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On inclusion chromatic index of a graph
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aAGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Let χ′
⊂(G) be the least number of colours necessary to properly colour the edges of a

graph G with minimum degree δ ≥ 2 so that the set of colours incident with any vertex
is not contained in a set of colours incident to any its neighbour. We provide an infinite
family of examples of graphs G with χ′

⊂(G) ≥ (1 + 1
δ−1 )∆, where ∆ is the maximum

degree of G, and we conjecture that χ′
⊂(G) ≤ ⌈(1 + 1

δ−1 )∆⌉ for every connected graph
with δ ≥ 2 which is not isomorphic to C5. The equality here is attained e.g. for the family
of complete bipartite graphs. Using a probabilistic argument we support this conjecture
by proving that for any fixed δ ≥ 2, χ′

⊂(G) ≤ (1 + 4
δ )∆(1 + o(1)) (for ∆ → ∞), what

implies that χ′
⊂(G) ≤ (1 + 4

δ−1 )∆ for ∆ large enough.
AMS Subject Classification: 05C15

Keywords: inclusion-free colouring, inclusion chromatic index, adjacent vertex
distinguishing edge colouring

1. Introduction

Let G = (V,E) be a (simple and finite) graph and c : E → C an edge colouring of G.
For each vertex v ∈ V we define a palette of v as

Sc(v) = {c(uv) : u ∈ N(v)}.

This shall be referred to simply as S(v) if it is clear which colouring is to be considered.
We call c an inclusion-free colouring if it is proper, i.e. attributes distinct colours to
adjacent edges, and for each uv ∈ E, Sc(u) 6⊆ Sc(v). Note that this condition may
be restricted to the cases when dG(u) ≤ dG(v) exclusively. Such a colouring exists if
and only if G has no vertices of degree one. The least number of colours admitting
an inclusion-free colouring of G is called its inclusion chromatic index and denoted by
χ′
⊂(G). This problem was proposed by Simonyi [16], inspired by the concept discussed

in the following paragraph (and in particular its list analogue, see [12]).
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The inclusion-free colouring is in fact a strengthening of so-called adjacent vertex
distinguishing colouring which requires the palettes of adjacent vertices to be merely
distinct – the minimizing necessary number of colours graph invariant is in this case
denoted by χ′

a(G). In particular, the two problems are equivalent when G is a regular
graph. Moreover, by the properness of edge colourings investigated, the both correspond-
ing graph invariants equal at least ∆ or ∆ + 1 (dependent on the class of a graph), while
it was boldly conjectured by Zhang et al. [18] that χ′

a(G) ≤ ∆ + 2 for any connected
graph G of order at least 3 which is not the cycle C5. This problem was widely studied
[1, 3, 4, 5, 6, 8, 9, 13, 17, 18]. In particular, Balister et al. proved the conjecture to hold for
bipartite and for subcubic graphs, and showed that in general χ′

a(G) ≤ ∆ +O(logχ(G)).
Later Zhang’s Conjecture was proved up to an additive constant by Hatami [6], who
applied probabilistic approach to show that χ′

a(G) ≤ ∆ + 300 for any graph G with no
isolated edges and with maximum degree ∆ > 1020. Recently, Joret and Lochet [11] used
the so-called entropy compression method and made yet another step forward towards
the conjecture, improving Hatami’s bound to χ′

a(G) ≤ ∆ + 19 (for large enough ∆).
In this paper we first argument that contrary to our initial supposition (based on

resemblance in the case of regular or almost regular graphs), the two problems are not
much alike. Namely, in the next section we discuss the family of examples, the complete
bipartite graphs, proving that no upper bound of the form ∆ + const. can be expected
in the case of χ′

⊂(G) in general, as we may have χ′
⊂(G) ≥ (1 + 1

δ−1 )∆, where δ is
the minimum degree of G. We then pose in Section 3 a conjecture that such quantity
rounded up to an integer is essentially also an upper bound for χ′

⊂(G), and support this
conjecture by proving that for every fixed δ ≥ 2 it holds up to an additive constant with
1

δ−1 replaced by 4
δ−1 , see Section 5 for details of a probabilistic proof of this fact. This

is also preceded by a useful deterministic argument that χ′
⊂(G) < 3∆.

