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Online social networks gained their popularity from relationships users can build with each other.
These social ties play an important role in asserting users’ behaviors in a social network. For
example, a user might purchase a product that his friend recently bought. Such phenomenon is
called social influence, which is used to study users’ behavior when the action of one user can affect
the behavior of his neighbors in a social network. Social influence is increasingly investigated
nowadays as it can help spreading messages widely, particularly in the context of marketing, to
rapidly promote products and services based on social friends’ behavior in the network. This
wide interest in social influence raises the need to develop models to evaluate the rate of social
influence. In this paper, we discuss metrics used to measure influence probabilities. Then, we
reveal means to maximize social influence by identifying and using the most influential users in a
social network. Along with these contributions, we also survey existing social influence models,
and classify them into an original categorization framework. Then, based on our proposed metrics,
we show the results of an experimental evaluation to compare the influence power of some of the
surveyed salient models used to maximize social influence. © 2013 Wiley Periodicals, Inc.

1. INTRODUCTION

Online social networks (OSNs) gained huge popularity since they were intro-
duced a decade ago. Millions of people tend to register and participate in OSNs such
as Facebook, LinkedIn, Flickr, MySpace, and Twitter. Facebook by itself accounted
for more than 800 million active users in 2011." These social networks have a great
impact on people’s lives at different levels, and in a variety of contexts. One use
of OSNs would be in reporting adversities and boost awareness about a situation,
especially in places that lack physical communication facilities, due, for example, to
nature disasters such as hurricanes and earthquakes, or simply political censorship.
People are increasingly using social networks to spread information during crisis
because these networks are handy and easy to use. Acar and Muraki” studied posts
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on Twitter (called tweets) two weeks after the devastating Tohoku earthquake that
resulted in the overwhelmingly destructive Tsunami in Japan during March 2011.
They found that people in the affected areas had a tendency to post tweets related to
their unsafe situation, while people in remote area post tweets to let their followers
know that they are safe. Another widespread use of OSNs occurred during political
protests in Tunisia and Egypt in January 2011, where massive antigovernmental
demonstrations forced dictatorships to fall. What is interesting in these events is that
social network bloggers did not use OSNs to advertise their webpages or encourage
people to write about their frustrations, but to engage people and motivate them into
taking actions not only online but in real world too, which illustrates the influential
power and impact of social networking.

In real-life context, an influencer is a person who is followed by many people
and has the power to make changes in a community. The same aspect would occur in
OSNs context, as they form a large social space where people are engaging together
to build relationships and expand their connections with others. These OSNs have
the same traits of real-life communications and many people thrive socially in OSNs
as they do in their real life. In past years, influential people were those who have
many friends. This idea evolved as influencers started not only to have many friends,
but also to actively engage their friendship community into actions. In current days,
many influencers drive discussion topics about a specific topic or brand.® This kind
of influence was the main building stone of the interest graph: a network of people
who are interested in each other’s content.* Interest graphs help brand making of
products and services by targeting powerful influential people in social networks.*

In this paper, we address social influence by evaluating different models used
to measure influence probability. Conceptually, OSNs are related to graph theory,’
computer science, and social science® fields. To study and analyze these networks
properly, a combination of these disciplines needs to be considered. Social networks
can be modeled as a graph that contains nodes representing members and edges
corresponding to the relationship type between the nodes (e.g., friendship). Social
networks analysis (SNA)’ can help tracing the sources and distribution of influence
power in social networks, based on the structure of the network. The influential
power of a user rises with his relationship among other influential users in the
network.

Sociologists studied in the past the power of a specific node in the network
by addressing the attributes of centrality using SNA such as degree, closeness,
and betweenness centralities.” Nodes with high degree, high closeness, and high
betweenness will have greater influence. Figure 1 shows a sample social network
graph and the edges between the nodes. The graph shows clusters and central nodes
that can be sources of great influential power when evaluating their social influence
probability. One drawback of measuring influence based on SNA is that centrality
is based on the structure of the network, while influence should be based on the
dynamics and changes that occur in the OSNs connections and links.

A better understanding of the evolution of social networks leads to a bet-
ter investigation of the community structure and social influence ® in these net-
works. The outcomes of this investigation helps in performing different activi-
ties around OSNs-based communities such as targeted advertisement, and items
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Figure 1. Social network diagram.

recommendation to OSNs users. Research works carried out in this area are few,
sparse, and span multiple disciplines. Besides our efforts to conglomerate the state-
of-the-art surrounding social influence in OSNs, we also evaluate different ap-
proaches and classify them to understand commonalities and distinguish differences,
to better maximize influence across OSNs.

