On the maximum number of maximum independent sets in connected graphs

E. Mohr D. Rautenbach

Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany {elena.mohr, dieter.rautenbach}@uni-ulm.de

Abstract

We characterize the connected graphs of given order n and given independence number α that maximize the number of maximum independent sets. For $3 \leq \alpha \leq n/2$, there is a unique such graph that arises from the disjoint union of α cliques of orders $\left[\frac{n}{\alpha}\right]$ $\frac{n}{\alpha}$ and $\frac{n}{\alpha}$ $\frac{n}{\alpha}$, by selecting a vertex x in a largest clique and adding an edge between x and a vertex in each of the remaining $\alpha - 1$ cliques. Our result confirms a conjecture of Derikvand and Oboudi [On the number of maximum independent sets of graphs, Transactions on Combinatorics 3 (2014) 29-36].

1 Introduction

Moon and Moser's [\[5\]](#page-11-0) classical result on the number of maximal cliques immediately yields a characterization of the graphs of a given order that have the maximum number of maximum independent sets. Similarly, the characterization of the connected graphs of a given order with that property follows from a result of Griggs, Grinstead, and Guichard [\[2\]](#page-11-1); see [\[3\]](#page-11-2). Using a result of Zykov [\[9\]](#page-11-3) allows to characterize the graphs of a given order and a given independence number that have the maximum number of maximum independent sets; see Theorem [1](#page-2-0) below. Our contribution in the present paper is the connected version of this result; that is, we characterize the connected graphs of a given order and a given independence number that have the maximum number of maximum independent sets. Our results confirm a recent conjecture of Derikvand and Oboudi [\[1\]](#page-11-4).

We consider only finite, simple, and undirected graphs, and use standard terminology and notation. An *independent set* in a graph G is a set of pairwise non-adjacent vertices of G . The *independence number* $\alpha(G)$ of G is the maximum cardinality of an independent set in G. An independent set in G is maximum if it has cardinality $\alpha(G)$. For a graph G, let $\sharp \alpha(G)$ be the number of maximum independent sets in G. For a vertex u of G, let $\sharp \alpha(G, u)$ be the number of maximum independent sets in G that contains u .

Let n and α be positive integers with $\alpha < n$.

Let the graph $G(n, \alpha)$ be the disjoint union of one clique C_0 of order $\lceil \frac{n}{\alpha} \rceil$ $\frac{n}{\alpha}$, and $\alpha - 1$ further cliques $C_1, \ldots, C_{\alpha-1}$ of orders $\lceil \frac{n}{\alpha} \rceil$ $\frac{n}{\alpha}$ and $\frac{n}{\alpha}$ $\frac{n}{\alpha}$, that is, the graph $G(n, \alpha)$ is the complement of the Turán graph of order n and clique number α . Let the graph $F(n, \alpha)$ arise from $G(n, \alpha)$ by adding the edges $x_0x_1, \ldots, x_0x_{\alpha-1}$, where x_i is a vertex in C_i for every i in $\{0, \ldots, \alpha-1\}$. We will call the vertex x_0 the special cutvertex of $F(n, \alpha)$. Note that x_0 may not be unique if $\alpha \leq 2$, and *n* is a multiple of α .

For $\frac{n}{\alpha} \geq 2$, let

$$
\mathcal{F}(n,\alpha) = \begin{cases} \{F(n,\alpha), C_5\} & , \text{ if } (n,\alpha) = (5,2), \text{ and} \\ \{F(n,\alpha)\} & , \text{ otherwise,} \end{cases}
$$

where C_5 denotes the cycle of order 5, and for $\frac{n}{\alpha} < 2$, let $\mathcal{F}(n, \alpha)$ be the set of all connected graphs G that have a vertex x_0 such that $G - x_0$ is isomorphic to $G(n - 1, \alpha)$. It is easy to see that every graph in $\mathcal{F}(n,\alpha)$ for $\frac{n}{\alpha} < 2$ is isomorphic to a graph that arises from $F(n,\alpha)$ by possibly adding further edges incident with the special cutvertex x_0 of $F(n, \alpha)$.

See Figure [1](#page-1-0) for an illustration.

Figure 1: The graph $F(14, 4)$ on the left and a member of $F(7, 4)$ on the right, where dashed lines are potential edges.

The graph $G(n, \alpha)$ has exactly $\alpha - n \mod \alpha$ components of order $\left\lfloor \frac{n}{\alpha} \right\rfloor$ $\frac{n}{\alpha}$, which implies

$$
\sharp \alpha(G(n,\alpha)) = g(n,\alpha) := \left\lfloor \frac{n}{\alpha} \right\rfloor^{\alpha - (n \mod \alpha)} \left\lceil \frac{n}{\alpha} \right\rceil^{n \mod \alpha}
$$

.

