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Abstract

Distributed Hash Tables (DHTs) have been used in several applications, but most DHTs have opted to solve
lookups with multiple hops, to minimize bandwidth costs while sacrificing lookup latency. This paper presents D1HT,
an original DHT which has a peer-to-peer and self-organizing architecture and maximizes lookup performance with
reasonable maintenance traffic, and a Quarantine mechanismto reduce overheads caused by volatile peers. We
implemented both D1HT and a prominent single-hop DHT, and weperformed an extensive and highly representative
DHT experimental comparison, followed by complementary analytical studies. In comparison with current single-hop
DHTs, our results showed that D1HT consistently had the lowest bandwidth requirements, with typical reductions
of up to one order of magnitude, and that D1HT could be used even in popular Internet applications with millions
of users. In addition, we ran the first latency experiments comparing DHTs to directory servers, which revealed
that D1HT can achieve latencies equivalent to or better thana directory server, and confirmed its greater scalability
properties. Overall, our extensive set of results allowed us to conclude that D1HT can provide a very effective
solution for a broad range of environments, from large-scale corporate datacenters to widely deployed Internet
applications1,2.
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I. INTRODUCTION

Distributed hash tables (DHTs) are a highly scalable solution for efficiently locating information in large-scale
distributed systems; thus they have been used in a wide rangeof applications, from Internet games to databases.
While most DHTs incur in high latencies, recent results showed that DHTs can also be applied in significant
classes of applications with performance constraints, such as Internet Service Providers (ISPs), as long as they
guarantee low enough latency to access information. Specifically, the development of a proprietary low-latency
DHT was critical to the performance of the Amazons Dynamo system [15], where scalability, self-organization and
robustness were fundamental to supporting a production system over thousands of error-prone nodes, whereas the
use of central directories could lead to several problems [31]. However, the DHT implemented in Dynamo does not
support open environments, has high levels of overhead and,according to its authors, it is unable to scale to very
large systems, besides being very application specific. In addition, recent trends in High Performance Computing
(HPC) and ISP datacenters indicate significant increases inthe system sizes [4], [20], including a huge demand
from cloud computing [3], [7], which will challenge the scalability and fault tolerance of client/servers solutions. In
fact, to support a wide span of large-scale distributed applications, new self-organizing DHTs with greater levels of

1This is the pre-peer reviewed version of the following article: Luiz Monnerat and Claudio L. Amorim, An effective single-hop distributed
hash table with high lookup performance and low traffic overhead,Concurrency and Computation: Practice and Experience (CCPE), 2014,
which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cpe.3342/abstract [35].

2To download this paper and other D1HT resources, including its source code, please visit the D1HT home page at
http://www.lcp.coppe.ufrj.br/D1HT/

http://arxiv.org/abs/1408.7070v1
http://www.lcp.coppe.ufrj.br/D1HT/


scalability, performance and efficiency are required in order to be used as a commodity substrate for environments
ranging from corporate datacenters to popular Internet applications.

The information stored in a DHT is located throughlookup requests, which are solved with the use of
routing tablesstored on all participant peers. As peers can freely enter and leave the network, DHTs typically
use maintenance messages to keep the routing tables up to date. However, maintenance messages increase the
DHT’s network traffic, which contributes adversely to both the lookup latency and network bandwidth overheads.
Overall, the size of routing tables is a critical issue in a DHT system and poses a classic latency vs. bandwidth
tradeoff. Concretely, large routing tables allow faster lookups because peers will have more routing options, but
they increase the bandwidth overheads due to higher maintenance traffic.

In this regard, the first DHT proposals (e.g., [29], [30], [42], [48], [51], [54]) opted to use small routing tables in
such a way that each lookup takesO(log(n)) hops to be solved (n is the system size), aiming to save bandwidth
to the detriment of latency and thus compromising the use of such multi-hop DHTs for performance sensitive
applications. However, as similar tradeoffs between latency and bandwidth occur across several technologies, the
latency restrictions tend to be more critical in the long term, as it has already been shown that ‘over time bandwidth
typically improves by more than the square of the latency reductions’ [39]. From this perspective, a number of
single-hopDHTs have been proposed (e.g., [17], [33], [52]), which are able to provide low latency access to
information because each peer maintains a full routing table. Therefore, the lookup performance achieved by these
single-hop DHTs should allow their use even in latency-sensitive environments where multi-hop DHTs cannot satisfy
the latency constraints. Besides, it has been shown that, for systems with high lookup rates, single-hop DHTs may in
fact reduce thetotal bandwidth consumption, since each lookup in a multi-hop DHTtypically consumesO(log(n))
more bandwidth than a single-hop lookup, and this extra lookup overhead may offset the routing table maintenance
traffic [46], [52]. Nevertheless, most single-hop DHTs still incur high bandwidth overheads, have high levels of
load imbalance, or are unable to support dynamic environments.

With these problems in mind, this work provides several relevant contributions that will improve the understanding
and use of single-hop DHTs in a wide range of distributed systems. We present D1HT, an original single-hop DHT
combining low bandwidth overheads and good load balance even in dynamic environments, while being able to
efficiently adapt to changes in the system behavior using a self-organizing and pure P2P approach. We will also
present a Quarantine mechanism that can reduce the system overheads caused by volatile nodes in P2P systems.

To quantify the latencies and overheads of single-hop DHTs,we implemented D1HT and 1h-Calot [52] from
scratch and evaluated both single-hop DHTs with up to 4,000 peers and 2,000 physical nodes in two radically
different environments (an HPC datacenter and a worldwide dispersed network) under distinct churn rates. Those
experiments provided a number of very important results, asthey validated the analyses for both DHTs, confirmed
their low latency characteristics, and showed that D1HT consistently has less bandwidth requirements than 1h-Calot.
Besides, our experiments also showed that D1HT has negligible CPU and memory overheads that allow its use
even in heavily loaded nodes, as it used less than 0.1% of the available CPU cycles and very small memory to
store the routing tables, even under a high rate of concurrent peer joins and leaves.

Based on the validation of the D1HT and 1h-Calot analyses, wefurther performed an analytical comparison
among D1HT, 1h-Calot and OneHop [17] for system sizes of up to10 million peers. Our results revealed that
D1HT consistently had the lowest maintenance overheads, with reductions of up to one order of magnitude in
relation to both OneHop and 1h-Calot. Moreover, these results also indicated that D1HT is able to support vast
distributed environments with dynamics similar to those ofwidely deployed P2P applications, such as BitTorrent,
Gnutella and KAD, with reasonable maintenance bandwidth demands. Overall, D1HTs superior results are due
to its novel P2P mechanism that groups membership changes for propagation without sacrificing latency. This
mechanism was based on a theorem that will be presented in this paper, which allows each peer in a D1HT system
to independently and dynamically adjust the duration of thebuffering period, while assuring low latency lookups.

While scalable performance has been a fundamental argumentin favor of DHTs over central directory servers,
we are not aware of any published experiments demonstratingit. To fill in this gap, we performed the first
experimental latency comparison among three DHTs and a directory server, using up to 4,000 peers. These
experiments demonstrated the superior single-hop DHT scalability properties and provided us with other important
results that will be presented in this work.



Except from our preliminary D1HT experiments [34], all previous DHT comparative evaluations with real
implementations have used a few hundredphysicalnodes at most and have been restricted to a single environment
(e.g., [17], [43], [54]). Thus, the evaluation presented inthis paper, which used up to 4,000 peers in two radically
distinct environments, can be regarded as a highly representative experimental DHT comparison, and the first to
compare the latencies provided by distinct DHTs and a directory server.

