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A Complete Solution to the Cvetković-Rowlinson

Conjecture

Huiqiu Lin∗ and Bo Ning†

Abstract

In 1990, Cvetković and Rowlinson [The largest eigenvalue of a graph: a survey, Lin-

ear Multilinear Algebra 28(1-2) (1990), 3–33] conjectured that among all outerplanar

graphs on n vertices, K1 ∨ Pn−1 attains the maximum spectral radius. In 2017, Tait

and Tobin [Three conjectures in extremal spectral graph theory, J. Combin. Theory,

Ser. B 126 (2017) 137-161] confirmed the conjecture for sufficiently large values of n.

In this article, we show the conjecture is true for all n ≥ 2 except for n = 6.
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There is a long tradition of studying planar graphs. In particular, the study of spectral

radius of planar graphs is a fruitful topic in spectral graph theory and can be traced back

at least to Schwenk and Wilson [13] who asked “what can be said about the eigenvalues

of a planar graph?”. In 1988, Hong [10] proved the first non-trivial result that λ(Γ) ≤√
5n− 11, where λ(Γ) is the spectral radius of a planar graph Γ on n ≥ 3 vertices. Hong’s

bound was improved to 4+
√
3n− 9 by Cao and Vince [3], and to 2

√
2+
√

3n− 15
2 by Hong

[11] himself, and finally to 2+
√
2n− 6 by Ellingham and Zha [7]. On the other hand, Boots

and Royle [2], and independently, Cao and Vince [3], conjectured that P2 ∨ Pn−2 attains

the maximum spectral radius among all planar graphs on n ≥ 9 vertices. Only recently,

Tait and Tobin [16] published a proof of the conjecture for sufficiently large graphs.

A graph G is outerplanar if it has a planar embedding G̃ in which all vertices lie on the

boundary of its outer face. In fact, earlier than the Boots-Royle-Cao-Vince Conjecture,

Cvetković and Rowlinson [6] proposed the following conjecture on outerplanar graphs in

1990. In what follows, K1 denotes a single vertex, Pn−1 denotes the path on n−1 vertices,

and “∨” is the join operation.

Conjecture 1 (Cvetković, Rowlinson [6]). Among all outerplanar graphs on n vertices,

K1 ∨ Pn−1 attains the maximum spectral radius.

Cvetković and Rowlinson [6] considered the above conjecture as study on indices of

Hamiltonian graphs. Rowlinson [12] proved Conjecture 1 for outerplanar graphs without

internal triangles, where an internal triangle of an outerplanar graph is a 3-cycle which has

no edges in common with the unique Hamiltonian cycle of the graph. For upper bounds
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of the spectral radius λ(G) of an outerplanar graph G, Cao and Vince [3] showed that

λ(G) ≤ 1 +
√

2 +
√
2 +

√
n− 5. This was improved by Shu and Hong [14] to λ(G) ≤

3
2 +

√
n− 7

4 . In 2017, Tait and Tobin[16] confirmed Conjecture 1 for sufficiently large n.

Theorem 1 (Tait, Tobin [16]). The Cvetković-Rowlinson Conjecture is true for all suffi-

ciently large n.

Some variant of the Cvetković-Rowlinson Conjecture was considered by Yu, Kang, Liu

and Shan [18]. For related topics on spectral properties of planar graphs, we refer to the

introduction part of [16] and references therein.

The humble goal of this article is to give a solution to the Cvetković-Rowlinson Con-

jecture for all n. The complete proof consists of two parts. We first prove the conjecture

for n ≥ 17, and then prove the case that 2 ≤ n ≤ 16 where n 6= 6, with the aid of a

computer. We disprove the conjecture for the case of n = 6.

Theorem 2. Among all outerplanar graphs on n ≥ 17 vertices, K1 ∨ Pn−1 attains the

maximum spectral radius.