2. Complete Bipartite Graphs

The first difference between the two problems is the already mentioned fact that
investigating inclusion-free colourings makes sense only for graph without degree one
vertices (while we need only exclude isolated edges in the case of χ′

a(G)), and thus from
now on we assume that every graph considered has the minimum degree δ ≥ 2. However,
even in such a case the influence of δ on χ′

⊂(G) can still be significant, especially when
δ is small compared to ∆, as exemplified by the following result for complete bipartite
graphs.

Proposition 1. Let G = K∆,δ, 2 ≤ δ ≤ ∆. Then

χ′
⊂(G) =

⌈(

1 +
1

δ − 1

)

∆

⌉

.

Proof. Let G = (X ∪ Y,E) where |X | = δ, |Y | = ∆, and consider its inclusion-free
colouring c with elements of C, |C| = ∆ + k. Let x ∈ X and denote by G′ the subgraph
induced by the edges coloured with colours within C′ := CrS(x) in G (where |C′| = k).
As c is inclusion free, every vertex from Y must be incident with an edge coloured by a
colour in C′, and hence G′ = (X ′ ∪ Y,E′) is a properly coloured bipartite graph with at
least ∆ edges, |X ′| ≤ δ − 1 (as x /∈ X ′) and dG′(x′) ≤ k for every x′ ∈ X ′. Therefore,
k ≥ ⌈ ∆

δ−1⌉, what yields the desired lower bound for χ′
⊂(G).
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For integers n and p, let Zn = {0, 1, . . . , n− 1} and Zn,p = {i ∈ Zn : i 6≡ 0 (mod p)}.
We say that a set A ⊆ Zn contains a cyclic p-interval if there are a1, a2, . . . , ap ∈ A such
that ai+1 ≡ ai + 1 (mod n) for i = 1, . . . , p − 1. Note that |Z∆+⌈ ∆

δ−1 ⌉,δ| = ∆ and let

X = {xi : i ∈ Zδ} and Y = {yj : j ∈ Z∆+⌈ ∆
δ−1 ⌉,δ}. Then we define an edge colouring

c : E → Z∆+⌈ ∆
δ−1 ⌉ by setting c(xiyj) = i + j (mod ∆ + ⌈ ∆

δ−1⌉) for all xi ∈ X , yj ∈ Y .

Note that c is a proper edge colouring of G with (at most) ∆ + ⌈ ∆
δ−1⌉ colours. As δ ≤ ∆,

in order to prove that c is inclusion-free, it suffices to show that for every y ∈ Y and each
x ∈ X , Sc(y) 6⊂ Sc(x). This however follows by definition of c as it implies that Sc(y)
contains a cyclic δ-interval A ⊆ Z∆+⌈ ∆

δ−1 ⌉, while Sc(x) does not. �

3. Conjecture and Main Result

In some sense bipartite graphs with large degrees in one set of the bipartition and
small degrees in the other one seem to be most problematic while designing inclusion-
free colourings. This is e.g. the case within the proof of our main result below, where a
considerable part of the construction is devoted to analysis of a certain bipartite subgraph
of a given graph induced by edges between small and large degree vertices (with a special
set of colours dedicated in the main to overcome obstacles concerning adjacencies of such
vertices). Taking into account this in combination with Proposition 1 above, we pose the
following conjecture, which by the mentioned proposition would thus be sharp if proven.
(Note that as our requirement is local, i.e. concerns only adjacent vertices, we may focus
on connected graphs.)

Conjecture 2. For any connected graph G of minimum degree δ ≥ 2 and maximum
degree ∆ which is not isomorphic to C5,

χ′
⊂(G) ≤

⌈(

1 +
1

δ − 1

)

∆

⌉

.