Finally, our extensive set of experimental and analytical results allowed us to conclude that D1HT consistently
has the lowest overheads among the single-hop DHTs introduced so far, besides being more scalable than directory
servers, and that D1HT can potentially be used in a multitudeof environments ranging from HPC and ISP datacenters
to applications widely deployed over the Internet.

The rest of this paper is organized as follows. The next two sections discuss related work and present the D1HT
system design, and in Section IV we present the event dissemination mechanism used by D1HT. In Sections V
and VI, we present Quarantine and our D1HT implementation. Sections VII and VIII present our experimental and
analytical results, which are discussed in Section IX. We then conclude the paper.

II. RELATED WORK

In recent years, DHTs and P2P systems have been subjects of intense research. In particular, the design of a
DHT that supports large-scale networks is a very difficult problem on its own, which poses specific challenges
of scalability and efficiency. Therefore, in this work, we focus on single-hop DHTs whose event dissemination
mechanisms aim at large and dynamic environments. In practice, besides D1HT, the only two other single-hop
DHTs that support dynamic networks are the OneHop [17] and 1h-Calot [52] systems, both of which differ from
D1HT in the following fundamental ways.

The 1h-Calot [52] DHT, which was introduced concurrently with D1HT [33], also uses a pure P2P topology,
though they differ in significant ways. First, 1h-Calot usesevent3 propagation trees based on peer ID intervals, while
D1HT constructs its dissemination trees using message TTLs. Second, 1h-Calot uses explicit heartbeat messages
to detect node failures, while D1HT relies on the maintenance messages. Third and most important, 1h-Calot peers
cannot effectively buffer events and, at the same time, ensure that the lookups will be solved with a single hop,
even for hypothetical systems with fixed size and peer behavior. In contrast, D1HT is able to effectively buffer
events for real and dynamic systems without sacrificing latency.

Besides D1HT, OneHop is the only other single-hop DHT that isable to effectively buffer events for dissemination.
However, while D1HT is a pure P2P and self-organizing system, OneHop relies on a three-level hierarchy to
implement event buffering, and its topology incurs high levels of load imbalance among its different types of
nodes. Additionally, to achieve its best performance, all nodes in an OneHop system must agree on some system-
wide topological parameters [52], which are likely to be difficult to implement in practice, especially as the best
parameters should change over time according to the system size and behavior.

In addition to the differences discussed above, D1HT is ableto achieve overheads that are up to one order of
magnitude smaller than those of both 1h-Calot and OneHop, aswe will see in Section VIII.

Except for D1HT, 1h-Calot and OneHop, all other single-hop DHTs introduced so far do not support large and
dynamic environments [15], [24], [44], [45], [47]. Among these, our 1h-Calot overhead results should be also valid
for SFDHT [24] and 1HS [44], as 1HS is based on the 1h-Calot maintenance algorithm and SFDHT uses a similar
event dissemination mechanism.

While single hop DHTs must maintain full routing tables, some systems opted to use much smaller routing tables
to solve lookups with a constant number (i.e.,O(1)) of multiple hops. For example, someO(1) DHTs useO(

√
n)

routing tables to solve lookups with two hops. In this way, ina one million peer network, such a DHT system
will maintain a routing table with a few thousands entries, which will prevent it to address directly all one million
peers with a single hop. On the other hand, these DHTs will have lower maintenance overhead, and they may
be suitable for applications that are not latency sensitive. Besides solving lookups withO(1) multiple hops, those
systems differ from D1HT in other important aspects. For instance, Z-Ring [25] uses Pastry [48] to solve lookups
with two hops in systems with up to 16 million nodes. Tulip [1]and Kelips [18] use gossip to maintain routing

3From now on we will refer to peer joins and leaves simply asevents.



tables of sizeO(
√
n) to solve lookups with two hops. Structured Superpeers [32] and LH* [27] use hierarchical

topologies to solve lookups with three hops.
Accordion [23] and EpiChord [21] do not ensure a maximum number of lookup hops, but they use parallel lookups

and adaptation techniques to minimize lookup latencies, and they can converge to one hop latencies depending on
the bandwidth available. Some of those techniques can be implemented over our basic D1HT protocol (e.g., parallel
lookups). Beehive [41] is a replication framework to speed up lookups for popular keys. Concurrently to D1HT and
1h-Calot, a mechanism for information dissemination with logarithmic trees was proposed in [8], but, in contrast
to D1HT, it does not perform any kind of aggregation. Scribe [10] and SplitStream [9] disseminate information,
but they do not perform aggregation nor use logarithmic trees among several other differences in relation to D1HT.

Quarantine approaches have been proposed as a means of intervention for preventing vulnerabilities in the Internet,
such as worm threats [36], but, to the best of our knowledge, this is first work to propose, evaluate and show the
effectiveness of a quarantine approach for P2P systems [33].

III. D1HT SYSTEM DESIGN

A D1HT system is composed of a setD of n peers and, as in Chord [51], the keys are mapped to peers based
on consistent hashing[19], where both peers and keys have IDs taken from the same identifier ring [0 : N ], with
N >> n. The key and peer IDs are, respectively, the hashes (e.g., SHA1 [37]) of the key values and the peer IP
addresses. Similarly to previous studies (e.g., [17], [22], [29], [51]), we used consistent hashing and the random
properties of the cryptographic function, which allowed usto assume that the events and lookup targets are oblivious
to the peer IDs and randomly distributed along the ring.

In D1HT, each peer has a full routing table, and so any lookup can be solved with just one hop, provided that
its routing table is up to date. However, if the origin peer isunaware of an event that has happened in the vicinity
of the target peer (e.g., a node has joined or left the system), the lookup may be initially addressed either to a
wrong peer or to a peer that has already left the system. In both cases, the lookup will eventually succeed after
retrying [51], but it will take longer than expected. To completely avoid thoserouting failures(as the lookup will
eventually succeed [51], we do consider it as arouting failure instead of alookup failure), D1HT would have to
immediately notify all itsn peers about the occurrence of any event in the system, which is simply infeasible.
In practice, single-hop DHTs must try to keep the fraction ofrouting failures below an acceptable maximum by
implementing mechanisms that can quickly notify all peers in the system about the events as they happen. These
event dissemination mechanisms represent the primary distinction among the single hop DHTs, and in the next
section we will present the EDRA mechanism introduced with D1HT.

As in other works (e.g., [17], [33]), we will assume that the systems are churned with an event rate (or churn
rate) r proportional to the system size, according to Equation III.1 below, whereSavg is the peer average session
length.

r = 2 · n/Savg (III.1)

We refer to thesession lengthas the amount of time between a peer’s join and its subsequentleave; thus, Equation
III.1 simply assumes that, as expected, each peer generatestwo events per session (one join and one leave). As the
average session lengths of a number of different P2P systemshave already been measured (e.g., [6], [49], [50]),
the equation above allows us to calculate event rates that are representative of widely deployed applications. In
Sections VII and VIII, we will present experimental and analytical results with different session lengths, which will
allow us to evaluate its effect on the maintenance overheads.

In D1HT, any message should be acknowledged to allow for retransmissions in the case of failures, which can
be done implicitly by a protocol like TCP or be explicitly implemented over an unreliable protocol like UDP. We
assume that the maintenance messages are transmitted over UDP to save bandwidth, but we consider the choice
of the transport protocol for all other messages as an implementation issue. We also consider that the details of
the joining protocol should be decided at the implementation level. In Section VI, we will discuss how we ensure
message delivery in our D1HT implementation and what joining protocol we used.