,

For $\frac{n}{\alpha} \geq 2$, we have that $F(n, \alpha) - x_0$ is isomorphic to $G(n-1, \alpha)$, which implies

$$
\sharp \alpha(F(n,\alpha)) = f(n,\alpha) := g(n-1,\alpha) + \left(\left\lfloor \frac{n}{\alpha} \right\rfloor - 1\right)^{\alpha - n \operatorname{mod} \alpha} \left(\left\lceil \frac{n}{\alpha} \right\rceil - 1\right)^{n \operatorname{mod} \alpha - 1}
$$

where the term added to $g(n-1,\alpha)$ counts the maximum independent sets in $F(n,\alpha)$ that contain x_0 . For $\frac{n}{\alpha} < 2$, the added term evaluates to 0, that is, $f(n, \alpha)$ equals $g(n - 1, \alpha)$. Furthermore, we obtain $\alpha \leq n-1 \leq 2\alpha-2$, which implies that $G(n-1,\alpha)$ has

$$
\alpha - (n-1) \operatorname{mod} \alpha = \alpha - (n-1-\alpha) = 2\alpha - n + 1 \ge 2
$$

isolated vertices. This implies that the vertex x_0 whose removal from a graph G in $\mathcal{F}(n,\alpha)$ yields $G(n-1,\alpha)$ does not belong to any maximum independent set in G for $\frac{n}{\alpha} < 2$. Hence, also in this case, we obtain

$$
\sharp \alpha(G) = f(n, \alpha) = g(n - 1, \alpha)
$$

for every graph G in $\mathcal{F}(n,\alpha)$.

Note that

$$
\sharp \alpha(C_5) = \sharp \alpha(F(5,2)) = f(5,2) = 5.
$$

The following result is an immediate consequence of Zykov's generalization [\[9\]](#page-11-3) of Turán's theorem [\[7\]](#page-11-5); see [\[4\]](#page-11-6) for a simple proof.

Theorem 1. If G is a graph of order n and independence number α with $\alpha < n$, then $\sharp \alpha(G) \leq$ $g(n, \alpha)$ with equality if and only if G is isomorphic to $G(n, \alpha)$.

Our contribution in the present paper is the following connected version of Theorem [1,](#page-2-0) which was recently conjectured by Derikvand and Oboudi [\[1\]](#page-11-4).

Theorem 2. If G is a connected graph of order n and independence number α with $\alpha < n$, then $\sharp \alpha(G) \leq f(n, \alpha)$ with equality if and only if G is isomorphic to a graph in $\mathcal{F}(n, \alpha)$.

In [\[1\]](#page-11-4), Derikvand and Oboudi verify Theorem [2](#page-2-1) for $\alpha \in \{1, 2, n-3, n-2, n-1\}$, that is, for very small and very large values of the independence number. The maximum number of maximum/maximal independent sets has been studied in some further classes of graphs, and we refer the reader to $[3, 4, 6, 8]$ $[3, 4, 6, 8]$ $[3, 4, 6, 8]$ $[3, 4, 6, 8]$.

The rest of the paper is devoted to the proof of our main result.

2 Proof of Theorem [2](#page-2-1)

We begin with two preparatory lemmas.

Lemma 3. Let G be a connected graph of order n and independence number α with $\alpha < n$. If some vertex u of G is contained in no maximum independent set in G, then $\sharp \alpha(G) \leq f(n, \alpha)$ with equality if and only if $G \in \mathcal{F}(n, \alpha)$.

Proof. By the hypothesis and Theorem [1,](#page-2-0) we obtain $\sharp \alpha(G) = \sharp \alpha(G - u) \leq g(n - 1, \alpha)$ with equality if and only if $G-u$ is isomorphic to $G(n-1, \alpha)$. It follows that $\sharp \alpha(G) \leq g(n-1, \alpha) \leq$ $f(n, \alpha)$, and that $\sharp \alpha(G) = f(n, \alpha)$ holds if and only if $G - u$ is isomorphic to $G(n - 1, \alpha)$, and $g(n-1,\alpha) = f(n,\alpha)$. Since $g(n-1,\alpha) = f(n,\alpha)$ implies $\frac{n}{\alpha} < 2$, the definition of $\mathcal{F}(n,\alpha)$ for $\frac{n}{\alpha} < 2$ implies that $\sharp \alpha(G) = f(n, \alpha)$ holds if and only if $G \in \mathcal{F}(n, \alpha)$. \Box

The second lemma concerns graphs whose structure is similar to the structure of the graphs in $\mathcal{F}(n,\alpha)$.

Lemma 4. Let n and α be positive integers with $\alpha < n$.

(i) Let G be a connected graph of order n and independence number α , whose vertex set is the disjoint union of the vertex sets of α cliques $C_0, \ldots, C_{\alpha-1}$. Let all edges of G that do not lie in one of these cliques be incident with a vertex x_0 in C_0 , and let x_0 have exactly one neighbor in each of the cliques $C_1, \ldots, C_{\alpha-1}$.

