a vector x = (xj)j∈J ∈ [0, 1]`, we
define

tx(H,W ) = E

 ∏
{i,j}∈E(H)

W (Ui, Uj)

∣∣∣∣ Uj = xj : j ∈ J

 . (7)

Again, if H is simple with |V (H)| = r, then tx(H,W ) is the conditional probability that G(r,W ) =
H whenever vertex j is prescribed a type xj , for j ∈ J . Note that, when H = Kr is the r-clique,
the function x 7→ tx(Kr,W ) depends only on the cardinality of J (and not on J itself). In this
case, we write K•r and K••r for Kr with one, respectively two, marked vertices and denote the
corresponding conditional densities by tx(K•r ,W ) and tx,y(K••r ,W ).

A graphon W is called Kr-free if t(Kr,W ) = 0 and called complete if W equals 1 almost every-
where.

We say that W is Kr-regular if for almost every x ∈ [0, 1] we have

tx (K•r ,W ) = t(Kr,W ) .

In the case r = 2, we have tx (K•r ,W ) = degW (x), hence K2-regularity coincides with the usual
concept of regularity. For r ≥ 3 condition of Kr-regularity means that in the random graph
G(n,W ) a vertex is expected to belong to the same number of copies of Kr, regardless of its type.
Another important aspect of Kr-regularity of W is that any two particular copies of Kr that share
exactly one vertex are uncorrelated, that is, in G(n,W ) existence of one of the these two copies
does not influence the probability of the existence of the other. As we will see in the proof, if W
is not Kr-regular, then a pair of Kr-copies sharing one vertex are positively correlated (see (20)),
intuitively causing larger variance of the Kr count.

As we will see in Theorem 1.2, the limit distribution of edges (i.e. case r = 2) can be described
in terms of the function degW and the spectrum of W . For r ≥ 3, however, we need to consider
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an auxiliary graphon V
(r)
W defined below which encodes the information about the local clique

densities in W .

Suppose that W is a graphon and r ≥ 2. Then we define a graphon V
(r)
W : [0, 1]2 → [0, 1] by

setting
V

(r)
W (x, y) := tx,y(K••r ,W ). (8)

So, V (r)
W (x, y) is intuitively the density of Kr’s containing x and y. Note that V (2)

W = W .

Suppose that we have two numbers r ∈ N and j ∈ {0, . . . , r}. We write Kr 	j Kr for the (simple)
graph on 2r−j vertices consisting of two copies ofKr sharing j vertices. For j = 2, we also denote
by Kr ⊕2 Kr the multigraph obtained from Kr 	2 Kr by doubling the shared edge. In particular
K2 	2 K2 = K2 and K2 ⊕2 K2 = C2.

Denote by K ′r and K ′′r two copies of Kr that share exactly two vertices, which have labels 1 and 2.
We have∏

ij∈Kr⊕Kr

W (Ui, Uj) = W (U1, U2)
∏

ij∈Kr	2Kr

W (Ui, Uj) =
∏
ij∈K′r

W (Ui, Uj)
∏

ij∈K′′r

W (Ui, Uj)

Taking conditional expectation with respect to the event U1 = x, U2 = y and noting that products∏
ij∈K′r

W (Ui, Uj) and
∏
ij∈K′′r

W (Ui, Uj) are conditionally independent, from definition (7) we
obtain

tx,y(Kr ⊕2 Kr,W ) = W (x, y)tx,y(Kr 	2 Kr,W ) = (tx,y(K••r ,W ))
2

=
(
V

(r)
W (x, y)

)2
. (9)

Let
σ2
r,W :=

1

2((r − 2)!)2
(t(Kr 	2 Kr,W )− t(Kr ⊕2 Kr,W )) . (10)

We have σ2
r,W ≥ 0, since, assuming that the two shared vertices have labels 1 and 2,

t(Kr 	2 Kr,W )− t(Kr ⊕2 Kr,W ) =

∫
(tx,y(Kr 	2 Kr)− tx,y(Kr ⊕2 Kr)) dx dy

(9)
=

∫
[1−W (x, y)]tx,y(Kr 	2 Kr) dx dy

≥
∫

0 dx dy = 0.

(11)

Observe that

deg
V

(r)
W

(x) =

∫ 1

0

V
(r)
W (x, y) dy =

∫ 1

0

tx,y(K••r ,W ) dy = tx(K•r ,W ).

So W is Kr-regular if and only if V (r)
W is regular, with deg

V
(r)
W

≡ tr := t(Kr,W ). Hence, by the

remark we made in Section 1.3, one of the eigenvalues associated with V
(r)
W is tr. In this case,

Spec−(V
(r)
W ) is Spec(V

(r)
W ) with the multiplicity of tr decreased by 1.
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1.5 Statement of the main result

We are now ready to state our main result.

Theorem 1.2. Let W be a graphon. Fix r ≥ 2 and set tr = t(Kr,W ). Let Xn,r = Xn(Kr,W ) be the
number of r-cliques in G(n,W ). Then we have the following.

(a) If W is Kr-free or complete then almost surely Xn,r = 0 or Xn,r =
(
n
r

)
, respectively.

(b) If W is not Kr-regular, then
Xn,r −

(
n
r

)
tr

nr−
1
2

d−→ σ̂r,W · Z , (12)

where Z is a standard normal random variable and σ̂r,W = 1
(r−1)!