Before our proof of Theorem 2, let us introduce some necessary notations and termi-

nology. Let G be a graph with vertex set V (G) and edge set E(G) and S ⊆ V (G). We

denote by G[S] the subgraph of G induced by S and G − S the subgraph G[V (G)\S].
For any v ∈ V (G), NG(v) denotes the set of neighbors of v in G, dG(v) is defined as

|NG(v)|, and dS(v) := |NG(v) ∩ S|. Let A,B ⊂ V (G) be two disjoint sets. We denote by

NA(B) :=
⋃

v∈B NA(v), by dA(B) := |NA(B)| and by eG(A,B) the number of edges with

one end-vertex in A and the other one in B. If there is no danger of ambiguity, we use

e(A,B) instead of eG(A,B). Let G1 and G2 be two disjoint graphs. The join of G1 and

G2, denoted by G1 ∨ G2, is defined as a graph with vertex set V (G1) ∪ V (G2) and edge

set E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)}. Let A(G) be the adjacency matrix of

G and λ(G) be the spectral radius of A(G).

A graphH is a minor of a graph G if H can be obtained from G by a sequence of vertex

and edge deletions and edge contractions. A complete characterization of outerplanar

graphs states that a graph is outerplanar if and only if it is K2,3-minor free and K4-

minor free. It is clear that a subgraph of an outerplanar graph is also outerplanar. An

outerplanar graph is edge-maximal (or in short, maximal), if no edge can be added to the

graph without violating outerplanarity. It is well-known that every outerplanar graph on

n vertices has at most 2n − 3 edges if n ≥ 2. These properties will be used frequently in

our proof. For some nice article on minors in spectral graph theory, we refer to [15].

Our proof of Theorem 2 also needs a well-known fact and an upper bound of the

spectral radius of an outerplanar graph as following:

Lemma 1 ([1, Exercise 11.2.7]). Let G be an edge-maximal outerplanar graph of order

n ≥ 3. Then G has a planar embedding whose outer face is a Hamilton cycle, all other

faces being triangles.

Lemma 2 (Shu, Hong [14]). Let G be a connected outerplanar graph on n ≥ 3 vertices.

Then λ(G) ≤ 3
2 +

√
n− 7

4 .

Now we present a proof of Theorem 2.
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Proof of Theorem 2. For any integer n ≥ 17, let Gn be an outerplanar graph which

attains the maximum spectral radius among all outerplanar graphs of order n, and let

λ := λ(Gn) be its spectral radius. In the rest, we use G instead of Gn for convenience.

Obviously, G is connected and maximal. By the Perron-Frobenius Theorem, G has the

Perron vector such that each component is positive. Let X be a normalized one such that

maximum entry is 1. For any vertex v ∈ V (G), we write xv for the eigenvector entry which

corresponds to v. Let u ∈ V (G) such that xu = 1, A = NG(u) and B = V (G)− ({u}∪A).

The first claim gives us a nearly tight lower bound of λ.

Claim 1. λ ≥ √
n+ 1− 1

n−√
n
.

Proof. Let Γ = K1 ∨ Cn−1, where Cn−1 denotes a cycle on n − 1 vertices. Suppose that

Y = (y1, y2, . . . , yn)
t is the Perron vector of Γ, where y1 corresponds to the vertex of degree

n− 1. By symmetry, y2 = y3 = · · · = yn. Then λ(Γ)y1 = (n− 1)y2, λ(Γ)y2 = y1+2y2 and

y21 + (n − 1)y22 = 1. It follows that λ(Γ) = 1 +
√
n and y22 = 1

2(n−√
n)
. Let e ∈ E(Cn−1)

and Γ′ = Γ − e. Then by Rayleigh principle, λ(Γ′) ≥ Y tA(Γ′)Y = Y tA(Γ)Y − 2y22 =√
n + 1 − 1

n−√
n
. Obviously, Γ′ is outerplanar, and λ(G) ≥ λ(Γ′) ≥ √

n + 1 − 1
n−√

n
, as

required.

As a warm up, we quickly determine the structure of G[A] approximately.

Claim 2. G[A] is a union of disjoint induced paths or an induced path. (In particular,

we also view an isolated vertex in G[A] as an induced path.)

Proof. We first claim that G[A] contains no vertex of degree at least 3 in A. If not, then

there is a K2,3 in G[A ∪ {u}], a contradiction.

We then claim that there is no cycle in G[A]. Suppose to the contrary that there is

a cycle in G[A]. Then we can contract the cycle into a triangle, and there is a K4 in the

resulting graph. That is, there is a K4-minor in G, a contradiction.

From the two claims mentioned above, we conclude that G[A] is the union of some

induced paths or an induced paths, in which we view each isolated vertex as an induced

path.