D1HT is a pure P2P and self-organizing system, but its flat topology does not prevent it from being used as a
component of hierarchical approaches aiming to exploit theheterogeneity of the participant nodes in a system. For



example, the FastTrack network [26] has two classes of nodes: the super nodes (SN) and ordinary nodes (ON).
SNs are better provisioned nodes, and each SN acts as a central directory for a number of ONs, while flooding
is used among the SNs. As measurements [26] have shown that FastTrack should have less than 40K SNs with
an average session length of 2.5 hours, the analysis that we will present in Section IV shows that we could use
a D1HT system to connect the SNs with maintenance costs as lowas 0.9 kbps per SN. This overhead should be
negligible, especially if we consider that the SNs are well-provisioned nodes and that we would avoid the flooding
overheads while improving the lookup performance.

We will not address issues related to malicious nodes and network attacks, although it is clear that, due to their
high out-degree, single-hop DHTs are naturally less vulnerable to those kinds of menaces than low-degree multi-hop
DHTs.

IV. EDRA

As each peer in a D1HT system should know the IP address of every other peer, any event should beacknowledged
by all peers in the system in a timely fashion to avoid stale routing table entries. Here, we say that a peer
acknowledgesan event when it either detects the join (or leave) of its predecessor or receives a message notifying
of an event.

To efficiently propagate any event to all peers in a system, D1HT makes use of the Event Detection and Report
Algorithm (EDRA), which can announce any event to the whole system in logarithmic time with a pure P2P
topology and provides good load-balance properties coupled with low bandwidth overhead. Additionally, EDRA is
able to group several events into a single message to save bandwidth, yet it ensures an upper bound on the fraction
of stale routing table entries.

At first glance, grouping several event notifications per message seems to be an obvious and easy way to save
bandwidth, as any peer can locally buffer the events that occur during a period of time and forward them in a
single message. However, such a mechanism imposes delays inthe event dissemination, which in turn will lead to
more stale entries in the routing tables; thus, the difficultquestion is the following:For how long can each peer
buffer events while assuring that the vast majority of the lookups (e.g.,99%) will be solved with just one hop?
This problem is especially difficult because the answer depends on a number of factors that vary unpredictably,
including the system size and churn rate. EDRA addresses this issue based on a theorem that will be presented
in this section, which allows each peer to independently adjust the length of the buffering period while assuring
that at least a fraction 1-f of the lookups will be solved with a single hop (f is typically 1%, but it can be tuned
according to the application).

In this section, we will formally describe EDRA by means of a set of rules, prove its correctness and load balance
properties, and present its analysis. Before we begin, we will define a few functions to make the presentation clearer.
For anyi ∈ N andp ∈ D, theith successor ofp is given by the functionsucc(p, i), wheresucc(p, 0)=p andsucc(p, i)
is the successor ofsucc(p, i-1) for i > 0. Note that fori ≥ n, succ(p, i)=succ(p, i-n). In the same way, theith
predecessor of a peerp is given by the functionpred(p, i), wherepred(p, 0)=p andpred(p, i) is the predecessor of
pred(p, i-1), for i > 0. As in [29], for anyp ∈ D andk ∈ N, stretch(p, k)={∀pi ∈ D | pi=succ(p, i) ∧ 0 ≤ i ≤ k}.
Note thatstretch(p, n-1)=D for any p ∈ D.

A. The EDRA Rules

In this section, we will first present a brief description of EDRA and then formally define it. To save bandwidth,
each peer buffers the events acknowledged during intervalsof Θ seconds (Θ intervals), whereΘ is dynamically
tuned (as it will be seen in Section IV-D). At the end of aΘ interval, each peer propagates the events locally buffered
by sending up toρ=⌈log2(n)⌉ maintenance messages, as shown in Figure 1. Each maintenance messageM(l) will
have a Time-To-Live (TTL) counterl in the range [0:ρ) and will be addressed tosucc(p, 2l). To perform event
aggregation while assuring that any event will reach all peers in the system, each messageM(l) will include all
events brought by any messageM(j), j > l, received in the precedingΘ seconds. To initiate an event dissemination,
the successor of the peer suffering the event will include itin all messages sent at the end of the currentΘ interval.
The rules below formally define the EDRA algorithm we have briefly described above:



Pp P P1 P2 P3 P4 P5 P6 P7 P8 P9

Crash!    ttl=0 ttl=0   ttl=0    ttl=0   ttl=0

       ttl=1        ttl=1  

            ttl=2 

             ttl=3 

Fig. 1. This figure shows a D1HT system with 11 peers, where peer p crashes and this event is detected and reported by its successor P .
In the figure, peersPi are such thatPi=succ(P, i). The figure also shows theTTL of each message sent.

Rule 1: Every peer will send at least one and up toρ maintenance messages at the end of eachΘ sec interval
(Θ interval), whereρ=⌈log2(n)⌉.

Rule 2: Each maintenance messageM(l) will have a distinct TTLl, 0 ≤ l < ρ, and carry a number of events.
All events brought by a messageM(l) will be acknowledgedwith TTL=l by the receiving peer.

Rule 3: A message will only contain events acknowledged during the endingΘ interval. An event acknowledged
with TTL=l, l > 0, will be included in all messages withTTL < l sent at the end of the currentΘ
interval. Events acknowledged withTTL=0 will not be included in any message.

Rule 4: Messages withTTL=0 will be sent even if there is no event to report. Messages with TTL > 0 will
only be sent if there are events to be reported.

Rule 5: If a peerP does not receive any message from its predecessorp for Tdetect sec,P will probe p to ensure
that it has left the system and, after confirmation,P will acknowledgep leaving.

Rule 6: When a peer detects an event in its predecessor (it hasjoined or left the system), this event is considered
to have beenacknowledgedwith TTL=ρ (so it is reported throughρ messages according to Rule 3).

Rule 7: A peerp will send all messages withTTL=l to succ(p, 2l).
Rule 8: Before sending a message tosucc(p, k), p will discharge all events related to any peer instretch(p, k).

Rules 4 and 5 should allow each peer to maintain pointers to its correct successor and predecessor even in the
case of peer failures. Moreover, to improve robustness, anypeerp should run a local stabilization routine whenever
it does not receive a reply to a msg with TTL=0 or when it receives a msg with TTL=0 (or TTL=1) from others
than its predecessor (orpred(p, 1)), and this routine should allow any peer to detect its correct predecessor and
successor even if multiple consecutive peers fail simultaneously. As there are already routines proposed in the
literature that can accomplish these tasks (e.g. [51]), we leave its details to be decided at the implementation level.

Figure 1 shows how EDRA disseminates information about one event to all peers in a system according to the
rules just presented, and it illustrates some properties that we will formally prove in the next section. The figure
presents a D1HT system with 11 peers (ρ = 4), where peerp crashes and this eventε is detected and reported by its
successorP . The peers in the figure are shown in a line instead of a ring to facilitate the presentation. Note thatP
acknowledgesε afterTdetect sec (Rule 5) withTTL = ρ (Rule 6). According to Rules 3 and 7,P will forward ε with
ρ = 4 messages addressed toP1=succ(P, 20), P2=succ(P, 21), P4=succ(P, 22) andP8=succ(P, 23), as represented
by the solid arrows in the figure. AsP2, P4 andP8 will acknowledgeε with TTL > 0, they will forward it to
P3=succ(P2, 2

0), P5=succ(P4, 2
0), P6=succ(P4, 2

1) and P9=succ(P8, 2
0), as represented by the dashed arrows.

BecauseP6 will acknowledgeε with TTL=1, it will further forward it to P7=succ(P6, 2
0) (doted arrow). Note

that Rule 8 preventsP8 from forwardingε to succ(P8, 2
1) and succ(P8, 2

2), which in fact areP andP3, saving
these two peers from having to acknowledgeε twice.