Under these assumptions $\sharp \alpha(G) \leq f(n, \alpha)$ with equality if and only if G is isomorphic to $F(n, \alpha)$.

- (ii) Let the graph G' arise from $F(n, \alpha)$ by adding an edge uv between two non-adjacent vertices of $F(n, \alpha)$.
	- If $\frac{n}{\alpha} \geq 2$, then $\alpha(G') = \alpha$ and $\sharp \alpha(G') < f(n, \alpha)$, and, if $\frac{n}{\alpha} < 2$, and u and v are distinct from the special cutvertex x_0 of $F(n, \alpha)$, then $\text{either }\alpha(G')<\alpha$ or $\alpha(G') = \alpha$ and $\sharp \alpha(G') < f(n, \alpha)$.

Proof. (i) If C_i has order n_i for i in $\{0, \ldots, \alpha - 1\}$, then

$$
\sharp \alpha(G) = (n_0 - 1) \prod_{k=1}^{\alpha-1} n_k + \prod_{k=1}^{\alpha-1} (n_k - 1) = \prod_{k=0}^{\alpha-1} n_k - \prod_{k=1}^{\alpha-1} n_k + \prod_{k=1}^{\alpha-1} (n_k - 1).
$$

In view of the desired statement, we may assume that the n_i are such that $\sharp \alpha(G)$ is as large as possible. By symmetry, we may assume $n_1 \geq \ldots \geq n_{\alpha-1}$. In order to complete the proof, it suffices to show that $n_0 \geq n_1$ and $n_{\alpha-1} \geq n_0 - 1$.

If $n_i = 1$ for some $i \in \{0, \alpha - 1\}$, then every maximum independent set in G contains the unique vertex, say u , in C_i . It follows that some neighbor, say v , of u belongs to no maximum independent set in G , and Lemma [3](#page-2-2) implies the desired statement. Hence, we may assume $n_0, n_{\alpha-1} \geq 2$.

First, we suppose that that $n_0 + 1 \leq n_1$. Moving one vertex from C_1 to C_0 results in a graph G' of order n and independence number α with

$$
\sharp \alpha(G') = n_0 \left(\frac{n_1 - 1}{n_1}\right) \prod_{k=1}^{\alpha-1} n_k + \left(\frac{n_1 - 2}{n_1 - 1}\right) \prod_{k=1}^{\alpha-1} (n_k - 1)
$$

=
$$
\prod_{k=0}^{\alpha-1} n_k - n_0 \prod_{k=2}^{\alpha-1} n_k + \prod_{k=1}^{\alpha-1} (n_k - 1) - \prod_{k=2}^{\alpha-1} (n_k - 1).
$$

Since

$$
\sharp \alpha(G') - \sharp \alpha(G) = \prod_{k=1}^{\alpha-1} n_k - n_0 \prod_{k=2}^{\alpha-1} n_k - \prod_{k=2}^{\alpha-1} (n_k - 1)
$$

$$
= (n_1 - n_0) \prod_{k=2}^{\alpha - 1} n_k - \prod_{k=2}^{\alpha - 1} (n_k - 1)
$$

> 0,

 \Box

we obtain a contradiction to the choice of the n_i .

Next, we suppose that $n_{\alpha-1} \leq n_0 - 2$. Moving a vertex from C_0 to $C_{\alpha-1}$ results in a graph G' of order n and independence number α with

$$
\sharp \alpha(G') = (n_0 - 1) \frac{(n_0 - 2)(n_{\alpha - 1} + 1)}{(n_0 - 1)n_{\alpha - 1}} \prod_{k=1}^{\alpha - 1} n_k + \left(\frac{n_{\alpha - 1}}{n_{\alpha - 1} - 1}\right) \prod_{k=1}^{\alpha - 1} (n_k - 1).
$$

Since $\frac{(n_0-2)(n_{\alpha-1}+1)}{(n_0-1)n_{\alpha-1}}>1$ and $\frac{n_{\alpha-1}}{n_{\alpha-1}-1}>1$, we obtain $\sharp\alpha(G')>\sharp\alpha(G)$, which is a contradiction to the choice of the n_i , and completes the proof of (i).

(ii) We leave the simple proof of this to the reader.

We proceed to the proof of our main result.

Proof of Theorem [2.](#page-2-1) Suppose, for a contradiction, that the theorem fails, and that n is the smallest order of a counterexample G_0 , which has independence number α . Since the result is easily verified for $n \leq 5$ or $\alpha = 1$, we may assume that $n \geq 6$ and $\alpha \geq 2$. Furthermore, we may assume that the connected graph G_0 maximizes $\sharp \alpha(G_0)$ among all connected graphs of order n and independence number α . Since G_0 is a counterexample, we have

- either $\sharp \alpha(G_0) > f(n, \alpha)$
- or $\sharp \alpha(G_0) = f(n, \alpha)$ but $G_0 \notin \mathcal{F}(n, \alpha)$.