(
t(Kr 	1 Kr,W )− t2r

)1/2
> 0.

(c) If W is a Kr-regular graphon which is neither Kr-free nor complete, then

Xn,r −
(
n
r

)
tr

nr−1
d−→ σr,W · Z +

1

2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1) , (13)

where Z and (Zλ)
λ∈Spec−(V (r)

W )
are independent standard normal and σr,W is defined in (10). (The

series on the right-hand side of (13) converges a.s. and in L2 by Lemma 2.1.)

Let us comment briefly on Theorem 1.2. Part (a) is immediate. Part (b) tells us that in this setting
we have a behaviour as in the central limit theorem; indeed we could have stated Part (b) as
(Xn,r − E[Xn,r])/

√
Var[Xn,r]

d−→Z. Finally, we will see in Remark 1.6 below that the limit in (13)
is non-degenerate, implying the Theorem 1.2 gives a complete description of limit distributions of
small cliques in G(n,W ).

Let us mention that Part (b) has been recently reported in [9], using a framework of the so-called
mod-Gaussian convergence, developed in that paper. This concept actually gives much more:
firstly, the authors establish normal behaviour under conditions analogous to those in Part (b) also
for other graphs than Kr. Secondly, they also prove a moderate deviation principle and a local
limit theorem in this setting. So the reason we provide a proof of Part (b) is that ours — based
on Stein’s method — is much simpler (because we are proving a weaker statement). But the main
emphasis of the paper is on Part (c), which is new and deals with a regime exhibiting a more exotic
behaviour.

1.6 When the distribution in Theorem 1.2(c) is normal or normal-free

Recall that a chi-square distribution with k degrees of freedom is the distribution of a sum of
the squares of k independent standard normal random variables. Therefore the series in (13) is
a weighted infinite-dimensional variant of a chi-square distribution. By (4) and (17) below, this
random variable has finite variance. Interestingly, very similar distributions appear in [4] and [5],
also in connection with graph limits. That said, the particular setting of our paper seems to be
substantially different from [4, 5].

Proposition 1.3. In Theorem 1.2(c) the limit distribution is normal if and only if V (r)
W ≡ tr.

8



Proof. In view of (13), a normally distributed limit implies that Spec−(V
(r)
W ) = ∅ and therefore

Spec(V
(r)
W ) = {tr}. Recall that V (r)

W is regular with degree function being constant tr. We claim
that then V (r)

W ≡ tr. This claim can be viewed as a graphon version of a consequence of Chung–
Graham–Wilson Theorem on quasirandom graph sequences1; here we give a short self-contained
proof. Indeed, regularity of V (r)

W implies deg
V

(r)
W

≡ tr, so we have that

t2r =

(∫
[0,1]

deg
V

(r)
W

(y) dy

)2

=

(∫
[0,1]2

V
(r)
W (x, y) dx dy

)2

Jensen’s inequality ≤
∫
[0,1]2

(
V

(r)
W (x, y)

)2
dx dy

(4)
=

∑
λ∈Spec(V (r)

W )

λ2 = t2r .

Since the quadratic function is strictly convex, equality is Jensen’s inequality is attained if and only
if V (r)

W is constant, which implies V (r)
W ≡ tr.

So, the question now is which graphons W lead to a constant graphon V (r)
W . Since V (2)

W = W , for
r = 2 the answer is clearly given by constant graphonsW . For r ≥ 3, we put forward the following
conjecture, which was first hinted in concluding remarks of [17].

Conjecture 1.4. Suppose that r ≥ 3 and V
(r)
W is a constant-d graphon for some d ∈ [0, 1], that is,

t·,·(K
••
r ,W ) ≡ d. Then W is Kr-free (when d = 0), or W ≡ d1/(

r
2).

In [17], the case r = 3 of the aforementioned conjecture was shown to be true. Therefore, we know
that if W is a graphon which is K3-regular and not K3-free, then the only way we can get normal
limit distribution in Theorem 1.2(c) is when W is a constant graphon. Conjecture 1.4 can also be
rephrased as follows: among random graphs G(n,W ), where W is a Kr-regular graphon, only
G(n, p), p ∈ (0, 1), has asymptotically normal count of Kr.

Let us now comment on a complementary question: when is the normal term absent in (13)?

Proposition 1.5. We have σr,W = 0 if and only if W (x, y) = 1 for almost every (x, y) ∈ [0, 1]2 for which
tx,y(K••r ,W ) > 0.

Proof. We first observe that tx,y(K••r ,W ) > 0 if and only if tx,y(Kr 	2 Kr,W ) > 0. For W (x, y) >
0 this is immediate from the second equality in (9), while for W (x, y) = 0 from definition of
tx,y(H,W ) is is clear that both tx,y(Kr 	2 Kr,W ) = 0 and tx,y(K••r ,W ) = 0. From (10) and (11),
we have σr,W = 0 if and only only if W (x, y) = 1 for almost every (x, y) ∈ [0, 1]2 for which
tx,y(Kr 	2 Kr,W ) > 0. Together with the first observation this proves the proposition.