Note that in all cases, ⌈(1 + 1
δ−1 )∆⌉ ≥ ∆ + 2, where the equality holds in particular

for regular graphs. Since the problems of adjacent vertex distinguishing colourings and
inclusion-free colourings are equivalent for such a class of graphs, we immediately ob-
tain that Conjecture 2 holds e.g. for cubic graphs, cycles, regular bipartite graphs and
complete graphs, see [3, 18]. The main contribution of this paper is the following upper
bound for the value of the inclusion chromatic index of a graph.

Theorem 3. For every fixed δ ≥ 2 and a graph G of minimum degree δ and maximum
degree ∆,

χ′
⊂(G) ≤

(

1 +
4

δ

)

∆ + O
(

∆2/3 log4 ∆
)

.

Note this immediately implies the following corollaries.

Corollary 4. For any fixed δ ≥ 2 and ∆ large enough, χ′
⊂(G) ≤

(

1 + 4
δ−1

)

∆ for every

graph G with minimum degree δ and maximum degree ∆.

Corollary 5. For any fixed δ ≥ 2 there exists a constant C such that χ′
⊂(G) ≤

(

1 + 4
δ−1

)

∆+

C for every graph G with minimum degree δ and maximum degree ∆.
3



In order to prove Theorem 3 we shall use probabilistic approach, based in particular
on the following variants of the Lovász Local Lemma, see e.g. [2], the Chernoff Bound,
see e.g. [10] (Th. 2.1, page 26) and Talagrand’s Inequality, see e.g. [14].

Theorem 6 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary pro-
bability space. Suppose that each event Ai is mutually independent of a set of all the
other events Aj but at most D, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(D + 1) ≤ 1,

then Pr
(
⋂n

i=1 Ai

)

> 0.

Theorem 7 (Chernoff Bound). For any 0 ≤ t ≤ np,

Pr(BIN(n, p) > np + t) < e−
t2

3np and Pr(BIN(n, p) < np− t) < e−
t2

2np ≤ e−
t2

3np

where BIN(n, p) is the sum of n independent Bernoulli variables, each equal to 1 with
probability p and 0 otherwise.

Theorem 8 (Talagrand’s Inequality). Let X be a non-negative random variable de-
termined by l independent trials T1, . . . , Tl. Suppose there exist constants c, k > 0 such
that for every set of possible outcomes of the trials, we have:

1. changing the outcome of any one trial can affect X by at most c, and

2. for each s > 0, if X ≥ s then there is a set of at most ks trials whose outcomes
certify that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X −E(X)| > t + 20c
√

kE(X) + 64c2k) ≤ 4e
− t2

8c2k(E(X)+t) . (1)

Prior to proving Theorem 3, we present a deterministic proof of the fact that χ′
⊂(G) <

3∆, which shall also be useful in the proof of our main result. Note in this context that
the bound from Conjecture 2 (and Proposition 1) may be as large as 2∆ (for δ = 2).

4. Deterministic Bound

Theorem 9. Let G = (V,E) be a graph of minimum degree δ ≥ 2 and maximum degree
∆. Then

χ′
⊂(G) ≤ 3∆ − 1.

Proof. Let v1, v2, . . . , vn be an ordering of the vertex set of G such that each vertex
vi has minimum degree in Gi = G[{v1, . . . , vi}]. We show that there is a proper edge
colouring of Gi with a set C of 3∆ − 1 colours such that for each i, if xy ∈ E(Gi) and
dGi(x) ≥ 2 then Si(x) 6⊂ Si(y) where Si(x) is the palette of x in a colouring of Gi. In
fact we construct the colouring greedily, and in step i we extend the colouring of Gi−1

by choosing appropriate colours only for the edges incident with vi in Gi.
For i = 1 and i = 2 the claim is trivial; assume thus that i ≥ 3.
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If dGi(vi) = 0, then we have nothing to do and the claim still holds (as it was satisfied
for G1, . . . , Gi−1).