For the rest of the proof, let the vertex x of G_0 maximize $\sharp \alpha(G_0, x)$, that is, x is contained in the maximum number of maximum independent sets in G_0 . Let the set N be the closed neighborhood $N_{G_0}[x]$ of x in G_0 .

Applying the so-called Moon-Moser operation, we recursively construct a finite sequence of graphs

$$
G_0,\ldots,G_k
$$

such that, for every $i \in \{0, 1, \ldots, k\},\$

- G_i is a connected graph with vertex set $V(G_0)$,
- $N_{G_i}[x] = N$,
- G_i has independence number α ,
- $\sharp \alpha(G_i) = \sharp \alpha(G_0)$, and
- $\sharp \alpha(G_0, x) = \sharp \alpha(G_i, x) \geq \sharp \alpha(G_i, u)$ for every vertex $u \in N$.

Trivially, G_0 has all these properties.

Now, suppose that G_{i-1} has been constructed for some positive integer i, and that N contains a vertex y_i such that y_i is not a cutvertex of G_{i-1} , and $N_{G_{i-1}}[y_i] \neq N$. In this case, we construct a further graph G_i in the sequence by removing all edges incident with y_i in G_{i-1} , and adding new edges between y_i and all vertices of $N \setminus \{y_i\}$, that is, we turn y_i into a true twin of x. If no such vertex exists, the sequence terminates with G_{i-1} .

Since G_{i-1} is connected, and y_i is not a cutvertex of G_{i-1} , the graph G_i is connected. By construction, $N_{G_i}[x] = N_{G_{i-1}}[x] = N$. Since a maximum independent set in G_{i-1} that contains x is also an independent set in G_i , we have $\alpha(G_i) \geq \alpha$. If some independent set I in G_i contains more than α vertices, then I necessarily contains y_i , and no other vertex from $N = N_{G_i}[y_i] = N_{G_{i-1}}[x]$, which implies the contradiction that $(I \setminus \{y_i\}) \cup \{x\}$ is an independent set in G_{i-1} with more than α elements. Hence, G_i has independence number α . By construction,

$$
\sharp \alpha(G_i) = \sharp \alpha(G_{i-1}) - \sharp \alpha(G_{i-1}, y_i) + \sharp \alpha(G_{i-1}, x) \geq \sharp \alpha(G_{i-1}) = \sharp \alpha(G_0),
$$

and the choice of G_0 implies $\sharp \alpha(G_i) = \sharp \alpha(G_0)$. Similarly, by construction,

$$
\sharp \alpha(G_i, x) = \sharp \alpha(G_{i-1}, x) = \sharp \alpha(G_0, x) \quad \text{and} \quad \sharp \alpha(G_i, y_i) = \sharp \alpha(G_i, x).
$$

Now, let $u \in N \setminus \{x, y_i\}$. Since every independent set in G_i that contains u does not contain y_i , it is also an independent set in G_{i-1} , which implies

$$
\sharp \alpha(G_i, u) \leq \sharp \alpha(G_{i-1}, u) \leq \sharp \alpha(G_{i-1}, x) = \sharp \alpha(G_0, x) = \sharp \alpha(G_i, x).
$$

Altogether, we established the desired properties for G_i .

The final graph in the sequence G_k has the additional property that $N_{G_k}[y] = N$ for every vertex y in N that is not a cutvertex of G_k . Let the graph G arise from G_k by removing iteratively as long as possible one by one edges between N and $V(G_0) \backslash N$ such that the resulting graph remains connected, and still has independence number α . Since the independence number does not change, we obtain $\sharp \alpha(G) \geq \sharp \alpha(G_k) = \sharp \alpha(G_0)$, and the choice of G_0 implies

$$
\sharp \alpha(G) = \sharp \alpha(G_0),
$$

that is, the removal of the edges in $E(G_0)\backslash E(G)$ does not lead to any new maximum independent set.

Claim 1. G is isomorphic to a graph in $\mathcal{F}(n,\alpha)$.

Proof of Claim [1.](#page-5-0) If some vertex of G is contained in no maximum independent set in G , then, by Lemma [3,](#page-2-2) $f(n, \alpha) \geq \sharp \alpha(G) = \sharp \alpha(G_0) \geq f(n, \alpha)$, which implies $\sharp \alpha(G) = f(n, \alpha)$. Again by Lemma [3,](#page-2-2) we obtain $G \in \mathcal{F}(n, \alpha)$. Hence, we may assume that

every vertex of G belongs to some maximum independent set in G.

Let B be the set of cutvertices of G in N. Note that the set $N \setminus B$ contains x, and that all vertices in $N \setminus B$ are true twins of x. Since G is connected, x is contained in some maximum independent set in G, and $\alpha \geq 2$, the set B is not empty. A component C of $G - N$ for which only one vertex y in B has neighbors in $V(C)$ is a private component of y. Since every vertex in B is a cutvertex, every such vertex has at least one private component.

