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Abstract
We describe the development of new force fields for protein side chain modeling called OSCAR
(Optimized Side Chain Atomic eneRgy). The distance-dependent energy functions (OSCAR-d)
and side-chain dihedral angle potential energy functions were represented as power and Fourier
series, respectively. The resulting 802 adjustable parameters were optimized by discriminating the
native side chain conformations from non-native conformations, using a training set of 12000
side-chains for each residue type. In the course of optimization, for every residue, its side chain
was replaced by varying rotamers, whereas conformations for all other residues were kept as they
appeared in the crystal structure. Then the OSCAR-d were multiplied by an orientation dependent
function to yield OSCAR-o. 1087 parameters of the orientation-dependent energy functions
(OSCAR-o) were optimized by maximizing the energy gap between the native conformation and
subrotamers calculated as low energy by OSCAR-d. When OSCAR-o with optimized parameters
were used to model side chain conformations simultaneously for 218 recently released protein
structures, the prediction accuracies were 88.8% for χ1, 79.7% for χ1+2, 1.24 Å overall RMSD
(root mean square deviation), and 0.62 Å RMSD for core residues, respectively, compared with
the next-best performing side-chain modeling program which achieved 86.6% for χ1, 75.7% for
χ1+2, 1.40 Å overall RMSD, and 0.86 Å RMSD for core residues, respectively. The continuous
energy functions obtained in this study are suitable for gradient-based optimization techniques for
protein structure refinement. A program with built-in OSCAR for protein side chain prediction is
available for download at http://sysimm.ifrec.osaka-u.ac.jp/OSCAR/.

Introduction
Tertiary structural information is critical for our understanding of a protein’s biological
function. However, experimental structure determination is far too expensive and time
consuming to be applied to all proteins of interest. Computational approaches are thus
expected to play a major role in determining protein structures in the future.1 Over the last
two decades, great strides have been made in exploiting distant evolutionary relationships to
known structures in order to derive spatial restraints for comparative models.2–4 One of the
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remaining major challenges is in the refinement of such models to near experimental
accuracy.5 This challenge, in turn, demands the development of more accurate force fields
that can be deployed in molecular mechanics simulations.

Physiochemical force fields such as CHARMM,6 AMBER,7 and GROMOS,8 parameterized
for use in protein simulations, are routinely applied to the refinement of comparative
models. However, overall improvement in the accuracy of comparative models by such
methods has not been achieved.5 Knowledge-based potential energy functions are derived
from either statistical analysis of observed protein structures9–16 or optimization of
parameters such that native structures are discriminated from non-native decoys.17–20 They
usually outperform9,21 physiochemical force fields that lack some physical terms such as
cation-π interactions and entropic effects. However, the discrete nature of statistical energy
functions makes it difficult to be employed directly in energy minimization or molecular
dynamics for protein-structure refinement. Moreover, most knowledge-based energy
functions derived from parameter optimization are coarse-grained (i.e., at the residue-level
or using simplified side chains) in order to minimize the number of adjustable parameters.
Parameter optimization was considered inappropriate to derive distance-dependent energy
functions of all atom types,13 not to mention orientation dependence. Thus, it is more
practical to optimize a small number of weights for mixing physiochemical terms with
statistics-based potentials.22,23 As more and more experimental protein structures become
available, knowledge-based potential energy functions derived from parameter optimization
may prove optimal even for all-atom force fields.

Any complicated function, including the force fields between atoms in a protein, can be
decomposed as a mathematical series. For example, power-series expansions of a diatomic
potential energy function are the most useful means for its analytical representation in
quantum chemistry.24 Miyazawa and Jernigan employed series expansions of spherical
harmonic functions to represent the fully anisotropic distribution of the relative orientation
of two residues and increased the discrimination power in fold recognition.25 Here, we
expanded atomic force fields as series. The parameters were optimized by maximizing the
gap between native and non-native side-chain conformations and by minimizing the root
mean square deviation (RMSD) of low-energy rotamers. A total of 5798 non-homologous
proteins were used for optimizing 1889 parameters. The energy functions with optimized
parameters were used to predict side chain conformations for 218 independent test proteins.
The prediction accuracies of χ1 and χ1+2 were improved by 2.2 and 4.0%, respectively,
compared to the next best side chain modeling program. Since the expansions used here are
continuous, the resulting energy functions can be used directly in gradient-based search
algorithms to address the comparative model refinement problem.