B. EDRA Correctness

The EDRA rules ensure that any event will be delivered to all peers in a D1HT system in logarithmic time, as
we will shortly show in Theorem 1. For this theorem, we will ignore message delays and consider that all peers
have synchronous intervals, i.e., theΘ intervals of all peers start at exactly the same time. The absence of message



delays means that any message will arrive immediately at itsdestination, and because we are also considering
synchronousΘ intervals, any message sent at the end of aΘ interval will arrive at its destination at the beginning
of the subsequentΘ interval. We will also assume that no new event happens untilall peers are notified about the
previous event. All these practical issues will be addressed in Section IV-C.

Theorem 1. An eventε that is acknowledged by a peerp with TTL= l and by no other peers inD will be forwarded
by p through l messages in such a way thatε will be acknowledged exactly once by all peers instretch(p, 2l-1)
and by no other peer in the system. The average timeTsync for a peer instretch(p, 2l-1) to acknowledgeε will
be at mostl ·Θ/2 after p acknowledgedε.

Proof: By strong induction inl. For l=1, the EDRA rules imply thatp will only forward ε through a message
with TTL=0 to succ(p, 1). As this message should be sent at the end of the currentΘ interval,succ(p, 1) will ac-
knowledgeε at mostΘ sec afterp acknowledged it, making the average time for peers instretch(p, 1)={p, succ(p, 1)}
to beTsync=(Θ + 0)/2=Θ/2 (at most). Thus, the claim holds forl=1.

For l > 1, the EDRA rules imply thatp will forward ε throughl messages at the end of the currentΘ interval,
each one with a distinct TTL in the range [0 ,l). Then, afterΘ sec (at most) each peerpk=succ(p, 2k), 0 ≤ k < l,
will have acknowledgedε with TTL=k. Applying the induction hypothesis to each of thosel acknowledgements, we
deduce that each acknowledgment made by a peerpk implies that all peers instretch(pk, 2k-1) will acknowledge
ε exactly once. Accounting for alll-1 acknowledgments made by the peerspk, and that Rule 8 will preventε from
being acknowledged twice by any peer instretch(p, 2ρ-n), we conclude thatε will be acknowledged exactly once
by all peers instretch(p, 2l-1). By the induction hypothesis, none of those peers will forward ε to a peer outside
this range, soε will not be acknowledged by any other peers in the system. Theinduction hypothesis also ensures
that the average time for the peers in eachstretch(pk, 2

k-1) to acknowledgeε will be (at most)k ·Θ/2 after the
respective peerpk acknowledged it, which will lead toTsync=l ·Θ/2 (at most) forstretch(p, 2l-1).

Applying Theorem 1 and the EDRA rules to a peer join (or leave)that is acknowledged by its successorp,
we can conclude that this event will be further acknowledgedexactly once by all peers instretch(p, 2ρ-1)=D.
Moreover, the upper bound on the average acknowledge time will be ρ · Θ/2. We can thus formally ensure three
very important EDRA properties. First, any event will be announced to all peers in a D1HT system, ensuring that
they will receive the necessary information to maintain their routing tables. Second, each peer will be notified of
any event just once, avoiding unnecessary bandwidth overheads and ensuring good income load balance. Third,
for each event, the average notification time is bounded byρ · Θ/2, and this result will be used in Section IV-D
to develop a mechanism that will allow each peer in a D1HT system to dynamically find the optimal value forΘ
based on the current system size and behavior.

We can also show that the last peer to acknowledge an event would be succ(p, n − 1) (which is pred(p, 0)),
ρ ·Θ secs afterp had acknowledged the event. In practice,pred(p, 0) will know about the event much before, due
to the stabilization routine discussed in Section IV-A.

C. Practical Aspects

In Theorem 1, we did not consider the effects of message delays and asynchronousΘ intervals; thus, we will turn
to them in this section. To compute those effects, we will assume that each maintenance message will require an
average delay ofδavg to reach its target, and it will typically arrive at the middle of aΘ interval. Therefore, under
those more realistic assumptions, each peer in the event dissemination path should add an average ofδavg+Θ/2 to
the event propagation time, leading to the adjusted valueρ · (2 · δavg +Θ)/4. Note that we have not yet considered
the time to detect the event, which we will assume to beTdetect=2 ·Θ, reflecting the worst-case scenario in which,
after one missing message withTTL=0, a peer will probe its predecessor for up toΘ sec before reporting its
failure. Thus, the upper bound on the average acknowledge time for any event will be

Tavg = 2 ·Θ+ ρ · (Θ + 2 · δavg)/4 sec (IV.1)

Equation IV.1 overestimatesTavg because it only considers the worst-case of peer failures, whereas we should have
setTdetect = 0 for joins and voluntary leaves.



In Theorem 1, we also considered that no new event would happen until all peers had been notified of a previous
event, which is not a reasonable assumption for real and dynamic systems. While the admission of new peers should
be correctly handled by the joining protocol, peer leaves are more complicated, and we may not expect that all peers
in a system will have identical routing tables. For instance, when a peer fails before forwarding the locally buffered
events, the propagation chain for these events will be partially broken. However, because this problem may occur
only once per peer session (at most), it should not have a significant effect, as the duration of the buffering period
(a few tens of seconds at most [33]) is typically orders of magnitude smaller than the average session length (e.g.,
almost three hours for KAD and Gnutella). For example, for systems with Gnutella behavior the results presented
in [33] show that this problem should happen only once for about 1500Θ intervals. So even if all nodes leaves
were due to failures at the exact end of theΘ intervals (which is a very conservative assumption), less than 0.07%
of the events forwarded by each peer during its lifetime would be lost due to this reason. If we consider that half
of the leaves are due to failures (which is also conservative), and that those failures typically occurs at the middle
of theΘ intervals, then less than 0.02% of the events forwarded by each peer would be lost (in other words, only
one in around 6000 events forwarded by each peer would get lost due to this issue).

In fact, in Section VII, we will see that D1HT was able to solvemore than 99% of the lookups with just one hop
in all experiments, even under a high rate of concurrent joins and leaves, which is a strong experimental evidence
that the routing failures due to those practical issues should not be relevant in relation tof .

Besides the problems discussed so far, there are a number of practical situations that can lead to stale routing
table entries in D1HT and other DHT systems, and we will not beable to completely remedy all of them. For that
reason, as in many other systems (e.g., [17], [18], [21], [23], [30]), any D1HT implementation should allow the
peers to learn from the lookups and maintenance messages to perform additional routing table maintenance without
extra overhead. For example, a message received from an unknown peer should imply its insertion in the routing
table. In the same way, routing failures will provide information about peers that have left or joined the system.
In addition, many other known mechanisms that are commonly used in other DHT systems could be implemented
on top of our base D1HT design, such as event re-announcements [52] and gossip [45] to improve routing table
accuracy, or parallel lookups (as in [21], [23]) to mitigatethe latency penalties caused by timeouts due to missed
leave notifications. We should point out that even with parallel lookups, the D1HT lookup bandwidth demands
should be smaller than those of multi-hop DHTs for large systems.

D. Tuning EDRA

In this section, we will show how to tune EDRA to ensure that a given fraction 1-f of the lookups will be solved
with one hop, wheref can be statically defined (e.g.,f=1%) or dynamically adjusted.

As the lookups are solved with just one hop, to achievef it is enough to ensure that the hops will fail with
probability f , at most. As discussed in Section III, we may assume that the lookup targets are random, as in many
other studies (e.g., [17], [22], [32], [51]). Then, the average fraction of routing failures will be a direct result of
the number of stale routing table entries. In that manner, tosatisfyf , it suffices to assure that the average fraction
of stale routing table entries is kept belowf [17].