In order to complete the proof of Claim [1,](#page-5-0) we insert two further claims.

Claim 2. There is a vertex y in B, and a private component C of y such that C has order at least 2, and y has exactly one neighbor in $V(C)$.

Proof of Claim [2.](#page-6-0) First, we assume that there is a vertex y in B as well as a private component C of y such that C has order at least 2. In view of the desired statement, we may assume that y has more than one neighbor in $V(C)$. Let z be a neighbor of y in $V(C)$. Since yz is not a bridge in G, the construction of G implies that $G - yz$ has an independent set I of order $\alpha + 1$. Clearly, the set I contains y and z. If y is the only vertex of B in I, than $(I \setminus \{y\}) \cup \{x\}$ is an independent set in G of order $\alpha + 1$, which is a contradiction. Hence, I contains more than one vertex from B. If, for every vertex y' in $(I \cap B) \setminus \{y\}$, there is some private component C' of y' such that $|I \cap C'| < \alpha(C')$, then the union of $\{x\}$ and maximum independent sets in the components of $G - N$ is an independent set in G that is at least as large as I, which is a contradiction. Hence, there is some vertex y' in $(I \cap B) \setminus \{y\}$ such that $|I \cap C'| = \alpha(C')$ for every private component C' of y'. Let C' be a private component of y'. Since $y' \in I$ and I intersects $V(C')$, the component C' has order at least 2. Since $y' \in I$, and $|I \cap C'| = \alpha(C')$, the removal of an edge between y' and a vertex in C' does not increase the independence number. Therefore, by the construction of G , the vertex y' has exactly one neighbor in C' , and the desired statement follows for y' and C' .

Next, we assume that all private components have order exactly 1. Since every vertex of G belongs to some maximum independent set in G , there is a maximum independent set I in G that intersects B. Now, if I contains a vertex y from B, then I contains no vertex from any private component of y. Therefore, removing from I all vertices from B, and adding x as well as all vertices of all private components yields an independent set in G that is larger than I , which is a contradiction. This completes the proof of Claim [2.](#page-6-0) \Box

For the rest of the proof, let $y \in B$, and a private component C of y be as in Claim [2.](#page-6-0) Let z be the unique neighbor of y in C .

Claim 3. The graph G has a cutvertex y' such that

- $G y'$ has exactly two components C' and C'' ,
- \bullet C' is a clique,
- y' is adjacent to every vertex of C' , and
- y' has exactly one neighbor in C'' .

Proof of Claim [3.](#page-6-1) If $\alpha(C) = 1$, then $y' = z$ has the desired properties. Hence, we may assume that $\alpha(C) \geq 2$.

First, we assume that $\alpha(C) + \alpha(G - V(C)) > \alpha$, which implies that every maximum independent set in G contains either y or z, but, trivially, not both. Since y and z both have degree at least 2, and $q(n, \alpha)$ is increasing in n, we obtain

$$
\sharp \alpha(G) = \sharp \alpha(G - N_G[y]) + \sharp \alpha(G - N_G[z]) \leq 2g(n - 3, \alpha - 1).
$$

Let the connected graph G' of order n and independence number α arise from $G(n-3, \alpha-1)$ by adding a clique K of order 3, and edges between one vertex in K and one vertex in each component of $G(n-3, \alpha-1)$. If $\frac{n-3}{\alpha-1} \geq 2$, then every component of $G(n-3, \alpha-1)$ has order at least 2, which implies that G' has strictly more than $2g(n-3, \alpha-1)$ maximum independent sets. In this case, Lemma [4](#page-3-0) implies the contradiction

$$
\sharp \alpha(G) \le 2g(n-3, \alpha - 1) < \sharp \alpha(G') \le f(n, \alpha).
$$

If $\frac{n-3}{\alpha-1} < 2$, then $\sharp \alpha(G') = 2g(n-3, \alpha-1)$, because one component of $G(n-3, \alpha-1)$ has order 1. Since K has order 3, Lemma [4](#page-3-0) implies $\sharp \alpha(G') < f(n, \alpha)$, that is, also in this case we obtain the contradiction

$$
\sharp \alpha(G) < f(n, \alpha).
$$

Hence, we may assume that $\alpha(C) + \alpha(G - V(C)) = \alpha$.

Let I_y and I_z be maximum independent sets in G that contain y and z, respectively. Clearly,

$$
|I_y \cap V(C)| \leq \alpha(C),
$$

\n
$$
|I_z \cap V(C)| \leq \alpha(C),
$$

\n
$$
|I_y \cap (V(G) \setminus V(C))| \leq \alpha(G - V(C)),
$$
 and
\n
$$
|I_z \cap (V(G) \setminus V(C))| \leq \alpha(G - V(C)).
$$

Since $|I_y| = |I_z| = \alpha = \alpha(C) + \alpha(G - V(C))$, these four inequalities all hold with equality, that is, C has a maximum independent set containing z and another one not containing z, and $G - V(C)$ has a maximum independent set containing y and another one not containing y.