If dGi(vi) = 1 then we choose a colour only for one edge, say uvi. We need to preserve
the properness and the distinction between u and its neighbours other than vi. So if there
is a colour α in the palette of the neighbour u′ 6= vi of u such that using that colour on
the edge uvi would cause Si(u

′) ⊂ Si(u), we shall forbid it for uvi. In other words, we
define

S̄i−1(u) =
{

α ∈ C | ∃u′ ∈ NGi−1(u) : Si−1(u′) \ Si−1(u) = {α}
}

.

If dGi(u) ≥ 3 then Si−1(u) 6⊂ Si−1(u′) for any neighbour u′ 6= vi of u by the properties
of our colouring of Gi−1, so Si(u) 6⊂ Si(u

′) no matter what we put on uvi. Therefore if
we choose any element of C \ (Si−1(u) ∪ S̄i−1(u)) as a colour of uvi, we also guarantee
that Si(u

′) 6⊂ Si(u) for every neighbour u′ of u with dGi(u
′) ≥ 2. On the other hand, if

dGi(u) = 2 then we choose any element of C \Si−1(u′) where u′ is the only neighbour of
u in Gi−1. If finally dGi(u) = 1, we may choose any colour in C for uvi. In each case we
succeed as long as |C| ≥ 2∆ − 1.

Now let us assume that dGi(vi) = k ≥ 2 and let NGi(vi) = {u1, . . . , uk}.
By the assumption regarding vi we have dGi(vi) ≤ dGi(uj), j = 1, . . . , k, so there is

only one type of inclusion along this edge we need to deal with. In fact we need to choose
pairwise distinct colours c1, . . . , ck ∈ C to be assigned to viu1, . . . , viuk, resp., such that
for each j ∈ {1, . . . , k}: cj 6∈ Si−1(uj) ∪ S̄i−1(uj) (or cj /∈ Si−1(u′

j) if dGi(uj) = 2 and
u′
j is the only neighbour of uj in Gi−1) and cr 6∈ Si−1(uj) for some r other than j.

We shall choose such cj ’s one after another so that additionally for j = 1, . . . , k − 1,
there is r ∈ {1, . . . , j} such that cr /∈ Si−1(uj+1) (what shall guarantee fulfillment of the
last requirement above for u2, . . . , uk). Suppose we have chosen appropriate cj ’s for all
j ≤ j′ − 1 for some j′ ∈ {1, . . . , k}, and we are about to choose cj′ . In the following all
indices are regarded modulo k.

If all colours c1, . . . , cj′−1 are in Si−1(uj′+1) (note we must have j′ < k then), then
we choose as cj′ any element of the set C \ (Si−1(uj′)∪ S̄i−1(uj′ )∪Si−1(uj′+1)) or of the
set C \ (Si−1(u′

j′) ∪ Si−1(uj′+1)) if dGi(uj′) = 2 and u′
j′ is the only neighbour of uj′ in

Gi−1.
We also proceed in the same way in the case when j′ = k and the only cj outside

Si−1(u1) is c1 but we additionally cannot use c1 as ck then.
On the other hand, if there is cr with r < j′ and r 6= 1 for j′ = k such that

cr 6∈ Si−1(uj′+1), then we choose as cj′ any element of the set C \ (Si−1(uj′)∪ S̄i−1(uj′)∪
{c1, . . . , cj′−1}) or of the set C \ (Si−1(u′

j′) ∪ {c1, . . . , cj′−1}) if dGi(uj′) = 2 and u′
j′ is

the only neighbour of uj′ in Gi−1.
It is straightforward to verify that in every case these choices can be committed if

only |C| ≥ 3∆ − 1, and the resulting colouring fulfills all our requirements. �

5. Proof of Theorem 3

For δ = 2 the thesis follows by Theorem 9.
Fix an integer δ ≥ 3. Let G = (V,E) be a graph with minimum degree δ and

maximum degree ∆. Some of the claims and explicit inequalities in the following proof
are true only for ∆ large enough, which we do not specify, say ∆ ≥ ∆0. We shall in fact
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prove that if ∆ is sufficiently large, then χ′
⊂(G) ≤ ∆(1 + 4

δ ) + 4∆2/3 log4 ∆, what e.g.
due to Theorem 9 implies Theorem 3.