The rest of this paper is organized as follows: Section 2 provides basic infor-
mation about social influence through defining influence concepts in OSNs context
and stating some related background. We then discuss some properties of social
networks, which are relevant to evaluate influence in OSNs. Section 3 provides a
survey on OSNs’ social influence related works through an original classification,
and then state the problem of measuring influence probability in OSNs. Section 4
reveals a comparison between the different social influence models as well as their
limitations, strength, and challenges. Section 5 shows an experiment to compare
the influence diffusion in OSNs based on the Linear Threshold and the Independent
Cascade propagation models.

2. BACKGROUND OF SOCIAL INFLUENCE

Social influence has been studied by sociologists and social psychologists since
the early years of the 20th century.’ It started in 1898, with the first experiment by
Norman Triplett on the phenomenon of social facilitation.!” This theory implies
that people tend to do well in the things they are good at when they are watched
by others.!? One of the main theories of social influence was proposed in 1950 by
Leon Festinger called Cognitive Dissonance Theory. The theory is related to how
the way of thinking can affect our behavior.!! In 1959, French and Raven discussed
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social power and provided formalization for the social influence concept.'? Research
reached more maturity in both theory and methods during the 1980’s and 1990’s.’

Social influence has been studied in different disciplines and has histori-
cal roots in sociology through studying opinion formation and the diffusion of
innovations;!*!* and economics, where social influence, represented as theoret-
ical models, shows how individuals are inclined to coordinate their economic
decisions.'> '® Recently, digital social influence research has started to attract more
attention due to the availability of many important applications. For example, com-
puter scientists developed models of social influence to support applications such
as viral marketing,'”"!” the spread of online news,?”?! and the growth of online
communities.??

2.1. Social Influence Definition

Sociologists defined social influence as a “change in an individual’s thoughts,
feelings, attitudes, or behaviors that results from interaction with another individual
or a group”.'? Social influence occurs when an individual changes his/her behavior
after interacting with other individuals who tend to be similar or superior.

Social influence involves social correlations, which are divided into three cat-
egories as follows:??

® Influence: where a user performs an action based on his friends’ recent actions. For
example, when a user purchases a product because one of his friends just bought or
recommended that product.

e Homophily: a user chooses friends who share the same characteristics;>*?* this leads to
perform the same actions. For example, two persons who have Xbox are more likely to
be friends due to the same interest.

® Confounding factors: or external influence that affects individuals who are located near
each other in the social network. One example would be when two users live in the
same city, which makes them perform the same activities like taking the same photos and
posting them with the same tags in an online photo-sharing network like Flickr.

Performing social influence across OSNs help diffusing different behaviors, ideas,
and new technologies. For example, a fashion company might provide coupons
to the most influential users in their social network in exchange of promoting a
new product. Different approaches were proposed to leverage social influence!®
considering the effect of influence on business returns growth.’® These efforts are
centered on the process of carefully choosing targets with high influential power as
a marketing strategy that leads to high acceptance of a certain product among users
of a social network. Social influence is becoming a complex and a subtle force that
governs the dynamics of all social networks. Given the high expected returns and
the induced complexity, there is a need for methods and techniques to analyze and
quantify social influence.

2.2. Properties Of OSNs

Rich properties and components of social networks paved the way for a better
analysis of individual user actions, leading to further profiling of users’ behavior
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in OSNs. Through their behaviors, people can influence other users to do specific
actions. This is a powerful process which can generate substantial revenues or incite
large-scale global actions. Social influence appears as a social correlation pattern
where the actions of a user can urge his or her friends to behave in the same way.?’

OSNs exhibit different properties which make it to study users’ actions that
could influence communities’ behaviors. The availability of rich interactions be-
tween users and the large data sets that result from such interactions facilitate social
influence analysis. To better understand social influence, we need to describe the
social network structure and introduce some properties, which are categorized as
follows:

Large scale: Each network has basic properties such as: network order, represented by the
number of nodes in the network; the size, that represents the number of edges in the network;
and the node degree, which represents the number of edges that are connected to a node.
OSNss are large-scale networks with high order and size that may reach millions, and having
users with very high degrees. For example, in Facebook, there are over 500 million nodes
with an average degree of 130." In Twitter, the nodes of celebrities such as Lady Gaga,
Justin Bieber, Britney Spears, and Ashton Kutcher have a degree of more than 6 millions.
LinkedIn has more than 90 million nodes, having a new user joining every second.?®
Network clustering: The idea of clusters or cliques is very common in social networks.
Clusters are groups of friends who know each other. This is related to the idea of “friend of
your friend is likely to be your friend”.?° The degree by which nodes are able to be clustered
together can be measured by the clustering coefficient. In general, the clustering coefficient
C is based on the number of closed triples in a network (i.e., a set of three nodes connected
to each other, “triangles”), and it can be calculated by the following equation:

C— 3 x number of triangles 0

" number of connected triples of vertices

For example, the clustering coefficient C for the network below can be measured
as follows:

a
Il
]
W | W

Power law degree distribution: The degree of a node represents the number of edges
connected to that node.’> A distribution function P(K) gives the probability that a selected
node at random has a degree K.> Plotting the P(K) function for a network generates a
histogram of degree distribution of nodes similar to the one shown in Figure 2. Note that the
distribution has a long right tail as shown in Figure 3. The long right tail indicates that in
social networks, most nodes have a low degree, whereas a small proportion of nodes known
as “hubs” have a high degree. And this is fairly true for social networks. Many studies®' 34
showed that OSNs follow the power law degree distribution.

Some of the above properties are common in complex networks, for example,
large scale and power law distribution. These OSNs properties are also used to
analyze issues pertaining to social influence. Another important property of OSNs
that is relevant to social influence analysis as well is the ability to retrieve OSNs data
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easily through APIs, while in real world social networks, a substantial physical effort
is needed to collect these data. Application Programming Interface (APIs) represent
a set of procedures that help in accomplishing a task or help in interacting with
different software components. Many of OSNs APIs are based on SOAP and REST
services. Such APIs contain functions for remote access that allow an easier retrieval
of information. The opportunity of data extraction and analysis in OSNs encouraged
an increased research affluence to model OSNs and their social influence strengths.

2.3. Basic Measurements of Influence Strength

Social networks are modeled as graphs G = (V, E), where V is the set of
nodes in the network and E is the set of edges. The nodes are related to the users and
the edges represent the relationships between these users in the network. Influence
strength can be related to a node or an edge in the network. For example, some
nodes in the network might have higher influence than other nodes. Let us say that
anode A has high influence and higher edge strength on node B; this high influence
will make node B behave similar to node A. Next we present the basic measures of
this strength on edge and node levels.
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2.3.1. Edge Strength

Edge or tie strength concept was introduced by Granovetter.>> On edge level
there are two different types of ties, strong ties and weak ties. The tie strength
depends on the number of overlapping friends or neighbors between two nodes.*
The larger the overlap the stronger the ties between the nodes. The strength between
two nodes A and B can be defined in terms of Jaccard coefficient as follows:*¢

S(A B)_M 2)
’ |na Ung |

where n4 and np are the neighbors of nodes A and B, respectively. There are other
measurements to determine the tie strength such as embeddedness discussed in
Ref. 37 Strong ties represent trust relationship between nodes or simply friendship,
whereas Weak ties occur between acquaintances when the friendship overlap is
small and restricted information is shared between the nodes such as private profiles,
hidden personal details and private posts.

2.3.2. Node Strength

The node importance in OSN is measured through centrality. Nodes with high
centrality have higher influence in the network than the nodes with less centrality
power. Here, we distinguish three levels of centrality: degree, betweenness, and
closeness.

Degree centrality is the number of ties that a node has.” In Figure 3, node Ali
has the highest degree centrality, because it is the node with the highest number of
ties or edges. This means that he is quite active in the network. However, he is not
necessarily the most influential person because he is only directly connected within
one degree to people in his clique—he has to go through Ahmed to get to other
cliques.

Betweenness centrality occurs when a node falls in a favored position between
two cliques in the network.” In Figure 4, Ahmed has the highest betweenness
because he is between Abdulla, Mohammed, and Saeed, who are between other
nodes. Abdulla, Mohammed, and Saeed have a lower betweenness because they are
essentially within their own cliques. So, Ahmed has potentially more influence in
the network. Betweenness represents a single point of failure—when the node with
the highest betweenness centrality is removed from the network, the ties between
cliques separate apart.

Closeness centrality measures how quickly a node can access more nodes in a
network.” In Figure 5, Abdulla and Mohammed have the highest closeness centrality
because they can reach more entities through shorter paths.