Methods
Training and test sets

30 non-homologous proteins are used as the first test set, as described previously.23 The
training proteins were chosen according to the following criteria: the sequence identity
between any two pairs was less than 30%, the resolution was less than 2.5 Å, and the R-
factor was less than 1.0. A total of 6254 chains that met the above criteria were downloaded
from the Dunbrack Lab website http://dunbrack.fccc.edu/PISCES.php in Jun, 2008. A
protein was discarded if more than 5% of its residues had incomplete side chain atomic
coordinates or the sequence identity with any of the 30 test proteins was more than 50%
following local alignment. As a result, the training set contains 5798 proteins. We also
compiled a second test set. A total of 5279 chains with sequence identity less than 30%,
resolution less than 2.0 Å, and R-factor less than 0.25 were downloaded from the Dunbrack
Lab website in Jun 2009. Those proteins were discarded if they met any of the following
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conditions: the same PDB ID as the 6254 protein chains downloaded in Jun 2008, more than
5% residues with incomplete side chain atomic coordinates, less than 100
residues(excluding Gly, Ala, and incomplete side chains) for the prediction accuracy
assessment, or a sequence identity of more than 50% with any of the other training proteins
following local alignment. This leads to the second test set of 218 proteins. Hydrogen atoms
were added with the REDUCE program for all protein structures.26

Rotamer library
The rotamer library is from Dunbrack and Cohen.27 We generate sub-rotamers by giving a
perturbation to each dihedral angle of the rotamer. (f1+f2+f3+f4+f5) ×σ is added to the
original dihedral angle. Here fi is a generated random number in the range of (−1,1) and σ is
the standard deviation of the dihedral angle included in the library. Bond lengths and angles
from Engh and Huber28 are used to build the rotamer library. Polar hydrogen atoms are
added since they are absent in the Dunbrack library and considered explicitly in this study.
Each χ2 for Ser and Thr and χ3 for Tyr(θ) are assigned three possible values: −60°, 60°, and
180°. The dihedral angle varies from θ − 30° to θ + 30° with even distribution for the
subrotamers.

Rotamer internal energy

(1)

where α is a dihedral angle of the side chain rotamer and t1–6 are optimized parameters. 258
parameters are used for the 43 dihedral angles of the 20 amino acids. The rotamer internal
energy is summarized over all dihedral angles of the modeled side chain. The interactions
between bonded atoms are not calculated. Atomic interaction energy beyond 1,4 interactions
are calculated as for typical non-bonded atoms.

Distance dependent energy function
The distance-dependent optimized side-chain atomic energy (OSCAR-d) is calculated by

(2)

where d is the distance between two atoms and a1–4 are optimized parameters. We define 16
atom types for 20 amino acids and employ a total 544 parameters. Atoms with a similar
charge and radius according to CHARMM are defined as the same type. The distance cutoff
is set to 10 Å for any two interacting atoms. The definition of the atom types can be found in
the supporting information.

Orientation dependent energy function
The orientation-dependent optimized side-chain atomic energy (OSCAR-o) is calculated by

(3)

where E(θ,ϕ,Ψ) is an orientation dependent function and C is a constant. θ, ϕ, and Ψ are Euler
angles of two interacting dipoles(Fig 1). The dipole points to the interacting atom from the
center of its base atoms. E(θ,ϕ,Ψ) is given by
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(4)

There are 1087 parameters including b1–9 in eq (4) and the constant C in eq (3) optimized
for 16 atom types(for sp2 hybridized atoms, the dipole is perpendicular to the hybridization
plane and the parameters for the related one order terms are set to 0 so that the calculated
energy is not affected by inversion of the dipole direction). Here, we assume the interaction
energy is comprised of a distance dependent term and an orientation dependent term. In
extreme case when E(θ,ϕ,Ψ) equals to 0 and C equals to 1, Eq (3) becomes a distance
dependent energy function only. We optimized the parameters(b1–9 and C) simultaneously
so that the interaction energy could be correctly calculated even if the distance dependent
term and the orientation dependent terms overlap somewhat.