For r = 2 the condition of Proposition 1.5 is equivalent to a condition that W ∈ {0, 1} almost
everywhere. For r ≥ 3 we have more freedom for constructions. For example, take r = 3, partition
[0, 1] into 6 sets of measure 1

6 each and put one copy of the complete 3-partite graphon on the first 3
sets and another copy on the last 3 sets. Make arbitrarily wild connections between the 1st and the

9



2

3

1 4 5

6

Figure 1: Example of K3-regular graphon (depicted here as a graph) with no linear term in the
non-normal limit.

4th set, and set the rest of the connections between the first 3 and the last 3 sets to 0 (see Figure 1).
Such a graphon W is K3-regular but we have σr,W = 0.

Remark 1.6. The limit in (13) is never degenerate. Indeed, if the non-normal part vanishes, then Proposi-
tion 1.3 implies V (r)

W ≡ tr ∈ (0, 1). Further, from (9) we obtain that almost everywhere

W (x, y)tx,y(Kr 	2 Kr,W ) =
(
V

(r)
W (x, y)

)2
= t2r > 0.

In particular this implies tx,y(Kr 	2 Kr,W ) > 0 almost everywhere. Moreover, we have W < 1 on a set
of positive measure (otherwise W ≡ 1 and we would be in the case (a)), which implies that the inequality in
(11) is strict. Since the left-hand side of (11) is a multiple of σ2

r,W , this implies that σ2
r,W > 0.

1.7 Acknowledgment

We thank the anonymous referee for a very detailed report which helped us to improve the expo-
sition.

2 Preliminaries

In this section we state definitions and facts needed in the proof of Theorem 1.2. It can be skipped
at the first reading.

Asymptotic notation like an = O(bn) and an ∼ bn (equivalently, an = (1 + o(1))bn) is stated with
respect to n→∞.

2.1 Hypergraphs, associated graphs, and further spectral properties

Given r ≥ 2, an r-uniform hypergraph H on vertex set V is a family of r-element subsets (called
hyperedges) of V . In this paper we assume thatH is a multiset (even though a term multihypergraph
would be a more standard term). We omit the words “r-uniform”, when this is clear from the
context. By |H| we denote the number of hyperedges, counting multiplicities. The degree of a
vertex v ∈ V , denoted by degH(v), is the number of hyperedges (counting multiplicities) of H
containing v. We say that H is spanning if V = ∪e∈He. Given a hypergraph H, the graph associated
with H, sometimes also called the clique graph of H, is a graph on the same vertex set, where
each hyperedge S of H is replaced by a clique on S, with multiple edges being replaced by single
ones.

1more precisely, the part “each spot has the same density ⇐⇒ non-principal eigenvalues are small”, denoted as P4

and P3 in [1, page 158]
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G2,4 G5,4G2,2

Figure 2: Examples of hypergraphs C(r)` and their associated graphs G`,r.

We use a particular hypergraph version of cycles, known as loose cycles. For ` ≥ 2, let C(r)` be
a hypergraph with ` edges, each of size r, created from a graph C` by inserting into each edge
additional r−2 vertices, all `(r−2) new vertices being distinct (hence C(r)2 is a pair of r-sets sharing
exactly 2 vertices). Finally, let G`,r be the graph associated with C(r)` . Note that G2,r = Kr 	2 Kr.
See Figure 2 for examples.

We can express the densities of cycles in the graphon V (r)
W , defined in (8), in terms of the graphonW

as follows. Assume that the vertices shared by consecutive r-cliques in G`,r have labels 1, . . . , `.
Denoting F (x1, . . . , xr) =

∏
1≤i<j≤rW (xi, xj), we write

V
(r)
W (xi, xi+1) =

∫
F (xi, xi+1, yi,3, . . . , yi,r)

r∏
j=3

dyi,r,

whence, writing indices of xi’s modulo r and using Fubini’s theorem,

t(C`, V
(r)
W ) =

∫ r∏
i=1

∫ F (xi, xi+1, yi,3, . . . , yi,r)

r∏
j=3

dyi,j

 r∏
i=1

dxi

=

∫ r∏
i=1

F (xi, xi+1, yi,3, . . . , yi,r) dx1 . . . dxr dy1,3 . . . dy1,r . . . dyr,3 . . . dyr,r. (14)

For ` ≥ 3, a moment of thought reveals that the last integral is exactly t(G`,r,W ), implying

t
(
C`, V

(r)
W

)
= t (G`,r,W ) , for ` ≥ 3 and r ≥ 2 . (15)

On the other hand, for ` = 2 we have to be a bit more careful, noting that in the product (14) factor
W (x1, x2) appears twice, implying

t
(
C2, V

(r)
W

)
= t (Kr ⊕2 Kr,W ) , for r ≥ 2 , (16)

where, recall, Kr ⊕2 Kr is a multigraph obtained by gluing two cliques along two vertices (with a
double edge between these vertices).

11



2.2 Moment generating functions

As we noted above, the main result of [4] expresses a particular random variable as a sum of
squares of independent normal random variables, which is very similar to the expression appear-
ing in our Theorem 1.2(c). The following lemma asserts that such distributions are well-defined
and gives a formula of their moment generating functions. Note that in [4] only the convergence
of the series in L1 is asserted, but it clearly converges in L2 as well, since Sn :=

∑n
j=1 λj

(
Z2
j − 1

)
is easily seen to be a Cauchy sequence in the (complete) space L2. In particular this implies that
Var[Sn]→ Var[S].