Let

S = {v : v ∈ A, dG[A](v) = 1}.
For two vertices x, y ∈ V (G), we write x ∼ y if x is adjacent to y. By Claim 1, we have

d(u) := du ≥ λ ≥ √
n+ 1− 1

n−√
n
> 5.

We want to show that du is very close to n − 1. As a first step, we must associate du
with λ by the following.

Claim 3.

λ2 ≤ du + 2λ− 2√
n− 7

4 + 3
2

+
∑

v∈B
dA(v)xv . (1)

Proof. Note that for any v ∈ S, we have λxv > xu = 1. By Lemma 2, we obtain

xv > 1
λ
≥ 1

3

2
+
√

n− 7

4

. The first equality below was used by Tait and Tobin (see the proof of

Lemma 4 in [16]), which also appeared in several references, see [9] for example:

λ2 = λ2xu = du +
∑

y∼u

∑

z∈N(y)∩A
xz +

∑

y∼u

∑

z∈N(y)∩B
xz = du +

∑

v∈A
dA(v)xv +

∑

v∈B
dA(v)xv .
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If G[A] consists of isolated vertices, i.e., without any edge, then
∑
v∈A

dA(v)xv = 0. Thus,

we have

λ2 = du +
∑

v∈B
dA(v)xv .

Otherwise, G[A] contains at least one edge, and it follows |S| ≥ 2. We have

λ2 = du +
∑

v∈A
dA(v)xv +

∑

v∈B
dA(v)xv

= du +
∑

v∈S
xv +

∑

v∈{v∈A:dA(v)=2}
2xv +

∑

v∈B
dA(v)xv

≤ du + 2λ−
∑

v∈S
xv +

∑

v∈B
dA(v)xv

≤ du + 2λ− 2

3
2 +

√
n− 7

4

+
∑

v∈B
dA(v)xv .

Since 2λ− 2
3

2
+
√

n− 7

4

> 0 for n ≥ 16, we have proved the claim.

Our goal of the most of the rest is to show that |B| ≤ 1 firstly, and then show B = ∅.
We prove this fact by contradiction. Suppose to the contrary that

|B| ≥ 2. (2)

Since G is outerplanar, G[B] is also outerplanar, and so e(G[B]) ≤ 2|B| − 3 by (2). In

the rest, let B1, B2, . . . , Bt be the vertex sets of all components of G[B], respectively. The

coming claim gives a tight upper bound of the sum of all degrees of vertices of B in G,

which plays a central role in our proof. Since adding a new edge can increase the value of

the spectral radius (recall G is connected), G is a maximal outerplanar graph. Therefore,

Lemma 1 can be used below.

Claim 4. (i) For each i ∈ [1, t], dA(Bi) = 2. (ii) If |Bi| ≥ 2, then 2e(G[Bi]) + e(A,Bi) ≤
4|Bi| − 3. In particular, 2e(G[B]) + e(A,B) ≤ 4|B| − 3 (recall |B| ≥ 2).

Proof. (i) Since G is K2,3-minor free, Bi has at most 2 neighbors in A for any i ∈ [1, t].

Indeed, if not, we contract all vertices of Bi into a single vertex, and would find a K2,3 in

the resulting graph. Thus, dA(Bi) ≤ 2. Recall that there is a Hamilton cycle in G. Thus,

dA(Bi) = 2. This proves Claim 4 (i).

(ii) By Claim 4 (i), we can assume that NA(Bi) = {x, x′} for any i ∈ [1, t]. By Lemma

1, there is a planar embedding of G, say G̃, such that its outer-face is a Hamilton cycle. Let

P := xp1p2 · · · psx′ be the (x, x′)-path on the Hamilton cycle passing through all vertices

in Bi. That is, Bi = {p1, . . . , ps}. In the rest of the proof, when there is no danger of

ambiguity, we do not distinguish G and G̃.