Optimizing parameters for the distance dependent energy functions and dihedral angle
potential functions

The parameters are initialized with random values. The sum of Eq (1) and Eq (2) is used to
calculate energies for the native side chain conformation and rotamers at a specific position.
The side chain conformation of other residues is fixed at observed atomic coordinates.
Energies for 12000 residues from the training proteins are calculated for each of the 18
residue types (excluding Gly and Ala). Residues from high-resolution proteins are used with
a priority. Similar to our previous study,29 Monte Carlo simulation annealing is used to
optimize the parameters by minimizing the following objective function:

(5)

where N is the number of rotamers, E(r) is the energy of the native conformation r, E(i) is
the energy of rotamer i, and M is the total number of calculated residues
(18×12000=216000).

Optimizing parameters for orientation-dependent energy functions
Firstly, for each of the N backbone dependent rotamers at the modeled position, we generate
60 sub-rotamers and select the one with the lowest energy by the distance-dependent and
rotamer internal energy functions. The parameters of the orientation-dependent functions are
optimized so that the native conformation has a lower energy than the selected N sub-
rotamers by minimizing eq (5). The optimized parameters of the distance-dependent
functions are fixed during this procedure. The parameters of the rotamer internal energy
functions are initialized to previously optimized values and then re-optimized. For the
parameters of the orientation-dependent functions, b1–9 in eq (4) are initialized to 0 and C in
eq (3) is initialized to 1.

In the next step, we increase the number of residues used in training up to 40000 for each
residue type. For rare residue types such as Cys, Met, Trp, and His, less than 40000 residues
are used. Instead of eq (5), which is continuous and easy to minimize, the rmsd value of the
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sub-rotamer with the lowest energy is averaged over all training residues and adopted as the
objective function to minimize. For each modeled position, the lowest-energy sub-rotamer
calculated by the distance-dependent functions and the rotamer internal energy functions are
selected for 4 rotamers. Those with a relatively high energy are not used. Similarly, we
select 4 lowest-energy sub-rotamers calculated by the orientation-dependent functions with
parameters optimized in the first step. A total of 8 sub-rotamers are considered at each
position. The parameters are initialized to the same value as optimized in the first step. After
optimization, we employed the new parameters to select an additional 4 lowest-energy sub-
rotamers and optimize the parameters with 12 sub-rotamers at each modeled position. This
procedure is repeated 3 more times based on the observation that the results improve slightly
with each iterative optimization.

Predicting side chain conformation of a single residue
We do not use any information of the native side chain conformation. To predict the side
chain conformation, we generate 60 sub-rotamers for each rotamer and the sub-rotamer with
the lowest energy among 60N ones constitutes the prediction.

Side chain modeling of the whole protein
We predict side chain conformations of entire proteins by combing a genetic algorithm with
Monte Carlo(MC) simulation as follows: 1) generate a pool of 20 structures with the same
native backbone structure but with randomly initialized side chain conformations; 2)
exchange side chain conformations among those with lower energy values; 3) optimize side
chain conformations for all of the 20 protein structures by the Monte Carlo method; and 4)
repeat steps 2 and 3 for 30 cycles during which the MC simulation temperature decreases
after every cycle. The energy values of final 20 structures are compared and the structure
with the lowest energy is the predicted structure.