Given that the average acknowledge time is at mostTavg, the average number of stale routing table entries will
be bounded by the numbers of events occurred in the lastTavg seconds, i.e.,Tavg · r. Then, we should satisfy the
inequalityTavg · r/n ≤ f , and thus, by Equations III.1 and IV.1, the maximumΘ value should be

Θ = (2 · f · Savg − 2 · ρ · δavg)/(8 + ρ) sec. (IV.2)

The equation above requires each peer to know the average message delay; to ease the implementation, we will
simply assume thatδavg=Θ/4, which is an overestimation according to previously published results [33], [49]. Then

Θ = (4 · f · Savg)/(16 + 3 · ρ) sec. (IV.3)

As all D1HT peers know about any event in the system, Equations III.1 and IV.3 allow each peer to dynamically
calculate the optimal value forΘ based on the event rate that is observed locally, without theneed for further
communication or agreement with other peers. This allows each peer in a D1HT system to independently adapt
to the environment dynamics to maximize the buffering period without penalizing latency, even for large real



systems whose size and peer behavior typically change over time. In contrast, as discussed in Section II, peers in
all other P2P single hop DHTs are unable to independently calculate the length of event buffering periods, even
for hypothetical systems with fixed size and peer behavior.

To make D1HT more robust to sudden bursts of events, we extended the original D1HT analysis to allow each
peer to overestimate the maximum number of events it may buffer (E) according to Equation IV.4 below. This
equation was derived from Equation IV.3 with the assumptionthat peers in a D1HT system observe similar event
rates (which led us to assume thatr=E/Θ).

E = (8 · f · n)/(16 + 3 · ρ) events (IV.4)

E. Maintenance Traffic and Load Balance

While we have proven that EDRA ensures a good income load balance, it does not seem at first glance to provide
good balance in terms of outgoing traffic. For instance, in Figure 1, peerP sent four messages reportingp crash,
while P1 did not send a single message. But we should not be concerned with the particular load that is generated
by a single event, as it should not exceed a few bytes per peer.Nevertheless, we must guarantee good balance with
respect to the aggregate traffic that is necessary to disseminate information about all events as they happen, and
this outgoing maintenance load balance will rely on the random distribution properties of the hash function used.
As discussed in Section III, the chosen function is expectedto distribute the peer IDs randomly along the ring.
Then, as in many other studies (e.g., [17], [22], [29], [51]), we will assume that the events are oblivious to the
peer IDs, leading to a randomly distributed event rater. Thus, the average number of messages each peer sends
perΘ interval will be (including message acknowledgments)

(Nmsgs · (vm + va) + r ·m ·Θ)/Θ bit/sec (IV.5)

wherem is the number of bits to describe an event, andvm and va are the bit overheads (i.e., headers) per
maintenance message and per message acknowledgment, respectively. As no peer will exchange maintenance
messages with any node outsideD, Equation IV.5 will reflect both the incoming and outgoing average maintenance
traffic.

F. Number of Messages

Equation IV.5 requires us to determine the average number ofmessages a peer sends, which is exactly the purpose
of the following theorem.

Theorem 2. The set of peersS for which a generic peerp acknowledges events withTTL ≥ l satisfies|S|=2ρ−1.

Proof: By induction onj, wherej=ρ-l. Forj=0, Rule 2 ensures that there is no message withTTL ≥ l=ρ. Then,
the only events thatp acknowledges withTTL ≥ ρ are those related to its predecessor (Rule 6), soS={pred(p, 1)},
which leads to|S|=1=20=2ρ−l.

For j > 0, l = ρ-j < ρ. As S is the set of peers for whichp acknowledges events withTTL ≥ l, we can say that
S=S1 ∪ S2, whereS1 andS2 are the sets of peers for whichp acknowledges events withTTL=l andTTL > l,
respectively. By the induction hypothesis,|S2|=2ρ−(l+1). As l < ρ, the predecessorp will not be in S1 (Rule 6).
Thus, as Rule 7 implies thatp only receives messages withTTL=l from a peerk, wherek=pred(p, 2l), we have
thatS1 will be the set of peers for whichk forwards events through messages withTTL=l. By Rule 3,S1 is the
set of peers for whichk acknowledges events withTTL > l, and as the induction hypothesis also applies to the
peerk, it follows that |S1|=2ρ−(l+1). By Theorem 1, we know that any peerp acknowledges each event only once,
ensuring thatS1 andS2 are disjoint, and thus,|S|=|S1|+ |S2|=2ρ−(l+1) + 2ρ−(l+1)=2ρ−l.

The EDRA Rules 3 and 4 ensure that a peerp will only send a message withTTL = l > 0 if it acknowledges
at least one event withTTL ≥ l+1. Then, based on Theorem 2, we can state thatp will only send a message with
TTL = l > 0 if at least one in a set of2ρ−l−1 peers suffers an event. As the probability of a generic peer suffering
an event in aΘ interval isΘ · r/n, the probabilityP (l) of a generic peer sending a message withTTL = l 6= 0
at the end of eachΘ interval is

P (l) = 1− (1− 2 · r ·Θ/n)k, wherek = 2ρ−l−1. (IV.6)



As the messages withTTL=0 are always sent, the average number of messages sent by each peer perΘ interval
will be

Nmsgs = 1 +

ρ−1∑

l=1

P (l). (IV.7)

V. QUARANTINE

In any DHT system, peer joins are costly, as the joining peer has to collect information about its keys and the
IP addresses to fill in its routing table, and this joining overhead may be useless if the peer departs quickly from
the system. While ideally all peers in a DHT system should be able to solve lookups with a single hop at any
time, in extremely large and dynamic systems the overheads caused by the most volatile peers can be excessive.
Moreover, P2P measurement studies [12], [49], [50] have shown that the statistical distributions of session lengths
are usually heavy tailed, which means that peers that have been connected to the system for a long time are likely
to remain alive longer than newly arrived peers. To address those issues, we proposed aQuarantinemechanism, in
which a joining peer will not be immediately allowed to take part in the D1HT overlay network, but it will be able
to perform lookups at any moment. In this way, the most volatile peers will cause insignificant overheads to the
system, while the other peers will be able to solve lookups with just one hop most of the time (typically, during
more than 95% of their session lengths).

To join a D1HT system, a peerp retrieves the keys and IP addresses from a set of peersS (which can include
just one peer, e.g., the successor of the joining peer). WithQuarantine, the peers inS will wait for a Quarantine
periodTq (which can be fixed or dynamically tuned) before sending the keys and IP addresses top, postponing its
insertion into the D1HT ring. Whilep is in Quarantine, its join will not be reported, and it will not be responsible
for any key. The overhead reductions attained can be analytically quantified based on the Quarantine period and
the statistical distribution of the session lengths, as in asystem withn peers, only theq peers with sessions longer
thanTq will effectively take part of the overlay network and have their events reported.

To be able to perform lookups during its Quarantine, a quarantined peerp will choose the nearest (in terms
of latency) and best provisioned peers fromS and will forward its lookups to thosegatewaypeers. To avoid
excessive loads, each gateway peer may limit the rate of lookups it will solve on behalf of quarantined peers, even
though the experimental results that we will show in SectionVII-C, where each D1HT peer used less than 0.1%
of the available CPU cycles, indicate that the load imposed on the gateway peers should not be high. Anyway, this
extra load should be much inferior than those handled by superpeers (or supernodes) in hierarchical systems like
FastTrack [26], OneHop [17] or Structured Superpeers [32].

With the Quarantine mechanism, we avoid the join and leave overheads for peers with session lengths smaller
thanTq, but newly incoming peers will have their lookups solved in two hops while they are in Quarantine. We
believe that this extra hop penalty should be acceptable forseveral reasons. First, the additional hop should have
low latency, as it will be addressed to a nearby peer. Second,this extra overhead will only be necessary during
a short period (e.g., less than 6% of the average session length). Third, the Quarantine mechanism should have
beneficial effects even to the volatile and gateway peers, asthey will not incur the overhead of transferring the
keys and routing tables. Fourth, the Quarantine mechanism should significantly reduce the maintenance overheads
of all peers in the system (as will be confirmed by the results presented in Section VIII).