In the following, d(v) shall always be understood as the degree of a vertex v in G.
(i.e., d(v) = dG(v)). We shall colour the edges of G with integer colours 1, 2, . . . and we
shall denote the colour assigned to a given edge e by c(e).

Let
S = {v ∈ V : d(v) ≤ ∆2/3 log4 ∆},
B = {v ∈ V : d(v) > ∆2/3 log4 ∆},

and let GS = G[S], GB = G[B] be the subgraphs induced by S and B, resp., in G. Set

S0 = {v ∈ S : dS(v) = 0},

S1 = {v ∈ S : dS(v) = 1},
and let H be the bipartite graph with the sets of bipartition X = S0 ∪ S1 and Y = B
induced by all the edges between these two sets in G. Note that 3 ≤ δ ≤ dH(v) ≤
∆2/3 log4 ∆ for every v ∈ S0, 2 ≤ δ − 1 ≤ dH(v) < ∆2/3 log4 ∆ for v ∈ S1 and 0 ≤
dH(v) ≤ ∆ for v ∈ B.

Claim 1. There exists a subgraph G′ of G−E(GS) and its subgraph H ′ which is also a
subgraph of H such that:

(i) dH′(v) = 2 for v ∈ S0;

(ii) dH′(v) = 1 for v ∈ S1;

(iii) dG′(v) ≥ 2
δd(v) − 2

√
∆ log ∆ for every v ∈ B;

(iv) dG′(v) ≤ d(v)2δ (1 + δ
∆1/3 ) for every v ∈ B (hence ∆(G′) ≤ 2∆

δ + 2∆2/3).

Proof. For every vertex v ∈ S0 we independently and equiprobably choose a pair of
edges of H incident with v and include them in the randomly constructed G′ and H ′;
independently, for every edge incident with such v in H we make an equalizing coin flip
and include this edge in G′ (if it is not yet included in G′), but not in H ′, with probability
2
δ (1− δ−2

dH(v)−2 ), so that every edge incident with v ∈ S0 lands in G′ with probability 2/δ;

Similarly, for every vertex v ∈ S1 we independently and equiprobably choose one edge
of H incident with v and include it in the randomly constructed G′ and H ′; independently,
for every edge incident with such v in H we make an equalizing coin flip and include this
edge in G′ (if it is not yet included in G′), but not in H ′, with probability 2

δ (1− δ−2
2dH(v)−2 )

so that every edge incident with v ∈ S1 in H (thus now also every edge in H) lands in
G′ with probability 2/δ;

Finally, every edge of G − (E(H) ∪ E(GS)) is independently included in G′ with
probability 2/δ.

The obtained subgraphs satisfy conditions (i) and (ii) by design. We use Talagrand’s
inequality to bound the probability for the remaining conditions to hold. Let for every
v ∈ B, Av and Bv denote the events that (iii) and (iv) do not hold for v, respectively.
The independent trials here are simply the random choices described above determining
whether or not a specific edge is included in G′. Note that changing the outcome of any
trial can affect dG′(v) by at most 1 and for each s > 0, if dG′(v) ≥ s then there is a set

6



of at most s trials whose outcomes certify that dG′(v) ≥ s. The expected value of dG′(v)
equals 2

δd(v), so by the Talagrand’s Inequality,

Pr (Av) ≤ Pr

(

dG′(v) <
2

δ
d(v) − 2

√
∆ log ∆

)

≤ 4e−0.5 log2 ∆ <
1

∆3

Analogously,

Pr (Bv) ≤ Pr

(

dG′(v) >
2

δ
d(v) +

2d(v)