Lemma 2.1 (see [4], Proposition 7.12). Let {λj}j be a finite or countable sequence of real numbers such
that

∑
j λ

2
j < +∞ and let {Zj}j be independent standard normal random variables. Define a (possibly

infinite) sum S =
∑
j λj(Z

2
j − 1). Then S converges almost surely and in L2 and

Var[S] = 2
∑
j

λ2j . (17)

Furthermore, the moment generating functionMS(t) := E [exp(tS)] is finite for |t| < 1
8

(∑
j λ

2
j

)−1/2
and

equals

MS(t) =
∏
j

exp(−λjt)√
1− 2λjt

.

2.3 Stein’s method and the Wasserstein distance

Stein’s method is one of the most powerful tools for obtaining limit theorems (in fact it gives
much more, by providing bounds on approximation errors). It is particularly efficient for sums
of dependent random variables, when each variable depends on a relatively small (but not nec-
essarily bounded) number of other variables. Here, we follow a survey article by Ross [18, Sec-
tion 3].

The dependency structure of a collection of random variables (Yi : i ∈ I) is encoded by a depen-
dency graph G (on a vertex set I) if, for all i ∈ I , Yi is independent of the random variables {Yj}j /∈Ni

,
where Ni is the neighborhood of i in G (including i itself). In general, a dependency graph is not
uniquely determined, but in many scenarios, there exists a dependency graph, which naturally
arises by capturing the obvious dependencies, and which is also minimal among all dependency
graphs.

We shall work with the Wasserstein distance between two random variables, say X and Y , which
we denote by dWass(X,Y ). We do not need an exact definition — which the reader can find on
page 214 of [18] — since the only property of the Wasserstein distance that we will use is that

for Z ∼ N (0, 1) and a sequence Xn of random variables dWass(Xn, Z) → 0 implies that Xn
d−→Z

(see [18, Section 3]). We will use the following off-the-shelf bound for the Wasserstein distance
based on Stein’s method.

Theorem 2.2 (see Theorem 3.6 in [18]). Let (Yi : i ∈ I) be a finite collection of random variables such that
for every i ∈ I we have E[Yi] = 0 and E[Y 4

i ] <∞. Writing σ2 := Var
[∑

i∈I Yi
]
, define Q =

∑
i∈I Yi/σ.

2Note that there is an error in the arXiv version of Proposition 7.1 in [4].
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Let G be a dependency graph of (Yi : i ∈ I). Writing D = maxi∈I |Ni|, we have

dWass(Q,Z) ≤ D2

σ3
·
∑
i

E
[
|Yi|3

]
+

√
28D3/2

√
π · σ2

·
√∑

i

E [Y 4
i ]. (18)

3 Proof of Theorem 1.2(b)

We will apply Theorem 2.2 to a collection (YR : R ∈
(
[n]
r

)
) of random variables indexed by r-

sets R of vertices. Writing IR for the indicator that R induces a clique in G(n,W ), we define
YR = IR − E[IR] = IR − tr. In this notation we have Xn,r −

(
n
r

)
tr =

∑
R∈([n]

r ) YR.

We let G be the natural dependency graph of the collection (YR : R ∈
(
[n]
r

)
) with edges correspond-

ing to pairs R1R2 such that R1 ∩R2 6= ∅.

The proof consists of two steps. In the first one we bound the maximum degree of G. This step
is fairly straightforward. In the second and less elementary step we compute the asymptotics of
the variance of

∑
R YR. As we will see, the leading term in the asymptotics comes from pairs of

cliques that share exactly one vertex.

Let us proceeding with the details of the first step. Notice that in G every neighbourhood NR has
the same size D, namely,

D =

r∑
`=1

(
r

`

)(
n− r
r − `

)
= O(nr−1). (19)

We now turn to the second step. Recall that Kr	jKr is a simple graph consisting of two r-cliques
sharing j vertices. Set dj = t(Kr 	j Kr,W ), for j ∈ [r]. By Jensen’s inequality we have that

t2r =

(∫ 1

0

tx(K•r ,W ) dx

)2

<

∫ 1

0

tx(K•r ,W )2 dx = d1, (20)

where the strict inequality follows from the assumption that W is not Kr-regular.

For disjointR1, R2, variables YR1 , YR2 are independent, while |R1∩R2| = ` ≥ 1 implies E[YR1YR2 ] =
d` − t2r , and (20) implies σ̂2

r,W = (d1 − t2r)/((r − 1)!)2 > 0. Since E[YR] = 0 for every R, we have
σ2
n := Var [

∑
R YR] =

∑
R1,R2

E[YR1
YR2

]. Since the number of ordered pairs R1, R2 such that
|R1 ∩R2| = ` is (

n

`

)(
n− `
r − `

)(
n− r
r − `

)
∼ n2r−l

`!(r − `)!2
,

we obtain

σ2
n =

r∑
`=1

n2r−`(1 + o(1))

`!(r − `)!2
(
d` − t2r

)
=

n2r−1

(r − 1)!2
(
d1 − t2r

)
+

r∑
`=2

O(n2r−`)

∼ σ̂2
r,Wn

2r−1 . (21)
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Writing Qn =
∑
R∈([n]

r ) YR/σn, we are ready to apply Theorem 2.2. Crudely bounding each of the

sums of moments on the right-hand side of (18) by
(
n
r

)
≤ nr, and using (19) and (21), we obtain

that dWass(Qn, Z) = O(n−1/2)→ 0. By the remark we made just before Theorem 2.2, we conclude

that Qn
d−→Z. In view of (21) and Slutsky’s theorem,∑

R∈([n]
r ) YR

nr−1/2
=

σn
nr−1/2

·Qn
d−→ σ̂r,WZ,

which completes the proof, in view of
∑
R∈([n]

r ) YR = Xn,r −
(
n
r

)
tr.