By Theorem [1,](#page-2-0) and the choice of n , we obtain

$$
\alpha(C - z) = \alpha(C)
$$

\n
$$
\alpha(G - (V(C) \cup \{y\})) = \alpha(G - V(C))
$$

\n
$$
1 \leq \sharp \alpha(C - z) < \sharp \alpha(C), \tag{1}
$$

$$
\sharp \alpha \big(G - (V(C) \cup \{y\})\big) \le g(n - n(C) - 1, \alpha - \alpha(C)), \text{ and } (2)
$$

$$
\sharp \alpha(G - V(C)) = \sharp \alpha(G - (V(C) \cup \{y\})) + \sharp \alpha(G - V(C), y)
$$

\n
$$
\leq f(n - n(C), \alpha - \alpha(C)). \tag{3}
$$

By [\(1\)](#page-7-0), the linear program

max
\n
$$
\sharp \alpha(C-z) \cdot r + \sharp \alpha(C) \cdot s
$$
\n
$$
s \leq g(n-n(C)-1, \alpha - \alpha(C))
$$
\n
$$
r+s \leq f(n-n(C), \alpha - \alpha(C))
$$
\n
$$
r, s \geq 0
$$

has the unique optimal solution

$$
r = f(n - n(C), \alpha - \alpha(C)) - g(n - n(C) - 1, \alpha - \alpha(C))
$$
 and
\n
$$
s = g(n - n(C) - 1, \alpha - \alpha(C))).
$$

Since x belongs to some maximum independent set in G, we have $\alpha(G - y) = \alpha(G)$, and using [\(2\)](#page-7-0) and [\(3\)](#page-7-0) as well as the unique optimal solution of the above linear program, we obtain

$$
\sharp \alpha(G) = \sharp \alpha(G, y) + \sharp \alpha(G - y)
$$

\n
$$
= \sharp \alpha(C - z) \cdot \sharp \alpha(G - V(C), y) + \sharp \alpha(C) \cdot \sharp \alpha(G - (V(C) \cup \{y\}))
$$

\n
$$
\leq \sharp \alpha(C - z) \cdot \Big(f(n - n(C), \alpha - \alpha(C)) - g(n - n(C) - 1, \alpha - \alpha(C)) \Big) \tag{4}
$$

\n
$$
+ \sharp \alpha(C) \cdot g(n - n(C) - 1, \alpha - \alpha(C)),
$$

with equality in [\(4\)](#page-8-0) if and only if [\(2\)](#page-7-0) and [\(3\)](#page-7-0) hold with equality. By Theorem [1,](#page-2-0) and the choice of n, this implies that (4) holds with equality if and only if

- (i) $G (V(C) \cup \{y\})$ is isomorphic to $G(n n(C) 1, \alpha \alpha(C))$, and
- (ii) $G V(C)$ is isomorphic to a graph in $\mathcal{F}(n n(C), \alpha \alpha(C)).$

If (i) or (ii) fails, then [\(4\)](#page-8-0) is a strict inequality. In this case, replacing $G - V(C)$ within G by $F(n-n(C), \alpha-\alpha(C))$, and adding a bridge between the special cutvertex x_0 of $F(n-n(C), \alpha-\alpha(C))$ $\alpha(C)$) and the vertex z of C, yields a connected graph G' of order n and independence number α such that $\sharp \alpha(G')$ equals the right hand side of [\(4\)](#page-8-0). Now, $\sharp \alpha(G_0) = \sharp \alpha(G) < \sharp \alpha(G')$, which contradicts the choice of G_0 . Altogether, we obtain that (i) and (ii) hold.

If $G-V(C)$ is isomorphic to C_5 , then the neighbor of x distinct from y is neither a cutvertex of G nor a true twin of x, which is a contradiction. Hence, $G-V(C)$ is not isomorphic to C_5 . If $\alpha-\alpha(C) = 1$, then $G-V(C)$ is a clique of order at least 2, and $y' = y$ has the desired properties. Hence, we may assume that $\alpha - \alpha(C) \geq 2$. By (i) and (ii), the vertex y is the special cutvertex x_0 of $G - V(C)$. If $\frac{n - n(C)}{\alpha - \alpha(C)} < 2$, then no maximum independent set of $G - V(C)$ contains y, which implies the contradiction that no maximum independent set of G contains y . Hence, we may assume that $\frac{n-n(C)}{\alpha-\alpha(C)} \geq 2$. Now, (ii) implies the existence of a bridge yy' in $G - V(C)$ such that y' has the desired properties. This completes the proof of Claim [3.](#page-6-1) \Box

We are now in a position to complete the proof of Claim [1.](#page-5-0)