∆1/3

)

≤ 4e−0.5 log2 ∆ <
1

∆3

Therefore, as every event Av and Bv is mutually independent of all other such events
except those associated with vertices v′ at distance at most 2 from v, i.e. all except at
most 2∆2 + 1 other events, the theorem follows by the Lovász Local Lemma. �

Claim 2. We may colour properly the edges of G′ using 2r colours from the set {1, 2, . . . , 3r}
with r =

⌈

3
δ∆(1 + δ

∆1/3 )
⌉

so that:

(i) if u ∈ Y , then the colours of any two edges incident with u in G′ differ by at least
2;

(ii) if v ∈ S0, then some two consecutive integers appear as colours of edges incident
with v in G′;

(iii) if v ∈ S1 and uv ∈ E(GS) then there is a colour incident with v which is not
incident with u.

Proof. We first modify G′ as follows: for every vertex v ∈ S0 we delete the two edges
vu and vw incident in H ′ with v, and replace them with one edge uw. Note that this way
we may obtain a multigraph from G′ – we denote it by G′′. Observe that by Claim 1 (iv),
∆(G′′) ≤ 2∆

δ (1 + δ
∆1/3 ), where by the degree of a vertex v in G′′ we mean the number of

edges incident with v in G′′. Consider pairs of consecutive integers: Pi := {3i− 2, 3i− 1}
for i = 1, 2, . . . ,

⌈

3∆
δ (1 + δ

∆1/3 )
⌉

. By Shannon’s theorem [15] we may properly colour
the edges of G′′ with colours P1, P2, . . .. We shall use this colouring to obtain a desired
proper edge colouring of G′. We shall never use colours 3, 6, . . . , 3r.

Now we process the edges between Y and S \ S0 by looking at each connected com-
ponent of G[S \ S0] one after another, and choosing colours for all edges incident with it
in G′′. If a given component is an isolated edge uv contained in S1, we choose distinct
colours from the pairs Pi assigned to the edges incident with u and v. Otherwise we
choose smaller colours from all pairs Pi assigned to the edges incident with vertices in
S1, and larger for the remaining ones, i.e. those between Y and S \ (S0 ∪ S1) from the
component. (As we shall not use the colours from this step in the further part of the
construction, this shall guarantee the set of colours incident with any vertex v ∈ S1 shall
not be contained in the set of colours incident with any its neighbour in S.)

Then for every vertex v ∈ S0, one after another, if the corresponding uw (where
vu, vw ∈ H ′) has colour Pi and this colour appears on some edge incident with v (in
G′′), say vy, then we recolour (greedily) this edge with a different Pj so that the colouring
of G′′ remains proper – this is always feasible as by Claim 1 (iv), dG′′(y) + dG′′(v) ≤
dG′(y) + dG′(v) ≤ 2∆

δ + 2∆2/3 + ∆2/3 log4 ∆ < 3∆
δ ; then we replace back uw with vu

and vw, and colour them with different elements of Pi. Note that in this step we did not
change any colours on the edges incident with S \ S0. For each remaining edge of G′ we
can pick any colour from its corresponding Pi. �
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Note that the conditions (i) and (ii) in Claim 2 guarantee that in the obtained partial
edge colouring of G the vertices in S0 are distinguished from their neighbours in B.
Moreover, the condition (iii) assures that the vertices in S1 are distinguished from their
neighbours in S.

We then take two copies of GS − S0 and add a matching between the corresponding
vertices of degree 1. This graph has minimum degree at least 2 and maximum degree at
most ∆2/3 log4 ∆, so by Theorem 9 we can properly colour its edges using new colours
in {3r + 1, . . . , 3r + s} for some integer s ≤ 3∆2/3 log4 ∆ so that back in the original
copy of GS all neighbours in S are distinguished in both directions in GS ∪ G′ (by the
paragraph above this holds also for vertices of degree 1 in GS). These distinctions shall
not be spoiled as the colours used thus far shall not be repeated in the further part of
the construction of edge colouring of the entire G.