Evaluation
The methods for accuracy evaluation are similar to those described previously.23 Residues
with <20% solvent accessibility are considered as core residues. The χ1 angle of a residue is
correctly predicted if it is within 40° of the experimental value. The χ1+2 angle is correctly
predicted when both χ1 and χ2 are within 40° of their experimental values. For residues with
multiple side chain conformations in the observed structure, we compare withthe first
conformation in the PDB file only; other conformations are not considered. Residues with
incomplete side-chain atomic coordinates are modeled but not evaluated.

Results
Performance of distance-dependent energy functions and rotamer-dependent internal
energy functions

We decomposed atomic distance-dependent energy functions and dihedral angle potentials
as power and Fourier series, respectively. The parameters of the series were initially
assigned as random values. The MC-optimized objective function (Eq. 5) converged to
similar values (0.088~0.093) with different starting parameter values. As an example, Figure
2 shows the resulting optimized, distance-dependent component of the CH3-CH3 and H-H
interaction energy functions. CH3 (the terminal methyl carbon) and H (polar hydrogen from
non-charged residues) are 2 of the 16 defined atom types. The H-H interaction energy is
unfavorable in the range of 0~10 Å while the CH3-CH3 interaction has an attractive well
around 4 Å, similar to the Van der Waals energy. Table I tabulates the performance of the
optimized energy functions for the training and 30-protein test sets. The accuracies of χ1 and
χ1+2 are 90.3 and 81.3%, respectively, for the 30 test proteins. The accuracy is much higher
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for core residues (96.4% for χ1 and 92.5% for χ1+2). For different residue types, the
prediction accuracy varies significantly from the lowest (80.1% for Glu χ1 and 68.1% for
Glu χ1+2) to the highest (100% for Phe χ1 and 98.9% for Phe χ1+2). For core residues, the
prediction accuracy of the training proteins is slightly (approx 1% for χ1 or χ1+2) better than
for the 30 test proteins. However, the accuracies are nearly identical for the two sets of
proteins when both surface and core residues are included in the evaluation, implying that
the training set is sufficiently large, in spite of the large number of adjustable parameters.

Performance of orientation-dependent energy functions
The distance dependent energy functions are multiplied by an orientation-dependent factor.
The parameters of the orientation-dependent functions are optimized as described in
Methods and the performance is shown in Table I. For the 30 test proteins, the prediction
accuracies of χ1 and χ1+2 are further improved by 1.7 and 3.0%, respectively, compared to
the distance dependent energy functions. The improvement is mostly due to hydrophilic
residues that are responsible for specific interactions. For example, the prediction accuracies
of χ1 and χ1+2 for Asp increased significantly from 88.7 and 76.6% to 94.5 and 88.4%,
respectively. The χ1 accuracy of Cys also improved from 96.2 to 98.1%, due to the
orientation-dependent nature of the disulfide bridge. The prediction accuracy in χ1 and χ1+2
of the training set is slightly higher than that of the test set (Table I), indicating some degree
of over optimization

We compared our energy functions with the two most popular force fields, AMBER and
CHARMM, in order to predict side chain conformations of a single residue. This procedure
was already described by Wilson and co-workers30 and Petrella and co-workers31 to test
AMBER and CHARMM, respectively. We employed the same protein as Wilson and co-
workers (PDB identifier 2alp) and the 10 proteins of Petrella and co-workers, for
comparison. As shown in Table II, our results on single side-chain prediction are
significantly more accurate than those from the physics-based force fields despite the fact
that Petrella and co-workers have used native bond lengths and angles in their predictions.
Rather than using rotamers, Petrella and co-workers rotated χ1 and χ2 in native side-chains at
intervals of 5° or 10°, which made the prediction easier.

Side-chain modeling for whole proteins
We compared side chain modeling programs with built-in distance-dependent force
fields(OSCAR-d) and orientation-dependent force fields(OSCAR-o), respectively, to our
previous side chain modeling program LGA23 in Table III based on 30 test proteins. The χ1
accuracy of OSCAR-d is only slightly higher (0.5%) than LGA while the χ1+2 accuracy is
3.2% higher. The OSCAR-o has the highest accuracy (89.4% for χ1 and 80.8% for χ1+2)
among the three methods. The rmsd values of core residues in the current predictions are
much smaller than those of LGA, in part due to the use of the sub-rotamer model.