4 Proof of Theorem 1.2(c)

Define a random variable as on the right-hand side of (13),

Y = σr,W · Z +
1

2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1). (22)

We employ the method of moments, in the way it is described in Section 6.1 of [11]. For this
it is enough to show that the moments of the random variable (Xn,r −

(
n
r

)
tr)/n

r−1 converge to
the corresponding moments of the random variable Y , and to verify that the moment generating
function MY (t) = E[etY ] is finite in some neighbourhood of zero (so that the distribution of Y is
determined by its moments).

Recall that for a standard normal random variable Z we have MZ(x) = exp
(
x2/2

)
and hence

Mσr,W ·Z(x) = exp
(
σ2
r,W x2

2

)
. On the other hand, Lemma 2.1 tells us that the moment generating

function of the second summand in (22) is
∏
λ∈Spec−(V (r)

W )
exp

(
− λx

2(r−2)!

)
/
√

1− λx
(r−2)! . Since the

moment generating function of a sum of independent random variables equals the product of the
moment generating functions of individual generating functions, it follows that

MY (x) = exp

(
σ2
r,Wx

2

2

) ∏
λ∈Spec−(V (r)

W )

exp
(
− λx

2(r−2)!

)
√

1− λx
(r−2)!

. (23)

On the other hand, to compute the moments of (Xn,r −
(
n
r

)
tr)/n

r−1, we write

Xn,r −
(
n

r

)
tr =

∑
R∈(n

r)

(IR − tr) ,

where, as in Section 3, IR is the indicator of the event that the set of vertices R induces a clique in
G(n,W ). Given an m-tuple (R1, . . . , Rm) of (not necessary distinct) elements of

(
[n]
r

)
, let

∆(R1, . . . , Rm) := E

[
m∏
i=1

(IRi
− tr)

]
. (24)
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Then

E
[(
Xn,r −

(
n

r

)
tr

)m]
=

∑
(R1,...,Rm)∈([n]

r )
m

∆(R1, . . . , Rm) . (25)

It is hence natural to analyze ∆(R1, . . . , Rm) depending on the structure of the tuple (R1, . . . , Rm).
Our plan is as follows. First, we introduce a certain family X(n, r,m) ⊂

(
[n]
r

)m
and show that

∆(R1, . . . , Rm) = 0 for each (R1, . . . , Rm) ∈ X(n, r,m). Next, we define another family F(n, r,m) ⊂(
[n]
r

)m
\ X(n, r,m). In (30) we will show that the set

(
[n]
r

)m
\ (X(n, r,m) ∪ F(n, r,m)) has size

O(n(r−1)m−1), and hence the corresponding tuples have a contribution which is negligible with
respect to the renormalization of (25) by n−(r−1)m (as, for example, in the statement of Claim 4.5).
We then classify the tuples in F(n, r,m) according to the pattern in which they overlap so that
in each class every tuple the contribution ∆(R1, . . . , Rm) is the same. By obtaining an explicit
expression for this contribution (in Claim 4.3) and counting the number of tuples in each class
(in Claim 4.4) we will arrive at a rather complicated asymptotic formula, which we interpret as
a coefficient of some reasonably simple power series (see Claim 4.5). Finally, with some luck we
discover that this power series is exactly the moment generating function MY (see Claim 4.6). Let
us give details now.

Let X(n, r,m) ⊂
(
[n]
r

)m
be those m-tuples (R1, . . . , Rm) for which we have |Ri ∩ (∪j 6=iRj)| ≤ 1 for

some i ∈ [m]. Suppose now that (R1, . . . , Rm) ∈ X(n, r,m). Without loss of generality, suppose
that |Rm ∩ (∪m−1j=1 Rj)| ≤ 1. Assume first that |Rm ∩ (∪m−1j=1 Rj)| = 1, say {v} = Rm ∩ (∪m−1j=1 Rj).
If we condition on Uv = x, the indicator IRm

becomes independent of {IRi
: i ∈ [m− 1]}, and

hence

∆(R1, . . . , Rm) =

∫ 1

0

E
[
IRm
− tr

∣∣ Uv = x
]
· E

[
m−1∏
i=1

(IRi
− tr)

∣∣ Uv = x

]
dx . (26)

Since W is Kr-regular, we have E
[
IRm
− tr

∣∣ Uv = x
]

= tx(K•r ,W ) − tr = 0 for almost every x.
Therefore ∆(R1, . . . , Rm) = 0, as claimed. An even simpler calculation yields the same conclusion
when |Rm ∩ (∪m−1j=1 Rj)| = 0. Hence, we can rewrite (25) as

E
[(
Xn,r − tr

(
n

r

))m]
=

∑
(R1,...,Rm)∈([n]

r )
m\X(n,r,m)

∆(R1, . . . , Rm) . (27)

Every m-tuple (R1, . . . , Rm) can be identified with a spanning hypergraph henceforth denoted
H(R1, . . . , Rm), with vertex set ∪iRi and hyperedge multiset {R1, . . . , Rm}.