2.4. Social Influence Analysis

There are different considerations for modeling influence in social networks.
Edge and node strengths are typical attributes used to analyze influence in social
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networks. In addition, the followings are additional analytical considerations rele-
vant to social influence analysis:

® Multitopics: social influence will have different effects on different topics discussed in
the social network. For example, assume two neighbors A, specialized in data mining
and B, specialized in programming. A will have high influence on B when the topic is
related to data mining while B will have higher influence on A when the topic is related
to programming.

® User actions: considering user actions and past behaviors while measuring influence.

® Scalability: the number of nodes in OSNs increases rapidly. Therefore, there is a need to
develop methods that scale well with large data sets.?

As far as we know, a limited research has been proposed to study and compare
modeling techniques to contrast their limitations and challenges. In our paper, we
will address these social influence related contrasts and study them based on perfor-
mance metrics which we will introduce later. We also propose a categorization of
these models to classify them following some common features to distinguish their
tradeoffs in a single snapshot.
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3. SOCIAL INFLUENCE STRUCTURES AND MODELS

Some theoretical and empirical works have been performed to perceive users’
behavior when correlated to their friends’ attributes in a social network. Backstorm
et al.>> observed the process of joining an online community and they noticed a
correlation between a user joining an online community and the number of friends
who are in that community. In another study, Marlow et al.?® observed the tag usage
in Flickr. They noticed a correlation between the tags assigned by a user and those
assigned by his friends in his social network. These works provided evidence of
influence between users and their friends in OSNs.

The diffusion of influence can be modeled through probabilistic frameworks.>°
While a behavior is spreading through social network users, we need to estimate the
probability that a particular individual will embrace the new behavior, given that k
of his/her neighbors in the social network have done so. Neighbors refer to people
who have a direct edge or tie between them in OSNs. At any point in time ¢, users
would be “adopters” or “nonadopters” of the behavior based on whether they adopt
the new behavior at that time.*

The properties of social networks enable evaluation of probabilities of users’
behaviors in social networks, especially when those behaviors are spread over large
populations. For example, the probability of a person to purchase a product given
that k of his or her friends recommended that product.'® Another example would
be the probability of joining an online community as a function of the number k of
neighbors belonging to the community. 40

If we have a social network with an intention to influence the individual users
of this network as we want to introduce a new product, then a viral marketing
strategy could start by targeting the most influential users in the network. This will
generate a chain reaction of influence-driven advertisement campaign. By applying
this method, reaching a very large portion of the network would occur with very
small marketing costs.

3.1. Social Influence Structure

The problem of influence maximization can be expressed as follows: “given
a network with influence estimates, how to select an initial set of k users such that
they eventually influence the largest number of users in the social network”.*!

This influence problem can be formally stated as follows: given a social graph
thatis undirected G = (V, E, T), where Vrepresents the set of users in the network,
E is the set of edges in the network, and T is the matrix of time stamps at which
the social ties were created. The social ties in that matrix represent the links and
relationships between the nodes in the social network. A tie between users u and v
is represented by an undirected edge (1, v) € E. Each edge is labeled with a time
stamp at which the edge was created. Assuming that social ties are never broken,*!
the labeling function can be represented by 7 : E — N.

A log of actions is maintained where an action could be joining an online
community or purchasing a product. This is formulated as Actions(User, Action,
Time) where a tuple (u, a, t,) indicates that user u has performed action «a at a time
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t,. The log contains all the actions performed by all users in V of the social graph
G. Let A represent the actions set, A, represents the number of actions performed
by user u, and A, g, is the number of actions performed by both users u and v while
A,y represents the number of actions that either # or v performed. This can be
shown through the following formula A,|, = A, + A, — Augv. We also use A,»,
to denote the number of actions propagated from u to v.*! Definition 1 formally
introduces the action propagation between users in graph G.

DEFINITION 1 (Action propagation). We say that an action a € A propagates
Sfrom user u to v if (i) (u, v) € E; (ii) u, a, t;), (v, a, t;) € Actions (V, A, T)
with t; < t;; and (iii) T (u, v) < t;. When this happens, we state the predicate
prop(a, u, v, At) where At =t; — ;.

Definition 2 shows the propagation graph*' of each action. This leads to a
natural notion of a propagation graph, defined next.

DEFINITION 2 (Propagation graph). For each action a, we define a propagation graph
PG(a) = (V(a), E(a)) as follows: V(a) = {v |3t (u, a, t) € Actions(V, A, T)};
there is a directed edge u i v in E(a) whenever prop(a, u, v, At).

The propagation graph of an action is a directed graph, which contains all the
users who performed that action, with the edges connecting them according to the
direction of propagation.