Note moreover that within this step, every vertex in S \ S0 received a colour into its
palette that shall never appear in the palette of any vertex in B. Therefore the only
possible inclusions left are between the vertices of B.

Let G1 be the subgraph of G induced by all its yet not coloured edges. Note that by
Claim 1, for every v ∈ B:

dG1(v) ≥ d(v)

(

1 − 2

δ
− 2

∆1/3

)

≥ d(v)

4
≥ ∆2/3 log4 ∆

4
(2)

and

dG1(v) ≤ d(v)

(

1 − 2

δ

)

+ 2
√

∆ log ∆ ≤
(

1 − 2

δ
+

2 log ∆√
∆

)

∆. (3)

Claim 3. There is a subgraph F of G1 such that:

(i) 1
8 log2 ∆ ≤ dF (v) ≤ 2 ∆1/3

log2 ∆
for each v ∈ B and

(ii) dF (v) ≤ 2 log2 ∆ for each v ∈ S.

Proof. Choose every edge of G1 randomly and independently with probability 1
∆2/3 log2 ∆

and denote the subgraph induced by the chosen edges by F . Since for v ∈ V (G1),
dF (v) ∼ BIN(dG1(v), 1

∆2/3 log2 ∆
), by (2) and the Chernoff Bound we have:

Pr

(

dF (v) <
1

8
log2 ∆ ∨ dF (v) > 2

∆1/3

log2 ∆

)

≤

≤ Pr

(

dF (v) <
1

8
log2 ∆

)

+ Pr

(

dF (v) > 2
∆1/3

log2 ∆

)

≤ 2e−
1
32 log2 ∆ <

1

∆2

for v ∈ B and, by the definition of S,

Pr
(

dF (v) > 2 log2 ∆
)

≤ e−
1
4 log2 ∆ <

1

∆2

for v ∈ S.
Any of the analysed events, opposite to the ones from the thesis of Claim 3, is mutually

independent of all the other such events but the ones associated with the vertices at
distance at most 1 from v, i.e. all other events but at most 2∆ + 1. The thesis thus
follows by the Lovász Local Lemma. �
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Now we randomly and independently colour each edge e of F with a colour c′(e) ∈
{3r+s+1, . . . , 3r+s+t}, t = ⌈∆1/3⌉ – choosing every colour with probability 1/⌈∆1/3⌉ ≤
∆−1/3. At the end we uncolour every edge e adjacent with an edge e′ coloured the same,
i.e. with c′(e) = c′(e′) (note that e′ is uncoloured as well then).

Claim 4. It is possible to make our choices so that after the uncolouring, for any uv ∈
E(GB), there are still at least 1

4dF (u) − 1 new colours in the palette of u that are not
present in the palette of v.

Proof. For every u, v ∈ B such that uv ∈ E (note we consider neighbours in G, not
only in F ), we define the set:

Iu,v = {x ∈ NF (u) r {v}| (∀z ∈ NF (u), z 6= x : c′(ux) 6= c′(uz))

∧ (∀z ∈ NF (x), z 6= u : c′(ux) 6= c′(xz))

∧ (∀y ∈ NF (v) : c′(vy) 6= c′(ux))},

whose cardinality simply represents the number of edges incident with u in F which were
not uncoloured and whose colours were not assigned to any edge incident with v. (Note
also that Iv,u is not the same as Iu,v.) Let Cu,v = (NF (u) r {v}) r Iu,v, i.e.,

Cu,v = {x ∈ NF (u) r {v}| (∃z ∈ NF (u), z 6= x : c′(ux) = c′(uz))

∨ (∃z ∈ NF (x), z 6= u : c′(ux) = c′(xz))

∨ (∃y ∈ NF (v) : c′(vy) = c′(ux))}.