The following claim provides a sharp upper bound on the number of vertices in H(R1, . . . , Rm),
for (R1, . . . , Rm) ∈

(
[n]
r

)m
\ X(n, r,m).

Claim 4.1. Suppose that (R1, . . . , Rm) ∈
(
[n]
r

)m
\X(n, r,m). The number v of vertices in the hypergraph

H = H(R1, . . . , Rm) satisfies v ≤ (r − 1)m. The equality is attained if and only if each hyperedge in H
contains exactly 2 vertices of degree 2 and all other vertices have degree 1.

Proof of Claim 4.1. Let k be the number of vertices inH of degree 1. Since (R1, . . . , Rm) 6∈ X(n, r,m)
we have that

k ≤ (r − 2)m . (28)
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SinceH is spanning and v − k vertices have degree at least 2, it follows that

k + 2(v − k) ≤
∑

v∈V (H)

deg(v) = rm . (29)

Therefore

v
(29)

≤ rm− k
2

+ k =
rm+ k

2

(28)

≤ rm+ (r − 2)m

2
= (r − 1)m,

and the first statement follows. To prove the second statement, suppose that the number of vertices
in H = H(R1, . . . , Rm) satisfies v = (r − 1)m. Then (28) and (29) are both equalities and so H
consists of (r − 2)m vertices of degree 1, and m vertices of degree 2. Since, by assumption, every
Ri contains at least two vertices of degree 2 it readily follows that it contains exactly two such
vertices. The other implication is immediate.

Let F(n, r,m) be those (R1, . . . , Rm) ∈
(
[n]
r

)m
\X(n, r,m) for which the corresponding hypergraph

H(R1, . . . , Rm) has (r−1)m vertices. Since for each (R1, . . . , Rm) ∈
(
[n]
r

)m
\(X(n, r,m)∪F(n, r,m))

we have | ∪i Ri| ≤ (r− 1)m− 1, we can record each element of
(
[n]
r

)m
\ (X(n, r,m)∪ F(n, r,m)) by

an ((r − 1)m − 1)-set of [n], and then by specifying to which of the sets R1, . . . , Rm each element
of that ((r − 1)m− 1)-set is an element of. Thus,∣∣∣∣([n]

r

)m
\ (X(n, r,m) ∪ F(n, r,m))

∣∣∣∣ ≤ ( n

(r − 1)m− 1

)
· (2m)

(r−1)m−1
= O(n(r−1)m−1) . (30)

Since |∆(R1, . . . , Rm)| ≤ 1, from (27) and (30) we infer

E
[(
Xn,r − tr

(
n

r

))m]
=

∑
(R1,...,Rm)∈F(n,r,m)

∆(R1, . . . , Rm) +O(n(r−1)m−1) . (31)

Now, fix (R1, . . . , Rm) ∈ F(n, r,m) and consider the hypergraph H = H(R1, . . . , Rm). Notice that
when r = 2 then some edges inHmay be double edges, but all hyperedges are simple when r ≥ 3.
Now, replace every r-edge, sayR, ofH by a 2-edge that consists of the vertices ofR having degree 2
and notice that this results in a 2-regular multigraph, that is, a union of vertex-disjoint cycles and
double edges. In particular, this implies that the hypergraph H is a union of vertex-disjoint loose
cycles.

We now need to deal with the right-hand side of (24) for tuples in F(n, r,m), that is for tuples
corresponding to unions of loose cycles. We first note that we can factor it over cycles, namely
if there is a partition [m] = V1 ∪ · · · ∪ Vk such that each H(Ri : i ∈ Vj) is a loose cycle, then the
random variables

∏
i∈Vj

(IRi − tr), j = 1, . . . , k are independent and hence

∆(R1, . . . , Rm) =
∏
j

∆(Ri : i ∈ Vj). (32)

In order to calculate the individual factors in (32), the following claim will be useful.

Claim 4.2. For each i, r ≥ 2, for any proper subhypergraph C ⊂ C(r)i , we have E
[∏

R∈C IR
]

= t
|C|
r .
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Figure 3: Two examples of a hypergraph C− (light grey) and an edge S (dark grey) in a hyper-
graph C(4)5 in the proof of Claim 4.2.

Proof of Claim 4.2. We proceed by induction on the number of hyperedges of C. The case when
C = ∅ is trivial. So suppose that C 6= ∅.