Furthermore, the Quarantine mechanism can also be used for other purposes. For instance, Quarantine can be
used to minimize sudden overheads due to flash crowds, by increasingTq whenever the event rate reaches the upper
limit that can be comfortably handled by the system.

VI. D1HT IMPLEMENTATION

We implemented D1HT from scratch, resulting in more than 8.000 lines of dense C++ code, even though we did
not yet implement the Quarantine mechanism. This implementation is fully functional and was tested on thousands
of nodes running Linux, and its source code is freely available [14].

Our implementation uses a variant of the Chord joining protocol [51], with a few important differences. First, any
join is announced to the whole system by EDRA. Second, the newpeerp gets the routing table from its successor
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Fig. 2. Message headers used in our implementations and analyses. The SeqNo field is necessary to assure message deliveryover UDP, and
the SystemID field allows any peer to discard unsolicited messages received from other DHT systems. Each 1h-Calot maintenance message
has a fixed size of 48 bytes (vc=384 bits, including 28 bytes for the IPv4 and UDP headers). Each D1HT and OneHop message has a fixed
part with 40 bytes (vm=320 bits, including IPv4 and UDP headers), followed by the IPv4 addresses (without port numbers) of the peers that
have joined and left the system in the default port (m=32 bits), and the IPv4 addresses (with port numbers) of the peers that have joined
and left the system using others ports (m=48 bits). All acknowledgment and heartbeat messages for the three systems have just the four first
fields shown (Type, SeqNo, PortNo and SystemID), and sova=vh=288 bits (including IPv4 and UDP headers).

ps. Third, to preventp from missing events while its joining is notified to the system, ps will forward to p any
event it knows untilp receives messages with all different TTLs.

To save bandwidth and minimize latency, the maintenance andlookup messages are sent with UDP, and TCP is
used for all other types of communications (routing table transfers, stabilizations, etc.). Each D1HT instance has
a default IPv4 port, but any peer may choose an alternative port when joining the system. Thus, we expect that
most events will be identified only by the peer’s four byte IPv4 address (as most peers should use the default port),
which led us to propose the message header layout as shown in Figure 2. Then, for Equation IV.5, we expect that
the averagem value will be around 32 bits.

Each D1HT peer stores its routing table as a local hash table indexed by the peer IDs in such a way that any peer
needs only to store the IPv4 addresses of the participant peers (including the port number), leading to a memory
overhead of about 6n bytes in each peer (plus some additional space to treat eventual hash collisions). In this way,
for environments such as HPC and ISP datacenters, each routing table will require a few hundred KBs at most.
For a huge one million Internet wide D1HT deployment, each routing table would require around 6 MB, which is
negligible for domestic PCs and acceptable even for small devices, such as cell phones and media players.

VII. E XPERIMENTAL EVALUATION

In this section, we will present our D1HT and 1h-Calot experimental results, which will be complemented by
our analytical evaluations presented in Section VIII.

It is worth noting the extensive experimental results we present in this section. First, we used two radically distinct
environments, specifically an HPC datacenter and a worldwide dispersed network. Second, our DHT comparison
used the largest experimental testbed set up so far, with up to 4,000 peers and 2,000 physical nodes. Finally, we
report the first latency comparison among DHTs and a directory server.

A. Methodology

The D1HT implementation used in our experiments was presented in Section VI, which includes only the base
D1HT proposal without any extension. In this way, we should better evaluate the unique D1HT contributions, but
we expect that our experimental results will reflect a worst case scenario in relation to production grade and better
tuned D1HT implementations, which would probably include anumber of well known optimizations (e.g., peer
re-announcements, parallel lookups, etc.), even though our implementation has been already thoroughly tested.

Because 1h-Calot was not implemented by its authors, we had to develop a real implementation of that system for
our experiments. To allow for a fair comparison, we implemented 1h-Calot after our D1HT code, and both systems
share most of the code, in an effort to ensure that differences in the results are not due to implementation issues.



Because each 1h-Calot maintenance message carries just oneevent, it does not make sense to include counters in
its message headers, which will then have the format shown inFigure 2.

In 1h-Calot each event incurs 2n maintenance messages (including acks), and each peer sendsfour heartbeats
per minute (which are not acknowledged), and so the analytical average 1h-Calot peer maintenance bandwidth will
be given by

BCalot = (r · (vc + va) + 4 · n · vh/60) bps (VII.1)

wherevc, va and vh are the sizes of the maintenance, acknowledgment and heartbeat messages, respectively (as
shown in Figure 2).

Each experiment evaluated both systems with a specific session lengthSavg and a given network sizen. In all
experiments, we usedSavg=174 min, as this value is representative of Gnutella [49] and it was used in other DHT
studies (e.g., [17], [33]). In some experiments, we also used Savg=60 min to exercise the systems under more
dynamic scenarios. The bandwidth results considered only the traffic for routing table maintenance and peer failure
detection, as the other overheads involved, such as lookup traffic and routing table transfers, should be the same
for all single-hop DHTs. For all experiments, we defined the routing tables with 6K entries (around 36KB).

Each experiment had two phases, where the first one was used togrow the system up to the target size and
the second phase was used for the measurements. In the first phase, each system started with just eight peers, and
one peer joined per second until the target size was reached,resulting in a steep growth rate (the systems doubled
in size in just eight seconds, with an eightfold growth in less than one minute), which should stress the joining
protocols. The second phase always lasted for 30 min, while each peer performed random lookups. We ran each
experiment three times and reported the average results.

In both phases of all the experiments, the systems were churned according to Equation III.1 and the chosenSavg

(60 or 174 min), and the peer leaves were random. Half of the peer leaves were forced with a POSIXSIGKILL
signal, which does not allow the leaving peer to warn its neighbors nor to flush any buffered event. To maintain
the system size, any leaving peer rejoined the system in three minutes with, unless otherwise stated, the same IP
and ID, which allowed us to evaluate both systems in a scenario with concurrent joins and leaves.

Even though our experiments stressed the joining protocolsand imposed a high rate of concurrent joins and leaves,
both D1HT and 1h-Calot were able to solve more than 99% of the lookups with a single hop in all experiments.

B. PlanetLab Bandwidth Experiments

To evaluate the system overheads in a worldwide dispersed environment, we ran experiments using 200 physical
PlanetLab [5] nodes, with either 5 or 10 D1HT and 1h-Calot peers per node, leading to system sizes of 1K or 2K
peers, respectively. Each peer performed one random lookupper second during the second phase of our PlanetLab
experiments.

Figure 3 shows the sum of the outgoing maintenance bandwidthrequirements of all peers for each system. The
figure shows that both DHTs had similar overheads for the smaller system size, while with 2K peers the demands
of 1h-Calot were 46% higher than those of D1HT. The more extensive experiments and analyses presented in
Sections VII-C and VIII will show that this difference will significantly increase with larger system sizes. Figure 3
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min.