For the rest of the proof, let y' and C' be as in Claim [3.](#page-6-1) Let $n' = n(C')$, and let x' be the unique neighbor of y' outside of C'. Since y' and each vertex in C' belongs to some maximum independent set in G , we obtain

$$
\alpha(G - y') = \alpha,
$$

\n
$$
\alpha(G - (V(C') \cup \{y'\})) = \alpha - 1, \text{ and}
$$

\n
$$
\alpha(G - N_G[y']) = \alpha - 1.
$$

Now, Theorem [1](#page-2-0) and the choice of n imply

$$
\sharp \alpha(G) = \sharp \alpha(G, y') + \sharp \alpha(G - y')
$$

=
$$
\sharp \alpha(G - N_G[y']) + n(C') \cdot \sharp \alpha(G - (V(C') \cup \{y'\}))
$$

$$
\leq g(n - n' - 2, \alpha - 1) + n' \cdot f(n - n' - 1, \alpha - 1).
$$
 (5)

By Theorem [1](#page-2-0) and Lemma [4,](#page-3-0) the right hand side of [\(5\)](#page-9-0) is an upper bound on the number of maximum independent sets of a suitable connected graph of order n and independence number α whose structure is as in Lemma [4\(](#page-3-0)i). By Lemma [4,](#page-3-0) this implies

$$
g(n - n' - 2, \alpha - 1) + n' \cdot f(n - n' - 1, \alpha - 1) \le f(n, \alpha).
$$
 (6)

Since $\sharp \alpha(G) = \sharp \alpha(G_0) \geq f(n, \alpha)$, it follows that $\sharp \alpha(G) = f(n, \alpha)$, and [\(5\)](#page-9-0) and [\(6\)](#page-9-1) hold with equality. We obtain

$$
\sharp \alpha(G - N_G[y']) = g(n - n' - 2, \alpha - 1) \text{ and}
$$

$$
\sharp \alpha(G - (V(C') \cup \{y'\})) = f(n - n' - 1, \alpha - 1),
$$

which, by Theorem [1](#page-2-0) and the choice of n , imply that

(i) $G - N_G[y']$ is isomorphic to $G(n - n' - 2, \alpha - 1)$ and

(ii) $G - (V(C') \cup \{y'\})$ is isomorphic to a graph in $\mathcal{F}(n - n' - 1, \alpha - 1)$.

By (i), the graph $G - (V(C') \cup \{y'\})$ can not be isomorphic to C_5 .

If $\alpha = 2$, then G arises by adding a bridge between two disjoint cliques, and Lemma [4](#page-3-0) implies that G is isomorphic to a graph in $\mathcal{F}(n,\alpha)$.

If $\alpha \geq 3$, then (i) and (ii) together imply that x' is the special cutvertex x_0 of $G - (V(C') \cup$ $\{y'\}$). Now, the construction of G from G_k , and Lemma [4](#page-3-0) imply that G is isomorphic to a graph in $\mathcal{F}(n,\alpha)$. This complete the proof of Claim [1.](#page-5-0) \Box

If $\frac{n}{\alpha} \geq 2$, then no edge can be added to G without reducing $\alpha(G)$ or $\sharp \alpha(G)$, which implies that $G_k = G$ in this case. If $\frac{n}{\alpha} < 2$, then the only edges that can be added to G without reducing $\alpha(G)$ or $\sharp \alpha(G)$, are incident with the special cutvertex x_0 of G. Altogether, it follows in both cases that G_k is isomorphic to a graph in $\mathcal{F}(n, \alpha)$.

Since G_0 is a counterexample, we have $k \geq 1$.

First, we assume that $\frac{n}{\alpha} \geq 2$. This implies that G_k is isomorphic to $F(n, \alpha)$. Let $C_0, \ldots, C_{\alpha-1}$ and $x_0, \ldots, x_{\alpha-1}$ be as in the definition of $F(n, \alpha)$. Note that x and y_k are true twins and no cutvertices of G_k , and, hence, belong to the same clique, say C_i . If $C_i \subseteq N_{G_{k-1}}[y_k]$, then G_{k-1} arises from G_k by adding edges incident with y_k , which implies the contradiction $\sharp \alpha(G_{k-1})$ $\sharp\alpha(G_k)$. If $C_j \subseteq N_{G_{k-1}}[y_k]$ for some $j \in \{0,\ldots,\alpha-1\} \setminus \{i\}$, that is, G_{k-1} is a supergraph of a graph as in Lemma [4,](#page-3-0) then Lemma [4](#page-3-0) implies that G_{k-1} is isomorphic to $F(n, \alpha)$, which implies the contradiction that y_k is not adjacent to x in G_{k-1} . Since $\alpha(G_k) = \alpha(G_{k-1})$, the structure of $F(n, \alpha)$ easily implies that

$$
N_{G_{k-1}}[y_k] \cap C_0 = C_0 \setminus \{x_0\} \text{ and}
$$

\n
$$
N_{G_{k-1}}[y_k] \cap C_j = C_j \setminus \{x_j\} \text{ for some } j \in \{1, \ldots, \alpha - 1\} \text{ such that } i \in \{0, j\}.
$$