3.2. Social Influence Models

Although many approaches have been proposed to address the problem of
measuring influence probability, there are limited works to contrast their strength
and limitations. Sun and Tang® introduced a research survey of social influence
analysis models and algorithms for measuring social influence. They discussed
influence maximization and its application in viral marketing. They focused on
the computational aspect of social influence analysis by evaluating the selection
of people who are similar to each other (for example, two users who have the
same opinion). They also assessed the influence that leads users to adopt behaviors
experienced by their neighbors (for example, changing the opinion of a user to
agree with one of his neighbors). In addition, they provided methods to measure the
weight of influence. Our survey approach categorizes social influence models into
four broader categories: 1) static models, 2) dynamic models, 3) diffusion models,
and 4) models based on users behaviors. We also contrast different influence models
stating their strength and limitations.

OSNss are still new and are still not fully analyzed. OSN models should represent
and satisfy some inherent properties introduced in Section 2.2. As a result, modeling
social influence studies in OSNs are still in their infancy. There are no standard
models for representing influence, which leads to difficulties in analyzing large-
scale networks based on social influence. In this section, we study different models
of social influence and compare the results of each model to determine the most
accurate way to measure the probability (p, ) with which a node u is influenced
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Figure 6. Social influence models.

by its neighbor v. We discuss the strengths and limitations as well as the different
challenges the models might have.

Generally, there are two basic categories to represent influence models in
social networks. Static influence models are the simplest and easy to assess. In these
models, it is assumed that the probability of influence is static and time independent.
Only the current state of the network and the most influential nodes at that state are
considered. The second category of models is labelled as dynamic influence models,
which assume that the influence changes over time. We will see later that the models
in this category are the most accurate as they can tell the history of a specific network
and identify the most influential nodes for diffusing a behavior/information, but they
are very expensive when tested on large data sets as they take long time to execute
on large social networks.

Other categories of social network models discussed in this paper are catego-
rized as linear threshold models and independent cascade models. Other models
based on greedy algorithms and past user behaviors such as topical affinity propa-
gation models are also addressed in the comparative survey of this paper. Figure 6
shows a hierarchical view of the social influence models which we are discussed in
this paper.

The challenge researchers might face is how to compare models that are of
different categorization and state the relationship between them. Especially when
the relationship between these models is ambiguous. Thus, we aim to clarify this
ambiguity by explaining and finding commonalities or categories across these model.
Next, we briefly introduce each of these categories.

3.2.1. Static Influence Models

Static influence models are independent of time and used to capture the most
influential nodes presently. Therefore, the network size is fixed. One instance of
this model is based on Bernoulli distribution. In these social influence models, a
specific node u has a fixed probability to influence its inactive neighbor v. If it
activates the neighbor, then this is a successful attempt and otherwise, failure. Each
attempt can be shown as a Bernoulli trial. Figure 7 shows a sample illustration to
explain Bernoulli trials. The influence probability can be estimated using maximum
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Figure 7. Bernoulli distribution: Node u will have fixed probability to influence its inactive
neighbor vy, v, and v;. If u attempt is “successful”’, node v will be activated otherwise node v will
remain inactive.

likelihood estimator (MLE)*' as the ratio of successful attempts over the total
number of trials:

Av2u
Ay

Puy = (3)

3.2.2.  Dynamic Influence Models

In real life, influence changes over time and may not stay static. For example,
users’ opinions could change over time. When a user is influenced by its neighbors
to join a community, she/he is initially excited to join that community, but over
time that user might have less excitement to stay in the community. To represent
dynamic influence models, we discuss two models of social influence. The first one
is based on capturing a small set of “Snapshot” observations of the social network
and the second one is based on detailed temporal dynamics. These two models can
be represented as a function of the number k of neighbors who have adopted a new
behavior.* The individual become k — exposed to the behavior at specific time ¢
if it is a nonadopter at time ¢ but surrounded with exactly k neighbors who are all
adopters at time 7.