Cluster # nodes CPU OS
A 731 Intel Xeon 3.06GHz single core Linux 2.6
B 924 AMD Opteron 270 dual core Linux 2.6
C 128 AMD Opteron 244 dual core Linux 2.6
D 99 AMD Opteron 250 dual core Linux 2.6
F 509 Intel Xeon E5470 quad core Linux 2.6

TABLE I
CLUSTERS USED IN OUR EXPERIMENTS. EACH NODE HAS TWOCPUS.

also shows that the analyses of both systems were able to predict their bandwidth demands, which differ to some
extent from previous results [34], where the D1HT analysis overestimated its overheads by up to 25%. We credit
those differences to a few factors. First, D1HT had an increase in bandwidth demands due to the implementation
of the mechanisms to closeΘ intervals based on Equation IV.4, which was not used in the experiments reported
in [34]. Additionally, because the D1HT analysis is strongly dependent onρ=⌈log2(n)⌉, it leads to more precise
predictions whenρ is close tolog2(n) (i.e., whenn is slightly smaller than a power of 2, which is the case with
all experiments presented here) and to overestimated results whenρ is significantly greater thanlog2(n) (as with
the results presented in [34]).

C. HPC Bandwidth Experiments

We also performed experiments on a subset of five clusters at aSeismic Processing HPC datacenter [38] (see
Table I). In that network, each node has a Gigabit Ethernet connection to an edge switch, while each edge switch
concentrates 16 to 48 nodes and has a 2 Gbps or 10 Gbps Ethernetconnection to a non-blocking core switch.

Each peer performed one random lookup per second during the second phase of these experiments, which were
conducted with the clusters under normal datacenter production, where typically most of the nodes were experiencing
100% CPU use, as imposed by the Seismic Processing parallel jobs. Nevertheless, we were able to run all our
experiments smoothly, without any single interference in the normal datacenter production, confirming that it is
absolutely feasible to run these DHT systems in heavily loaded production environments. In fact, in all our HPC
bandwidth experiments the average CPU use per D1HT peer was below 0.1% (including the cycles used by the
joining mechanism and the lookups).

Figures 4(a) and 4(b) show the sum of the outgoing maintenance bandwidth requirements of all peers for
each system for different churn rates. We plotted the measured and analytical requirements, showing that, as
in the PlanetLab results, the analyses for both systems wereprecise. The figures also show that D1HT had lower
maintenance bandwidth requirements for all cases studied,once more confirming in practice that D1HT can provide
a more lightweight DHT implementation than 1h-Calot. The analytical results that will present in Section VIII show
that the difference in favor of D1HT will grow to more than oneorder of magnitude for bigger systems.

We also ran our biggest case (4,000 peers) with the leaving peers rejoining with new IPs and IDs to evaluate
whether the reuse of IDs caused any relevant bias in our results. In fact, without reusing the IDs, the fraction of
the lookups solved with one hop dropped by less than 0.1%, butit remained well above our 99% target, which
allowed us to conclude that the reuse of IDs did not have any significant effect in our results.
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Fig. 5. Lookup latencies measured in the HPC environment with idle and busy (100% CPU use) nodes.

D. HPC Latency Experiments

In this section, we will present our latency experiments performed in the HPC datacenter. As the lookup latencies
are sensitive to the network load, we used 400 idle nodes fromCluster A (see Table I) but, as we expect that DHTs
should be able to be used in heavy loaded production environments, we measured the latencies with those nodes
both in the idle state and under 100% CPU load (by running two burnP6 [13] instances per node). Because we used
dedicated nodes, we could increase the lookup rate during the second phase of the experiments to 30 lookups/sec
per peer, which allowed us to evaluate the systems under an intense lookup load.

In addition to D1HT and 1h-Calot, we also ran a multi-hop DHT (Pastry) and a directory server (Dserver). In
an effort to avoid inserting bias due to implementation issues, Dserver was essentially a D1HT system with just
one peer. We first ran Dserver in a Cluster B node, which reached 100% CPU load when serving lookups from
1,600 peers, thus providing a first indication of the scalability issues of this client/server approach, after which we
picked up a dedicated node from Cluster F. For the multi-hop DHT, we used Chimera [11] not only because it
implements Pastry [48] (using base 4), which is one of the most prominent multi-hop DHTs, but also because it
did not require any prerequisites to be installed in the HPC clusters (e.g., Java, Python, etc.).

As our time windows with the dedicated cluster were limited,we ran the four systems concurrently in each
experiment. To study different system sizes, we varied the numbers of DHT peers and Dserver clients per node
from two to ten. For example, when running six peers per node,we concurrently ran six D1HT peers, six 1h-Calot
peers, six Chimera peers and six Dserver clients in each cluster A node.

The D1HT and 1h-Calot peers were churned withSavg=174 min, while Dserver and Chimera were not churned.
To verify whether the base latencies of the studied systems differ due to implementation issues, we first ran the
four systems with just two peers and the observed one-hop latencies were quite similar (around 0.14 ms).

Figure 5(a) and 5(b) show the latencies measured with the nodes in the idle state and under 100% CPU load,
respectively. As the measured Chimera latencies were higher than expected, we also plotted the expected Chimera
latencies assuming that each hop takes 0.14 ms. We believe that the differences between the measured and expected
Chimera latencies were due to either implementation issuesor measurement artifacts, but even the expected latencies
are much higher than those for the single-hop DHTs, which confirms that a multi-hop DHT solution is less suitable
for latency-sensitive applications. While Chimera latencies could be improved by using a larger base (e.g., 16), its
performance would still be worse than that of D1HT.

We can see from Figure 5(a) that all systems, except for Chimera, presented very similar latencies with idle
nodes and smaller system sizes, which was expected because D1HT and 1h-Calot solved more than 99% of the
lookups with one hop, while Dserver ran similar code. However, Dserver started to lag behind the single-hop DHT
systems at 3,200 peers (120% higher latencies), and at 4,000peers it provided latencies more than one order of
magnitude higher, revealing its scalability limitations.

We may observe in Figure 5(b) that the latencies of all systems degraded with busy nodes and that, quite
surprisingly, the D1HT and 1h-Calot latencies increased slightly with the system size when running on busy nodes.
To verify whether this unexpected behavior was related to the extra load generated by the artifact of running several
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Fig. 6. Lookup latencies measured in the HPC environment with busy (100% CPU use) nodes.

peers and four different systems per node under an intense lookup rate and full CPU load, we ran the 100% CPU
load experiments with just 200 physical nodes, varying again the number of peers per node from two to ten. The
results are plotted in Figure 6 along with the latencies measured with 400 nodes. For simplicity, in Figure 6, we
only plot the D1HT results, even though we also ran 1h-Calot,Chimera and Dserver for both the 200 and 400 node
experiments. Confirming our hypothesis, the figure indicates that the latency degradation observed was related to
the number of peers per physical node (and the overload they imposed on the already 100% busy nodes), as the
latencies measured with 200 and 400 nodes and the same numberof peers per node were quite similar, even though
the 400-node systems had twice the size. For instance, with four peers per node, the average latencies measured
with 200 nodes (total of 800 peers) and 400 nodes (total of 1,600 peers) were both 0.15 ms. With eight peers per
node, the results with 200 nodes (total of 1,600 peers) and 400 nodes (total of 3,200 peers) were 0.23 ms and 0.24
ms, respectively. These results indicate that the D1HT lookup latencies should not vary with the system size, but
they can degrade with overloaded peers, while they are stillsimilar to or better than those provided by Dserver and
Chimera.

VIII. A NALYTICAL RESULTS

As our experiments have validated the 1h-Calot and D1HT analyses, and the OneHop analysis had already been
validated in a previous work [17], we will now compare those three systems analytically. As discussed in Section
II, the 1h-Calot results presented in this section should also be valid for the 1HS [44] and SFDHT [24] systems. In
a previous work [33], we have already provided an extended D1HT analysis, studying the variation of the D1HT
overheads andΘ intervals for different values off , churn rates and system sizes; thus, here we will focus on
comparing the overheads of the systems being studied.