Since C is a proper subhypergraph of C(r)i , it contains a hyperedge S ∈ C such that for C− := C\{S}
we have |S ∩

⋃
C−| ≤ 1 (here and below

⋃
H stands for the union of the hyperedges of H). See

Figure 3. Let us deal first with the case |S ∩
⋃
C−| = 1, and let v be the vertex shared by S and⋃

C−. By the same argument as in (26), we have

E
[∏

R∈C IR
]

=

∫ 1

0

E [IS | Uv = x] · E
[∏

R∈C− IR | Uv = x
]
dx,

By the Kr-regularity, we have E[IS | Uv = ·] ≡ tr. Thus, using the induction hypothesis on C−, we
conclude that

E
[∏

R∈C IR
]

=

∫ 1

0

tr E
[∏

R∈C− IR | Uv = x
]
dx = tr E

[∏
R∈C− IR

]
= tr · t|C

−|
r ,

as was needed. The case |S ∩
⋃
C−| = 0 is even simpler:

E
[∏

R∈C IR
]

= E [IS ] · E
[∏

R∈C− IR
]

= tr · t|C
−|

r .

Recall that for each (R1, . . . , Rm) ∈ F(n, r,m), the hypergraph H(R1, . . . , Rm) is a union of loose
cycles. Isomorphism classes of such hypergraphs can be encoded by a vector whose entry at
position i is the number of loose cycles of length i. More precisely, let us consider the following
set of (m− 1)-dimensional vectors,

Vm :=

{
k = (k2, . . . , km) ∈ Nm−10 :

m∑
i=2

iki = m

}
. (33)

Suppose that k ∈ Vm. Let H(r)
k denote the hypergraph formed by ki copies of C(r)i for each i =

2, . . . ,m.
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Claim 4.3. Suppose that (R1, . . . , Rm) ∈ F(n, r,m) is anm-tuple for whichH(R1, . . . , Rm) is isomorphic
toH(r)

k , for some k ∈ Vm. Then

∆(R1, . . . , Rm) =

m∏
`=2

(
t (G`,r,W )− t`r

)k`
, (34)

where G`,r is the graph associated to C(r)` , as defined in Section 2.1.

Proof of Claim 4.3. In view of (32), it is enough to prove (34) for an `-tuple (Q1, . . . , Q`) ∈ F(n, r, `)

for whichH(Q1, . . . , Q`) is isomorphic to C(r)` . We have

∆(Q1, . . . , Q`) =
∑
A⊆[`]

(−tr)`−|A| · E

∏
j∈A

IQj


Claim 4.2 = E

∏
j∈[`]

IQj

+
∑
A([`]

(−tr)`−|A| t|A|r

= E

∏
j∈[`]

IQj

+ (tr − tr)` − t`r

= t (G`,r,W )− t`r .

Claim 4.4. Fix k ∈ Vm. Then the number of m-tuples (R1, . . . , Rm) ∈
(
[n]
r

)m
for which H(R1, . . . , Rm)

is isomorphic toH(r)
k is equal to

A(n, r,k) :=
m! · (n)(r−1)m∏m

`=2(2`((r − 2)!)`)k` · k`!
. (35)

Proof of Claim 4.4. Suppose first that r ≥ 3. Notice that the number of automorphisms of C(r)`

equals 2` · ((r − 2)!)`, and therefore the number of automorphisms ofH(r)
k satisfies

aut(H(r)
k ) =

m∏
`=2

(2`((r − 2)!)`)k` · k`! .

As there are (n)(r−1)m

aut(H(r)
k )

copies ofH(r)
k on n vertices and each copy corresponds to m! many m-tuples

(R1, . . . , Rm), the proof of the case r ≥ 3 is complete.

The case r = 2 is similar; the only difference being that the number of automorphisms of C(2)2

equals 2 and that each copy of H(2)
k corresponds to m!

2k2
many m-tuples. The details are left to the

reader.
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We now resume expressing E
[(
Xn,r − tr

(
n
r

))m], which we abandoned at (31). Recall that G`,r is
the graph associated with C(r)` . Adding (34) and (35), we get

E
[(
Xn,r − tr

(
n
r

))m]
=

∑
k∈Vm

A(n, r,k)

m∏
`=2

(t(G`,r,W )− t`r)k` +O(n(r−1)m−1)

= n(r−1)mm!
∑

k∈Vm

m∏
`=2

(
t(G`,r,W )− t`r

2`((r − 2)!)`

)k` 1

k`!
+O(n(r−1)m−1) . (36)

For ` = 2, 3, . . ., let us write

d` :=
t(G`,r,W )− t`r

2`((r − 2)!)`
. (37)

Treating g(x) :=
∑∞
`=2 d`x

` as a formal power series, and substituting y = g(x) in ey =
∑∞
j=0 y

j/j!
we obtain another power series (since the free coefficient of g is zero),

f(x) := exp (g(x)) = exp

( ∞∑
`=2

d`x
`

)
. (38)

The following two claims are needed to show that f(x) is the moment generating function of the
limit of (Xn,r −

(
n
r

)
tr)/n

r−1.

Claim 4.5. For each m ∈ N, as n → ∞, the quantity 1
m! · E[

(
Xn,r − tr

(
n
r

))m
/(n(r−1)m)] converges to

JxmKf(x), the coefficient of xm in the (formal) power series f(x).

Proof. We have

JxmKf(x) = JxmK

(
exp

( ∞∑
`=2

d`x
`

))
= JxmK

 ∞∑
j=1

1

j!
·

( ∞∑
`=2

d`x
`

)j
multinomial theorem =

m∑
j=1

1

j!

∑
k∈Vm:k2+...+km=j

(
j

k2, · · · , km

)
·
m∏
`=2

dk``

definition of the multinomial coefficient =

m∑
j=1

∑
k∈Vm:k2+...+km=j

m∏
`=2

dk``
k`!