a) Snapshot model: To represent this model, we need to consider two snapshots
of the social network at different points in time.>® Consider then the set of all
individuals who are k — exposed in the first snapshot. Let p,(k) be the fraction
of individuals in this set who have become adopters by the time of the second
snapshot.*® To further clarify, imagine that all kK — exposed nodes in the first snapshot
will flip a coin of fixed bias p,(k) to decide whether to adopt the behavior or not. On
the basis of different experiments on Wikipedia (a free, web based, collaborative,
multilingual encyclopedia), LiveJournal (a virtual community where Internet users
can keep a blog, journal, or diary), and engaging in email correspondence,’? 3% 42
the snapshot curve (shown in Figure 8 b) shows that the influence increases with
more links, but the marginal influence of each additional link is slowly decreasing.*
There are studies that used snapshot models to compute the influence probabilities
such as Refs. 22,40, 42 though they used a large number of snapshots requiring
substantial computational sources.
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Figure 8. The probability of editing an article in Wikipedia.*

b) Ordinal-time model: To represent this model, we need to consider a time
sequence of a social network as it evolves over the time. A new link is created in the
network or a new individual adopts a new behavior. For each k, consider the set of
all individuals who were ever kK — exposed at any time, and define po(k) to be the
fraction of this set that became adopters before acquiring a (k + 1)*' neighbor who
is an adopter.*®. To clarify, imagine that a nonadapter acquired the k¢/ neighbor
who is adopter, by flipping a coin of fixed bias p((k), the nonadopter will decide to
adopt or not. The curve of ordinal time in Figure 8a shows that the first five links
have greater impact, but after some propagation, subsequent links impact stabilizes.
This feature is similar to the power of low distribution. In both of the above cases,
there is a need to determine the maximum-likelihood values of probabilities p(k)
and p;(k).

Comparing different models and their relationships would reveal interesting
performance thresholds and application domains. Generally, the snapshot model is
widely used as it is more applicable to capture an observation of the network without
the need for performing moment-by-moment measurements.** Although there is no
apparent relationship between the snapshot and the ordinal-time models, the shape
of ordinal time can be approximated from data in a single snapshot. Experimental
analysis show that accurate result occurred with more snapshots.

3.2.3. Diffusion Influence Models

These models are used when adopting behavior depends on knowing the num-
ber of neighbors who adopted the same behavior. In Refs. 17,43 Domingos and
Richardson proposed a framework for the propagation of influence when addressing
the problem of identifying influential users. They proposed a probabilistic model
of interaction and heuristics to select the influential users in the context of viral
marketing, and confirmed their approach through an empirical study. Their idea is
based on how to find the most influential individuals and target them to advertise a
new innovation or a product. In a large cascade, they will influence their friends, and
friends of friends. Market customers are represented as nodes in social networks and
customers influence is modelled as a Markov random field. These diffusion models
can be used to optimize marketing decisions. Kempe et al.'® revealed that in general
the problem of selecting influential sets of individuals is NP-complete. This means
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Figure 9. Example of linear threshold model process.

that a solution for such problems can be found if we can find subsets that individually
can be solved to provide a good solution to the whole problem. This set of individuals
should be chosen to generate the maximum influence during the influence-diffusion
process. Approximation algorithms are used to solve the problem of influence max-
imization. In some influence models, the greedy algorithm will select the set of
individuals with approximation (1 — 1/e — ¢),'® where e is the base of the natural
logarithm and ¢ is any positive real number. In their work, Kempe et al. focused
on two influence-diffusion models: linear threshold model and independent cascade
model.

a) Linear threshold model. Granovetter and Schelling** were among the first
to propose the threshold approach to capture influence. In linear threshold model,
a weight b, , is used to measure the tendency of a node u to be influenced by each
neighbor v such that 3, . inporofu buw < 1. Starting with the initial set of active
nodes Ay, the influence propagation resumes as follows: each node u is assigned a
threshold 6, randomly from the interval [0, 1]; the threshold represents the weight
fraction of u’s neighbors that must adopt the behavior (be active) in order for u to
become active and adopt the same behavior. At time stamp ¢, all nodes that were
active in time ¢ — 1 remain active, and any node u for which the total weight of its
active neighbors is at least 6, gets activated; where:

Yo buuz6, )

v active neighbor of u

The thresholds 6, represent the tendency of nodes to adopt the new behavior
when their neighbors do.!® Figures 9a and 9b show an example of the process
involved in linear threshold model.

In their experiment, Kempe et al.'® compared their greedy algorithm with
nodes’ degrees and centrality within the network, as well as incorporating random
nodes. On the basis of their experiment, their greedy algorithm outperforms the
degree and distance centralities because these two features do not consider the
dynamics of social networks and focus on the structure of the network to emphasize
influence. Random nodes do not generate good results in linear threshold model.
Figure 10 shows the result of these experiments.
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Figure 10. Results for the linear threshold model'®.
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Figure 11. Example of independent cascade model process.

b) Independent cascade model. An independent cascade model starts with an
initial set of active nodes Ag. This set of individuals should be chosen the generate
the maximum influence during the cascade diffusion process. The process occurs in
discrete steps as follows: when node u becomes active for the first time in time step
t, its provided with one chance to activate each of its currently inactive neighbor v;
in that case u is called contagious, which means that it has the ability to affect other
nodes as shown in Figure 11a. Node u succeeds to influence its neighbor v with
a probability p, , independent of past history. If u succeeds, then v will become
active in time step ¢ + 1 as shown in Figure 11b; but whether or not u succeeds, it
cannot make any further attempts to activate v in future rounds.'® The same process
continues until #s communicate with all neighbors for influence attempts and there
are no more contagious nodes.