Comparison to other algorithms
To provide an additional test for our methods, we collected 218 recently released non-
homologous proteins (see Methods). Three side-chain modeling programs, NCN,32

OPUS_Rota,9 and LGA,23 with top prediction accuracy ranked by Lu and co-workers9 and
the recently updated SCWRL433 were compared. The prediction accuracy of OSCAR-d is
similar to other side chain modeling programs while significant improvement is achieved by
OSCAR-o. The accuracies of χ1 and χ1+2 are improved by 2.2 and 4.0%, respectively(Table
IV), compared to the next-best side-chain modeling program, OPUS_Rota. The
improvement for χ1 is remarkable considering the moderate improvement (2.9%) that
resulted from combining a knowledge-based term and multiple physics-based terms instead
of a simple Van der Waals energy.32 For the prediction of individual residue types, OSCAR-
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o has a higher accuracy than OPUS_Rota for χ1 and χ1+2 in all cases except Pro (Fig 3). We
also modeled side-chain conformations for additional 595 proteins. These proteins were
selected according to the same criteria as the 218 test proteins, but with the maximum
sequence identity to the training proteins in the range of 50.1% and 100.0%. The prediction
accuracy (88.8% for χ1 and 79.5% for χ1+2), is almost the same as that for the 218 proteins,
indicating that the results are not biased to proteins with a high sequence identity to the
training proteins.

Discussion
We have expanded energy functions as mathematical series and improved prediction
accuracy for side chain modeling. The energy functions were first expanded as distance
dependent power-series and further enhanced by an orientation dependent factor. The large
number of optimized parameters and training proteins is the main reason for its
performance. In previous study,23 we combined contact surface, volume overlap, backbone
dependency, electrostatic interactions, and desolvation energy; the weights of energy terms
were optimized in a manner similar to the current study with 15 training proteins. The
prediction accuracy was not improved when more proteins were used for training. Here, by
series expansion, more parameters are available for optimization, which makes it possible to
improve the prediction accuracy by using a huge number of training proteins. The lowest-
energy subrotamer model also plays a key role in optimizing the parameters for OSCAR-o.
We used OSCAR-d and the rotamer internal energy functions with optimized parameters to
select the subrotamer with the lowest energy out of 60 possible states for each rotamer at the
modeled position. The parameters of OSCAR-o were optimized so that the native
conformation had a lower energy than the selected lowest-energy subrotamers. If only one
sub-rotamer was generated and employed, i.e. OSCAR-d were not used to select the lowest
energy subrotamer, there was little improvement by OSCAR-o over OSCAR-d.

It takes approximately 15 CPU hours for OSCAR-o or NCN32 to model the side chain
conformations for the 30 test proteins. By comparison, OPUS_Rota9 or SCWRL433 takes 5
CPU minutes only. Both OPUS_Rota and SCWRL4 use rigid rotamers. As a result, all
rotamer-rotamer or rotamer-backbone interaction energies can be pre-calculated and
employed directly in modeling the whole protein. Using flexible rotamer model prohibits
OSCAR-o for employing the pre-calculated values. Nevertheless, our energy functions are
continuous and fast to calculate. In our future studies, we will explore more efficient
gradient-based search algorithms for modeling side chain conformations on a flexible
backbone.