Suppose that |Bi| ≥ 2. We first claim that there are no subscripts j, k such that 1 ≤
j < k ≤ s and xpk, x

′pj ∈ E(G). Suppose not. Then we first contract three paths p1 . . . pj,

pk . . . ps and xux′ into vertices w1, w2 and an edge xx′, respectively, and then contract the

path w1pj+1 . . . pk−1w2 into an edge w1w2, resulting in a K4. In this way, we can find a

K4-minor in G, a contradiction. In the following, set l1 := max{q : pqx ∈ E(G)} and l2 :=

min{q : pqx
′ ∈ E(G)}. Therefore l1 ≤ l2. Also, G1 := G[{x, p1, . . . , pl1}] is outerplanar,
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and hence e(G1) ≤ 2(l1 + 1) − 3 = 2l1 − 1. Note that G2 := G[pl1 , . . . , pl2 , x, x
′] − xx′ is

outerplanar. Thus, if l2 ≥ l1 + 1, then e(G2) ≤ e(G[{pl1 , . . . , pl2}]) + 2 ≤ 2(l2 − l1 + 1) −
3 + 2 = 2(l2 − l1) + 1; if l1 = l2 then e(G2) = 2. Let G3 := G[{pl2 , . . . , ps, x′}]. Then

e(G3) ≤ 2(s− l2 + 1 + 1)− 3 = 2(s− l2) + 1.

Observe that for any i ∈ [1, l1] and j ∈ [l2, s] such that j ≥ i+2, we have pipj /∈ E(G),

since otherwise we can find a K4-minor in G similarly as above. Hence e(G[Bi ∪{x, x′}]−
xx′) = e(G1)+ e(G2)+ e(G3)− 2, where the term “-2” comes from the fact that the edges

xpl1 , x
′pl2 are counting twice when we compute the value of e(G1) + e(G2) + e(G3).

If l2 ≥ l1 + 1, then e(G[Bi ∪ {x, x′}]− xx′) = e(G1) + e(G2) + e(G3)− 2 ≤ (2l1 − 1) +

(2(l2 − l1) + 1) + (2(s − l2) + 1) − 2 = 2s − 1, Thus, 2e(G[Bi]) + e(A,Bi) ≤ 2e(G[Bi ∪
{x, x′}]− xx′)− e(A,Bi) ≤ 2(2s − 1)− 3 = 4s − 5, where e(A,Bi) ≥ 3 since |Bi| ≥ 2 and

each face inside G̃[Bi ∪ {x, x′}] is a triangle.

If l2 = l1, then e(G2) = 2. In this case, e(G[Bi ∪ {x, x′}] − xx′) = e(G1) + e(G2) +

e(G3) − 2 ≤ (2l1 − 1) + 2 + (2(s − l2) + 1) − 2 = 2s. Then 2e(G[Bi]) + e(A,Bi) ≤
2e(G[Bi ∪ {x, x′}] − xx′) − e(A,Bi) ≤ 2 · (2s) − 3 = 4s − 3, where e(A,Bi) ≥ 3 since

|Bi| ≥ 2.

Thus, for any i ∈ [1, t] with |Bi| ≥ 2, we have 2e(G[Bi])+e(A,Bi) ≤ 4s−3. If |Bi| = 1

then 2e(G[Bi]) + e(A,Bi) ≤ 2. Summing over all indices i, we have e(B,A) + 2e(G[B]) ≤
4|B| − 3. This proves Claim 4 (ii).

By using Claim 4 (ii), we can estimate the upper bound of
∑
v∈B

dA(v)xv as follows.

Claim 5.

∑

v∈B
dA(v)xv ≤ 5n− 5du − 7√

n+ 1− 1
n−√

n

. (3)

Proof. Recall that B1, B2, . . . , Bt are all components of G[B]. For any i ∈ [1, t], by Claim

4 (i), Bi has two neighbors in A. Since G contains no K2,3, there is at most one vertex in

Bi with two neighbors in A. Set x′i := max{xv : v ∈ Bi}. Thus, if |Bi| ≥ 2 then

∑

v∈Bi

dA(v)xv ≤
∑

v∈Bi

xv + x′i =
1

λ
(
∑

v∈Bi

λxv + λx′i)

≤ 1

λ
(
∑

v∈Bi

dG(v) + (|Bi| − 1 + 2))

=
1

λ
(e(A,Bi) + 2e(G[Bi]) + |Bi|+ 1)

=
1

λ
(5|Bi| − 2).