On the basis of Kempe et al. experiments on independent cascade model, the
greedy algorithm still outperforms degree and centrality methods within the network.
Interestingly, random nodes performed well on independent cascade models, as
shown in Figure 12.
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Figure 12. Results of independent cascade model.'®

3.2.4.  Models of Influence based on Users’ Behavior

The models discussed above are based on the influence model proposed in
Ref. 18, where the influence probabilities are provided in advance as input. Other
models proposed in the literature compute the probabilities through mining past
users’ behavior. In doing so, Tang et al.>} studied topic-based social influence. In
these social networks, discussion topics are distributed across users. The problem is
then to find topic-specific subnetworks, and topic-specific influence weights between
members of the subnetworks. Then they propose a graphical probabilistic model
called topical factor graph (TFG) to unify the information in one probabilistic
model. Then they proposed the topical affinity propagation (TAP) model which uses
TFG to infer the influence graph. They also dealt with the efficiency problem by
devising a distributed implementation of TAP.

Saito et al.*> have studied the problem of building influence from past users’
actions. They focused on the independent cascade model of influence. They formally
defined the likelihood maximization problem and then applied Expectation Maxi-
mization (EM) algorithm to solve it. Their formulation dose not, however, scale to
huge data sets like in social networks. This is due to the fact that in each iteration,
EM algorithm must update the influence probability.

3.2.5. Other Influence Models

There are many influence models that are based on greedy algorithms.
Nemhauser et al.*® show a greedy approximation algorithm to address the prob-
lem of finding a maximal set of individuals. Kempe et al.'® also proposed a greedy
algorithm, but it suffered from the efficiency problem because their proposed model
needs to execute Monte Carlo simulation several times until it provides accurate re-
sults, which leads to very long computational times. There are studies to improve the
efficiency of the greedy algorithms to maximize the influence, such as Refs. 47,48.

International Journal of Intelligent Systems DOI 10.1002/int



MODELS OF INFLUENCE IN ONLINE SOCIAL NETWORKS 17

Leskovec etal.*’ studied the influence problem from a different perspective. The

main question in their study was: how to select nodes in a network to detect the spread
of virus as soon as possible?; this was called outbreak detection. They developed
an efficient algorithm based on “lazy-forward” optimization. The algorithm was
optimal and 700 times faster than the simple greedy algorithm; but the approach still
faces problems related to scalability. In Ref. 48, Chen et al. improved the efficiency
of the greedy algorithm.

4. COMPARISON AND IMPLICATIONS

In this section, we compare the influence models discussed in the previous sec-
tion following the snapshot compilation shown in Table I. Static influence models
are based on capturing influence in the current moment. They are time-independent
models that do not diffuse over time. They assume that influence probabilities are
fixed (static) and do not change over time. Different techniques are used in static
influence models; one of them is Bernoulli distribution. Static influence models
are easy to apply and test, which makes them one of the easiest ways to measure
influence in a network. But since social networks are dynamic, where new links are
built/removed regularly, the assumption of static influence models will not make
them the best choice to measure influence in social networks. Dynamic influence
models were introduced to address static influence probability deficiencies. On the
basis of these dynamic models, influence probability changes over time. Snapshot
and ordinal-time models are instances of dynamic influence models that are time
dependent. Snapshot models take different snapshots of the networks and generate
an observation about the network. The snapshot technique is widely used to model
social networks because it can capture large-scale data. To get a better observation
of the network, we need to take many snapshots for large data sets, which is time
consuming and needs a lot of space. Ordinal-time models provide detailed tem-
poral dynamics of the network. These models provide more accurate results since
they measure influence moment-by-moment. There is no direct implementation of
ordinal-time models on large data sets (such as large social networks), which makes
it difficult to draw a conclusion about these models on social networks. Diffusion
influence models such as linear threshold and independent cascade models were
introduced to address the issue of influence propagation. In linear threshold, every
node contributes with a certain weight to its adopting neighbors. If the sum of these
weights is greater than a given threshold, the node becomes an adopter too. The
weight depends on the edge strength between the node and its neighbors. Using
the weight as a measurement between the node and its neighbors will show the
strength of the influence. Independent cascade models use cascade processes to
measure influence propagation. Each node has two states: to adopt or not to adopt.
The adopters will have influence on their neighbors and the adopting neighbors
will have influence on their neighbors too and so on, the influence spreads over the
network. Each adopting node has one chance to influence its neighbor to adopt the
same behavior with some probability that depends on the edge strength between the
nodes. These models have the advantage of fast spreading an information/behavior
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across the nodes of a network, especially when determining the initial optimal set
of the most influential nodes in the network. Both linear threshold and independent
cascade models have the same limitations since they both ignore the attributes that
are associated with each node and do not consider the correlation between user
actions.