We shall show the colour choices can be made so that |Iu,v| ≥ 1
4dF (u) − 1 for every

ordered pair (u, v) such that u, v ∈ B and uv ∈ E. Thus let us denote the following
opposite event for such (u, v):

Au,v : |Cu,v| >
3

4
dF (u).

For any fixed x ∈ NF (u) r {v}, by Claim 3, we have:

Pr(x ∈ Cu,v) ≤ Pr(∃z ∈ NF (u), z 6= x : c′(ux) = c′(uz))

+ Pr(∃z ∈ NF (x), z 6= u : c′(ux) = c′(xz))

+ Pr(∃y ∈ NF (v) : c′(vy) = c′(ux))

≤
∑

z∈NF (u),z 6=x

Pr(c′(ux) = c′(uz))

+
∑

z∈NF (x),z 6=u

Pr(c′(ux) = c′(xz))

+
∑

y∈NF (v)

Pr(c′(vy) = c′(ux))

≤ (dF (u) + dF (x) + dF (v)) · ∆−1/3

≤ 3 · 2
∆1/3

log2 ∆
· ∆−1/3 =

6

log2 ∆
.
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Consequently,

E (|Cu,v|) ≤ dF (u) · 6

log2 ∆
≤ 1

2
dF (u).

The random variable |Cu,v| depends only on the result of the assignment of colours in
this step (i.e. analysed within this claim). The change of one colour can change |Cu,v| by
at most 2. Moreover, for any s, we can indicate a set of at most 2s edges whose colours
certify that |Cu,v| ≥ s. Therefore, by Talagrand’s Inequality and Claim 3 (i):

Pr(Au,v) = Pr

(

|Cu,v| >
3

4
dF (u)

)

≤ 4e−0.001·dF (u) ≤ 4e−0.0001 log2 ∆ ≤ ∆−5.

As every event Au,v (where Au,v is not the same as Av,u) is mutually independent of all
other such events associated with edges at distance at least 5 from the edge uv, i.e. of all
except at most 4∆4 events, then by the Lovász Local Lemma, with positive probability
none of the events Au,v holds. �

For every not uncoloured edge of uv ∈ F , we set c(uv) = c′(uv). Note that all
neighbours in G are distinguished in both directions by the obtained partial colouring
with 2r + s + t colours.

By (3), the definition of S and Vizing’s theorem, the remaining edges may be coloured

properly with at most
(

1 − 2
δ + 2 log∆√

∆

)

∆+1 new colours, what finalizes the construction

of a desired proper colouring of G with at most

2r + s + t +

(

1 − 2

δ
+

2 log ∆√
∆

)

∆ + 1 ≤

≤ 6

δ

(

1 +
δ

∆1/3

)

∆ + 2 + 3∆2/3 log4 ∆ + ∆1/3 + 1 +

(

1 − 2

δ
+

2 log ∆√
∆

)

∆ + 1

≤ ∆

(

1 +
4

δ

)

+ 4∆2/3 log4 ∆

colours. �
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[12] J. Kwaśny, J. Przyby lo, Asymptotically optimal bound on the adjacent vertex distinguishing edge

choice number, Random Structures Algorithms 54(4) (2019) 768–778.
[13] J. Li, Z. Zhang, X. Chen, Y. Sun, A Note on Adjacent Strong Edge Coloring of K(n,m), Acta

Math. Appl. Sin. 22(2) (2006) 273–276.
[14] M. Molloy, B. Reed, Colouring graphs when the number of colours is almost the maximum degree,

J. Combin. Theory Ser. B 109 (2014) 134–195.
[15] Shannon, Claude E. (1949), A theorem on coloring the lines of a network, Studies in App. Math.

28 (1949).
[16] G. Simonyi, personal communication, Malta (2017).
[17] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum

average degree, J. Comb. Optim. 19 (2010) 471–485.
[18] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002)

623–626.

11

http://arxiv.org/abs/1804.06104

	1 Introduction
	2 Complete Bipartite Graphs
	3 Conjecture and Main Result
	4 Deterministic Bound
	5 Proof of Theorem ??