If |Bi| = 1 then
∑
v∈Bi

dA(v)xv ≤ 2
λ

∑
w∈NA(Bi)

xw ≤ 4
λ
= 1

λ
(5|Bi|−1). Observe that if |Bi| = 1

for every i, then t ≥ 2 since |B| ≥ 2. Summing over all i ∈ [1, t], we have

∑

v∈B
dA(v)xv ≤ 5|B| − 2√

n+ 1− 1
n−√

n

=
5n− 5du − 7√
n+ 1− 1

n−√
n

.

This proves the claim.
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In what follows, we aim to show that

(
1− 5√

n+ 1− 1
n−√

n

)
du > max

{
(n− 1) ·

(
1− 5√

n+ 1− 1
n−√

n

)
, 0

}
. (4)

holds for n ≥ 17. This finally results in d(u) > n − 1, and implies that |B| ≥ 2 does not

hold.

By (1), (2) and (3), we infer

(
1− 5√

n+ 1− 1
n−√

n

)
du

≥ λ2 − 2λ+
2

3
2 +

√
n− 7

4

− 5n− 7√
n+ 1− 1

n−√
n

≥ n− 1− 2√
n− 1

+
1

n(
√
n− 1)2

+
2

3
2 +

√
n− 7

4

− 5n− 7√
n+ 1− 1

n−√
n

> (n− 1) ·
(
1− 5√

n+ 1− 1
n−√

n

)
− 2√

n− 1
+

2

3
2 +

√
n− 7

4

+
2√
n+ 1

> (n− 1) ·
(
1− 5√

n+ 1− 1
n−√

n

)
+

2
√

n− 7
4 − 7

n− 1

≥ (n− 1) ·
(
1− 5√

n+ 1− 1
n−√

n

)
> 0

for n ≥ 17. (Note that (1− 5√
n+1− 1

n−
√

n

) < 0 when n = 16.)

Therefore, we have |B| ≤ 1. Suppose that |B| = 1. At this point, we can know more

information on G[A] than Claim 2.

Claim 6. G[A] is an induced path.

Proof. By Claim 2, G[A] is a union of disjoint induced paths or an induced path. Since G

is a maximal outerplanar graph, by Lemma 1, G has a planar embedding, say G̃, whose

outer face is a Hamilton cycle, all other faces being triangles. If G[A] is not an induced

path, then the fact |B| = 1 implies there is an inner face in G̃ which is not a triangle, a

contradiction. This proves the claim.

Finally, we show that, indeed, B is an empty set.

Claim 7. B = ∅.

Proof. Suppose that |B| = 1. Let B = {v}. Since G is K2,3-free, we have d(v) = 2.

Set N(v) = {vi, vj}. Recall that G[A] is an induced path. Let G[A] = v1v2 . . . vn−2. If

|i− j| 6= 1, then G contains a K2,3-minor, a contradiction. Thus, |i− j| = 1. Without loss

of generality, set j = i + 1. Since du > 5, at least one vertex of {vi, vi+1} has degree two

in G[A]. Moreover, vvi, vvi+1 ∈ E(G). Let X = (xu, x1, . . . , xn−2, xv)
t be the eigenvector

corresponding to λ(G), where xu = 1, xv corresponds to v, and xk corresponds to vk for

k = 1, . . . , n−2. Set xs := max{xk : k = 1, . . . , n−2}. By Claim 1, λ ≥ √
n+1− 1

n−√
n
≥ 5.

6



Then λxv = xi+xi+1 ≤ 2xs, which implies that xv < xs. Since λxs ≤ xu+
∑

vk∼vs

xk+xv <

1 + 3xs, it follows that xs <
1

λ−3 . Also, since λx1 > xu, we have x1 >
1
λ
.

Now let G′ := G − vvi − vvi+1 + vu + vv1. Note that G′ is also outerplanar and

λ(G′)− λ(G) ≥ 2Xt(A(G′)−A(G))X = 2xv(xu + x1 −xi − xi+1) > 2xv(1+
1
λ
− 2

λ−3). By

simple algebra, 1 + 1
λ
− 2

λ−3 = λ2−4λ−3
λ(λ−3) . In order to prove the inequality λ2−4λ−3

λ(λ−3) > 0, it

suffices to show λ > 2+
√
7. By Claim 1,λ > 2+

√
7 when n ≥ 16. Therefore λ(G′) > λ(G),

a contradiction. This proves the claim.

It follows that G = K1 ∨ Pn−1, completing the proof. �

The case of 2 ≤ n ≤ 16.