Other models based on user behavior were introduced to measure influence.
The TAP model uses TFG to build the influence probability model based on the
user’s topics. This model employs a distributed learning algorithm to deal with the
efficiency problem, but it cannot capture the social influence between users while
building the unified probabilistic model. We also discussed models that are based on
greedy algorithms and we found that they outperform influence measures that are
based on the structure of the social network such as degree and distance centralities.
But on the other hand, their efficiency is low since they take long times to execute
repeated tests to provide accurate results.

5. EXPERIMENTS AND RESULTS

In this section, we will compare the influence diffusion in OSNs based on
two famous influence propagation models that are the linear threshold model and
the independent cascade model. We implemented the two algorithms using Matlab.
Then we performed the experiments using Apple iMac with Mac OS X version
10.6.8, processor 2.66 GHz intel Core i5, and 4GB memory.

We applied the experiment on two actual OSNs. The first social network is
Flickr, which is a photo-sharing social network. On Flickr, users can share and
embed photographs on their own blogs. The data set of Flickr network consists
of 2,570,535 nodes and 33,140,018 links between the nodes. We used the data set
provided by Cha et al. in Ref. 49 We selected 500 nodes to run our experiments.
Nodes are associated with their actions to favor a photo.

The second social network we used as a testbed for our experiments is Last.fm?*
social network, which is a popular Internet radio to stream music. The data set
provided by Ref. 50 contains 1892 users who assigned tags to artists during different
time stamps. A tag could be any word related to the artist like rock, POP, sad, and
touching, etc. The time stamp shows when the tag assignments were done. We
selected 99 nodes to apply our experiment. Each user is associated with his/her
action of tagging an artist.

To compare the two influence propagation models, we used four methods to
assign edges probabilities in the social graph:

1. Jaccard coefficient based on common actions: in this method, we calculate similarity

between two nodes based on the common actions they have. The formulausedis JC, , =
#:‘A”, where A, is the number of actions performed by node u, A, is the number
of actions performed by node v, and A, , is the number of common actions performed
by nodes u and v.

*http://www.lastfm.com
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Figure 13. Comparing influence spread For Flickr social network.

2. Weighted cascade: which is a special case of the independent cascade model, where each
edge from node u to v is assigned a probability i of activating v.'8

3. Trivalency (TV): where edge probabilities are selected uniformly at random from the set
{0.1,0.01, 0.001}
4. Uniform (UN): where all edges have the same probability (e.g., p = 0.01)

Using Flickr social network, we notice that independent cascade model outperforms
the linear threshold model in all probability assignment methods when the seed
set size becomes larger. The common actions (Figure 13a) probability assignment
methods is more steady and both propagation models provide similar curves although
it dose not activate as much nodes as the other methods shown in Figure13b—13d.
The results could be different for different sittings applied to run the algorithms such
as the threshold value or the number of nodes in the seed set.

Using Last.fm social network, we applied the same probability assignment
methods used above on the actual network data sets. In these experiments, we notice
that in the trivalency and uniform methods, the independent cascade model outper-
forms the linear threshold model by activating more nodes during the propagating
process Figure 14.

6. CONCLUSIONS

In this paper, we defined social influence and stated its importance in evolving
social networks. We introduced some analytics used when measuring centrality
in social networks such as centrality measurements. We also surveyed measure
models, which address the objective of influence maximization in social networks.
We stated the strength and limitation of each model through a comparative study.
We compared two propagation models empirically to state which is better for social
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influence diffusion. We also revealed new research directions in social networks
mining toward the prospects of further analyzing social influence.

There are many possible future directions to extend these social influence

models to address perceived limitations such as scalability and efficiency. A combi-
nation of these models may generate more accurate results and help addressing the
individual limitations.
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