=
∑

k∈Vm

m∏
`=2

dk``
1

k`!

by (36) = lim
n→∞

1

m!
·
E
[(
Xn,r − tr

(
n
r

))m]
n(r−1)m

.

Since |di| ≤ ((r − 2)!)−i, in particular, the sequence |di|, i ≥ 2 is bounded. Therefore the series∑
i dix

i has positive radius of convergence, and f(x) can be expanded as its Taylor series around
zero. In the next claim, we show that the function f equals the moment-generating function MY

defined in (23).
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Claim 4.6. In some neighbourhood of zero we have MY (x) = f(x).

Proof of Claim 4.6. Recall the definition (37) of d`. For ` = 2 we have

4((r − 2)!)2 · d2 = t(Kr 	2 Kr,W )− t2r
= t(Kr 	2 Kr,W )− t(C2, V

(r)
W ) + t(C2, V

(r)
W )− t2r

(16) = t(Kr 	2 Kr,W )− t(Kr ⊕2 Kr,W ) + t(C2, V
(r)
W )− t2r

(5) = t(Kr 	2 Kr,W )− t(Kr ⊕2 Kr,W ) +
∑

λ∈Spec−(V (r)
W )

λ2,

which, in view of the definition (10) of σ2
r,W , implies

d2 =
σ2
r,W

2
+

1

4

∑
λ∈Spec−(V (r)

W )

(
λ

(r − 2)!

)2

. (39)

For ` ≥ 3, from (15) and (5) it follows

d` =
t(G`,r,W )− t`r

2`((r − 2)!)`

=
t(C`, V

(r)
W )− t`r

2`((r − 2)!)`
=

1

2`

∑
λ∈Spec−(V (r)

W )

(
λ

(r − 2)!

)`
.

(40)

We are now ready to relate f and MY . In view of (4), we have∑
λ∈Spec−(V (r)

W )

λ2 <∞ (41)

and in particular
sup

λ∈Spec−(V (r)
W )

|λ| <∞. (42)

Substituting (39) and (40) into (38), we obtain

log f(x) =

∞∑
`=2

d`x
` =

σ2
r,Wx

2

2
+

∞∑
`=2

∑
λ∈Spec−(V (r)

W )

1

2`

(
λx

(r − 2)!

)`
. (43)

In order to interchange the order of summation in (43), we check a condition that allows applying
Fubini’s theorem, namely that (43) remains finite, if we replace all summands by their absolute
values. By (42), for |x| small enough, the sequence aλ := λx

(r−2)! satisfies c := supλ |aλ| < 1.
Therefore, for each ` ≥ 2, ∑

λ

|aλ|` ≤
∑
λ

c`−2a2λ
(41)
= O(c`),
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which implies
∑
`

∑
λ |aλ|`/(2`) =

∑
`O(c`) < ∞, verifying the desired condition. So, changing

the order of summation in (43), we obtain

log f(x) =

∞∑
`=2

d`x
` =

σ2
r,Wx

2

2
+

∑
λ∈Spec−(V (r)

W )

∞∑
`=2

1

2`

(
λx

(r − 2)!

)`

Taylor’s series =
σ2
r,Wx

2

2
− 1

2

∑
λ∈Spec−(V (r)

W )

(
ln

(
1− λx

(r − 2)!

)
+

λx

(r − 2)!

)
.

By exponentiating the above expression we easily obtain (23), thus completing the proof.

We are now finished with the proof of Theorem 1.2(c). Indeed, Claims 4.5 and 4.6 imply that the
mth moment of (Xn,r −

(
n
r

)
tr)/n

r−1 converges to m!JxmKf(x) = m!JxmKMY (x) = E[Y m] for every

m. As argued at the beginning of Section 4, this implies that
Xn,r−(n

r)tr
nr−1

d−→ Y .

5 Concluding remarks

In this paper, we initiated the study of limit theorems for complete subgraph counts in G(n,W ).
However, the results in this paper should be considered just first steps, and the area offers several
obvious open problems.

- Extend Theorem 1.2 to sparser regimes. Recall that the central limit theorem for the count of
Kr in G(n, p) holds for p = p(n) as small as p(n) � n−2/r−1, that is, as long as the expected
number of Kr’s tends to infinity.

- To model a sparse inhomogeneous random graph, fix a scaling factor p = p(n) → 0. Then
G(n, p ·W ) is a sparse inhomogeneous random graph model. Note that then the assumption
that W is bounded from above by 1 can be relaxed somewhat. For example, the giant com-
ponent of G(n,W/n) is studied in [6]. So, we suggest to obtain limit theorems for the count
of Kr (or other graphs) in G(n, p ·W ).

- To strengthen the limit theorem obtained here to a local limit theorem. Even in the case
of G(n, p) this is a very difficult problem which was resolved only recently for cliques [3]
and even more recently for general connected graphs [20]. Note that such a local limit the-
orem would have additional restrictions. For example, if W is a graphon consisting of two
constant-1 components of measure 1

2 each, then Xn,2 is of the form
(
k
2

)
+
(
n−k
2

)
, k ∈ N, that

is, not all integer values can be achieved (including those in the bulk of the distribution).
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