Throughout this part, we use the notation NIM-outerplanar graphs instead of non-

isomorphic maximal outerplanar graphs.

LetG be a maximal outerplanar graph with order n and vertex set V (G) = {v1, . . . , vn}.
By Lemma 1, G has a planar embedding, say G̃, such that the outer-face is a Hamilton

cycle. One can easily find such a Hamilton cycle is unique, since otherwise there is a

K4-minor in G. In the following, we do not distinguish a maximal outerplanar graph and

its planar embedding when there is no ambiguity. Let v1 . . . vnv1 be the Hamilton cycle

mentioned above.

A property of a maximal outerplanar graph on n ≥ 3 vertices states that every such

graph has a vertex of degree 2 and has a subgraph which is also maximal outerplanar

by deleting the vertex. Let G′ be a maximal outerplanar graph obtained from G by

adding a new vertex vn+1, which is adjacent to some vertex(vertices) of G. Since e(G′) =
2(n + 1) − 3 = e(G) + 2, we have dG′(vn+1) = 2. Furthermore, NG′(vn+1) = {vi, vi+1}
for some i ∈ [1, n]. Let S(n) denote the number of NIM-outerplanar graphs with order

n. It follows that S(n + 1) ≤ nS(n). In fact, by using matlab, the number of NIM-

outerplanar graphs with order at most 13 can be computed as shown in Table 1. In

particular, S(14) ≤ 29666, S(15) ≤ 415324 and S(16) ≤ 6229860.

n 6 7 8 9 10 11 12 13 14 15 16

S(n) 3 4 12 27 82 228 733 2282 ≤ 29666 ≤ 415324 ≤ 6229860

Table 1: The numbers of NIM-outerplanar graphs with order at least 6 and at most 16.

For the case of 2 ≤ n ≤ 5, one can check by hand calculation. For the case of 6 ≤ n ≤
13, the problem can be completely solved by a computer. When 14 ≤ n ≤ 16, we first

develop a program to determine all NIM-outerplanar graphs of order 13, and then compare

the spectral radius of each graph in the family of no more than 29666 (415324, 6229860)

graphs and of K1∨Pn−1, respectively (see https://github.com/HuiqiuLin-83/Outerplanar-

graph/ for the code). Furthermore, we find out λ(G1) = 3.2361 > λ(K1 ∨ P5) = 3.2227.

In summary, we get the following result (together with Theorem 2).

Theorem 3. Among all outerplanar graphs on n vertices, K1∨Pn−1 attains the maximum

spectral radius, with the only exceptional case of n = 6, in which G1 attains the maximum

spectral radius. (see Figure 1).
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Figure 1: The graph G1.

Concluding remarks

We would like to compare our proof with the methods applied by Tait and Tobin in

[16]. Generality speaking, the Tait-Tobin Method is somewhat motivated by Regularity

Lemma. For any ε > 0, they partitioned the vertex set V (G) into two parts VL = {v ∈
V (G) : xv > ε} and VS = V (G)\VL. “This enables them to determine the structure on

large (linear sized) pieces of the graph to understand approximately what the extremal

graph looks like.”1 Our proof heavily relies on the complete characterization of outerplanar

graphs, and the concept of “minor” plays an important role in our proof. More importantly

for us, we need a Hamilton cycle in a maximal outerplanar graph to label the vertices in

order. We need much more details (see Claims 4 and 5) to control the bound of eigenvector

entries, besides using Shu-Hong’s inequality.

On the other hand, the Tait-Tobin Method seems to be powerful for many problems

(on large graphs) in spectral graph theory. Till now, it has been successfully used to make

progress on Cvetković-Rowlinson Conjecture [6], Boots-Royle-Cao-Vince Conjecture [2, 3],

and Cioabă-Gregory Conjecture [5], etc. We would like to refer to the very recent spectral

version [4] of extremal numbers of friendship graphs [8].

In closing, we shall mention the following conjecture again, which is still open for small

n. (For example, let us confirm this conjecture for all n ≥ 100.) We note that Tait and

Tobin [16] verified it for sufficiently large n.

Conjecture 2 (Boots-Royle [2], and independently by Cao-Vince [3]). The planar graph

on n ≥ 9 vertices of maximum spectral radius is P2 ∨ Pn−2.
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