Similarly as in Lemma [4,](#page-3-0) we have

$$
\sharp \alpha(G_k) = (n_0 - 1) \prod_{k=1}^{\alpha - 1} n_k + \prod_{k=1}^{\alpha - 1} (n_k - 1),
$$

where n_k is the order of C_k for $k \in \{0, \ldots, \alpha - 1\}.$

If $i = 0$, then, considering the maximum independent sets of G_{k-1} that contain neither x_0 nor y_k , those that contain x_0 but not y_k , those that contain y_k but not x_0 , and that contain x_0 and y_k , we obtain

$$
\sharp \alpha(G_{k-1}) \leq (n_0 - 2) \prod_{k=1}^{\alpha-1} n_k + \prod_{k=1}^{\alpha-1} (n_k - 1) + \frac{1}{n_j} \prod_{k=1}^{\alpha-1} n_k + \frac{1}{n_j - 1} \prod_{k=1}^{\alpha-1} (n_k - 1)
$$

=
$$
\sharp \alpha(G_k) + \frac{1}{n_j} \prod_{k=1}^{\alpha-1} n_k + \frac{1}{n_j - 1} \prod_{k=1}^{\alpha-1} (n_k - 1) - \prod_{k=1}^{\alpha-1} n_k.
$$

Since either $\alpha \geq 3$ and $n_k \geq 2$ for every $k \in \{0, \ldots, \alpha-1\}$, or $\alpha = 2$ and $n_1 \geq 3$, this implies the contradiction $\sharp \alpha(G_{k-1}) < \sharp \alpha(G_k)$.

If $i = j$, then we obtain

$$
\sharp \alpha(G_{k-1}) \leq (n_0 - 1) \frac{(n_j - 1)}{n_j} \prod_{k=1}^{\alpha-1} n_k + \frac{(n_j - 2)}{(n_j - 1)} \prod_{k=1}^{\alpha-1} (n_k - 1) + \frac{1}{n_j} \prod_{k=1}^{\alpha-1} n_k
$$

+
$$
\frac{1}{n_j - 1} \prod_{k=1}^{\alpha-1} (n_k - 1)
$$

=
$$
\sharp \alpha(G_k) - \frac{n_0 - 1}{n_j} \prod_{k=1}^{\alpha-1} n_k + \frac{1}{n_j} \prod_{k=1}^{\alpha-1} n_k.
$$

Since, in this case, we have $x, y_k, x_j \in C_j$, we obtain $n_0 \geq n_j \geq 3$, which implies the contradiction $\sharp\alpha(G_{k-1}) < \sharp\alpha(G_k)$.

Next, we assume that $\frac{n}{\alpha} < 2$. This implies that G_k arises from $F(n, \alpha)$ by adding edges incident with the special cutvertex x_0 of $F(n, \alpha)$. Since x and y_k are true twins and no cutvertices of G_k , was may assume, by symmetry, that $C_1 = \{x, y_k\}$, and that x_0 is adjacent to x and y_k . Since y_k is a neighbor of x in G_{k-1} , the graph G_{k-1} arises from $F(n, \alpha)$ by adding an edge between y_k and some vertex distinct from x_0 , which easily implies the contradiction $\sharp\alpha(G_{k-1}) < \sharp\alpha(G_k).$

 \Box

This completes the proof.

References

- [1] T. Derikvand and M.R. Oboudi, On the number of maximum independent sets of graphs, Transactions on Combinatorics 3 (2014) 29-36.
- [2] J.R. Griggs, C.M. Grinstead, and D.R. Guichard, The number of maximal independent sets in a connected graph, Discrete Mathematics 68 (1988) 211 - 220.
- [3] M.-J. Jou and G.J. Chang, The number of maximum independent sets in graphs, Taiwanese Journal of Mathematics 4 (2000) 685-695.
- [4] E. Mohr and D. Rautenbach, On the maximum number of maximum independent sets, [arXiv:1805.02519.](http://arxiv.org/abs/1805.02519)
- [5] J.W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics 3 (1965) 23-28.
- [6] B.E. Sagan and V.R. Vatter, Maximal and maximum independent sets in graphs with at most r cycles. Journal of Graph Theory 53 (2006) 283-314.
- [7] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Matematikai és Fizikai Lapok 48 (1941) 436-452.
- [8] J. Zito, The structure and maximum number of maximum independent sets in trees, Journal of Graph Theory 15 (1991) 207-221.
- [9] A.A. Zykov, On some properties of linear complexes, Matematicheski˘ı Sbornik. Novaya Seriya 24(66) (1949) 163-188.