We also expanded the series with different orders for the distance dependent energy
functions, Σai·d−2i (i=1,2,3…n). The accuracies of χ1 in predicting single residues were
85.0%(n=2), 89.6%(n=3), 90.3%(n=4), 90.1%(n=5), and 90.3%(n=6), respectively, for the
30 test proteins. The prediction accuracy was not improved by a higher order
expansion(n>4) and even lower(<85%) by expansions in a different manner(i=3,4 or i=1,4).
The Fourier series to calculate rotamer internal energy is expanded up to the third order
because the rotatable bonds are connected to at least one sp3 hybridized atom. The
prediction accuracy of χ1 decreased to 88.8% by one order expansion(t1×cosα+ t2×sinα). For
the orientation dependent functions, we tried a simpler formula(b1×cosθ + b2×cosϕ +
b3×cosΨ + C). The accuracy was the same as the eq (4) in predicting side chain
conformations for single residues. However, when the simple formula was used to model
side chain conformations for the whole protein, the accuracy was slightly decreased for the
218 test proteins(88.5% for χ1 and 79.1% for χ1+2). We preferred to using eq (4) in side
chain conformation search because the running time was reduced only 10% by using the
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simpler formula. Nevertheless, it may be appropriate to use this simpler formula if the
energy functions are used with gradient-based optimization methods in future.

Employing native conformations in generated sub-rotamers improves the prediction
accuracy. For 30-test proteins, the prediction accuracies of χ1 and χ1+2 for single-residue
conformations by OSCAR-o increase by 0.9 and 1.7%, respectively. On the other hand, the
prediction accuracy does not improve with more sampling (for example, generating 200 sub-
rotamers instead of 60 for each rotamer and excluding the native conformation). This
indicates that it is the energy function that limits the final accuracy.

In addition to energy functions and sampling techniques, other factors can affect the
prediction accuracy. The accuracy of OPUS_Rota in table IV is lower than the reported
values (89.0 for χ1 and 79.1% for χ1+2).9 This is mainly due to different evaluation methods.
For residues with multiple conformations, we only compared the predicted one with the first
conformation in the PDB file. In Lu and co-worker’s report, the predicted one was
considered to be correct if it satisfied any of the alternative positions. Using the same
evaluation method as this study, the prediction accuracy of OPUS_Roda decreased to 88.0%
for χ1 and 77.8% for χ1+2, respectively, for their 65 test proteins. In addition, the prediction
accuracy is protein dependent. For the same 65 test proteins, which also included our 30 test
proteins, OSCAR-o achieved a relatively high accuracy (90.0% for χ1 and 81.1% for χ1+2).
For the 43 small proteins, which were selected according to the same criteria as the 218 test
proteins, but with less than 100 evaluated residues, the prediction accuracy of OSCAR-o is
only 85.0% for χ1 and 73.4% for χ1+2. Nevertheless, the prediction accuracy for core
residues is still high (96.0% for χ1 and 92.0% for χ1+2). The decreased overall prediction
accuracy is mostly due to the relatively low percentage of core residues for these small
proteins.

Conclusion
Protein tertiary structure prediction is now more important than ever. But the prediction
accuracy is limited by the availability of high quality energy functions. A complicated
function, such as that describing the forces between atoms in a protein, can be decomposed
as a mathematical series even if we do not know the analytical form in detail. We derived
orientation dependent knowledge-based atomic force fields (OSCAR-o) by series
expansions. The solvation energy and entropic effect, which are of the most difficult items
to calculate, are not considered explicitly because the energy functions, in principle, include
all known or unknown interactions. The parameters were optimized by discriminating the
native side chain conformations from non-native conformations. When OSCAR-o were used
to predict side chain conformations for single residues, the prediction accuracy in χ1 and
χ1+2 was >5% higher than AMBER or CHARMM force fields. We also used OSCAR-o to
model side chain conformations of entire proteins. For 218 independent test proteins, the
prediction accuracy was significantly higher (2% for χ1 and 4% for χ1+2) than the next-best
performing side chain modeling program. Since OSCAR-o are continuous, accurate, and fast
to calculate, we expect a wide-range of applications in protein structure prediction and
protein design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Euler angles to define orientation dependent interaction demonstrated with O-H and C=O
interacting dipoles
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Fig 2.
The distance dependent interaction energies between CH3 and CH3 and between H and H.
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Fig 3.
Prediction accuracy of 218 test proteins for different residue types.
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