As in our experiments, our analytical results compute only the traffic for routing table maintenance, we used
f=1%, and we assumed random events and lookups. The OneHop analysis is available from [17], for which we
will consider the same message formats used in our D1HT implementation, as shown in Figure 2, because they
have been shown to be realistic in practice. Besides, the OneHop results always considered the optimal topological
parameters and did not account for the failure of slice and unit leaders. The OneHop and 1h-Calot results do not
consider message delays, while for D1HT we usedδavg=0.25 sec, which is an overestimation compared to the
Internet delay measurements presented in [49].

We varied the system size from104 to 107, which are representative of environments ranging from large corporate
datacenters to huge Internet applications, and studied average sessions of 60, 169, 174 and 780 min, where the latter
three were observed in KAD [50], Gnutella [49] and BitTorrent [2] studies. This range of session lengths is more
comprehensive than those used in most DHT evaluations (e.g., [17], [22], [23], [32]–[34]) and is representative of
widely deployed P2P applications.



1

10

100

1000

10000

10 100 1000 10000

b
a
n
d
w
i
d
t
h
 
(
k
b
p
s
)

number of peers (thousands)

D1HT peer without Quarantine
OneHop ordinary node
OneHop slice leader
1h-Calot peer

(a) Savg=60 min.

1

10

100

1000

10000

10 100 1000 10000

number of peers (thousands)

D1HT peer without Quarantine
OneHop ordinary node
OneHop slice leader
1h-Calot peer

(b) Savg=169 min (KAD dynamics).

1

10

100

1000

10000

10 100 1000 10000

b
a
n
d
w
i
d
t
h
 
(
k
b
p
s
)

number of peers (thousands)

D1HT peer without Quarantine
OneHop ordinary node
OneHop slice leader
1h-Calot peer

(c) Savg=174 min (Gnutella dynamics).

1

10

100

1000

10000

10 100 1000 10000

number of peers (thousands)

D1HT peer without Quarantine
OneHop ordinary node
OneHop slice leader
1h-Calot peer

(d) Savg=780 min (BitTorrent dynamics).
Fig. 7. Log-log plots showing the analytical outgoing maintenance bandwidth demands for D1HT, 1h-Calot and OneHop (we do not show
values below 1 kbps).

Figures 7(a) to 7(d) show log-log plots comparing the analytical bandwidth demands of D1HT and 1h-Calot
peers against those of the best (ordinary nodes) and worst (slice leaders) OneHop cases. From these figures we
can see that the OneHop hierarchical approach imposes high levels of load imbalance between slice leaders and
ordinary nodes. Moreover, a D1HT peer typically has maintenance requirements one order of magnitude smaller
than OneHop slice leaders, while attaining similar overheads compared to ordinary nodes. Compared to D1HT, the
1h-Calot overheads were at least twice greater and typically one order of magnitude higher for the cases studied.
The requirements for a D1HT peer in systems withn=106 and average sessions of 60, 169, 174 and 780 min are
20.7 kbps, 7.3 kbps, 7.1 kbps and 1.6 kbps, respectively. In contrast, the overheads for the OneHop slice leaders
and 1h-Calot peers for systems withn=106 and KAD dynamics were above 140 kbps.

The Quarantine analysis will be based on data from studies that observed that31% of the Gnutella sessions [12]
and 24% of the KAD sessions [50] lasted less than 10 minutes, which isa convenient value for the Quarantine
periodTq. Then, Figures 8(a) and 8(b) show the overhead reductions provided by Quarantine for D1HT systems
with dynamics similar to KAD and Gnutella, withTq=10 min. We can see that the maintenance bandwidth reduction
grows with the system size, as for very small systems the overheads were dominated by messages with TTL=0,
which are always sent even when there are no events to report.Although the length of the Quarantine period studied
was less than 6% of the average session length for both systems, the overhead reductions withn=107 for KAD and
Gnutella dynamics reached 24% and 31% respectively, showing the effectiveness of the Quarantine mechanism.
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Fig. 8. Estimated overhead reductions brought by Quarantine for systems with KAD and Gnutella behaviors.



IX. D ISCUSSION

In addition to validating the D1HT analysis, our experiments confirmed that D1HT was able to solve more than
99% of the lookups with a single hop and very low CPU and memoryoverhead, even with nodes under high CPU
load or peers widely dispersed over the Internet. For instance, in all our HPC bandwidth experiments, the average
CPU usage per peer was less than 0.1%, and the memory sizes forrouting table storage were around 36 KB per
peer.

Our results also showed that D1HT had the lowest overheads among all single-hop DHTs that support dynamic
environments, with typical reductions of one order of magnitude for big systems. D1HTs performance advantage
was due to its ability to group events for dissemination witha pure P2P approach, even for large and dynamic
environments where the system size and peer behaviors change over time. In contrast, other single-hop DHTs either
do not provide means for their peers to group events [24], [44], [45], [47], [52] or use a hierarchical approach with
high levels of load imbalance and other intrinsic issues [17].

Compared to a directory server, D1HT achieved similar latencies for small systems while attaining better
scalability, which allowed it to provide latencies up to oneorder of magnitude better for the larger systems studied,
even with nodes under full CPU load, revealing that D1HT is also an attractive solution for large-scale latency-
sensitive applications.

Considering that back in 2004 the BitTorrent peer average download speed was already around 240 kbps [40],
we may assume that the D1HT with 1.6-16 kbps maintenance overheads should be negligible for systems with
one to ten million peers and BitTorrent behavior. Moreover,as other studies found that most domestic connections
have atleast512 kbps of downstream bandwidth with very low occupation [16], [28], we argue that we should not
penalize lookup latencies to save fractions below 10% of theavailable bandwidth. Thus, in the near future, even
systems with up to ten million nodes with KAD or Gnutella dynamics will probably be able to benefit from the
lowest latencies provided by D1HT with less then 65 kbps maintenance overheads.

While 1h-Calot could also be used in HPC and ISP datacenters,its use would require the development and
maintenance of a DHT dedicated to those environments. In contrast, the distinguished D1HT ability to provide
both low latency and small overheads may allow it to support awide range of environments, in such a way that
D1HT can act as a commodity DHT, which makes D1HT a very attractive option for these corporate datacenters,
specially as they are preferably built on commodity hardware and software [4], [53].

X. CONCLUSION

While latency issues should become much more critical than bandwidth restrictions over time, the first DHT
proposals have opted to trade off latency for bandwidth, andrecent single-hop DHTs typically have either high
overheads or poor load balance. In this work, we presented D1HT, which has a pure P2P and self-organizing
approach and is the first single-hop DHT combining low maintenance bandwidth demands and good load balance,
along with a Quarantine mechanism that is able to reduce the overheads caused by volatile peers in P2P systems.

We performed a very extensive and representative set of DHT comparative experiments, which validated the
D1HT analysis and was complemented by analytical studies. Specifically, by using an experimental environment
that was at least 10 times greater than those of all previous DHT comparative experiments, the present work became
the first to assess five key aspects of DHT behavior in such practical settings. Concretely, the present work is the
first to i) report DHT comparative experiments in two different environments; ii) compare DHT lookup latencies;
iii) perform experiments with two different single-hop DHTs; iv) compare the latencies of multi and single hop
DHTs; and v) compare DHTs to central directories.

Overall, our results showed that D1HT consistently had the lowest maintenance costs among the single-hop
DHTs, with overhead reductions of up to one order of magnitude for large systems, and indicated that D1HT could
be used even for huge systems with one million peers and dynamics similar to those of popular P2P applications.

Our experiments also showed that D1HT provides latencies comparable to those of a directory server for small
systems, while exhibiting better scalability for larger ones, which shows that it is an attractive and highly scalable
option for very large latency-sensitive environments.

We believe that D1HT may be very useful for several Internet and datacenter distributed applications, since the
improvements in both bandwidth availability and processing capacity that we should continuously get will bring



performance expectations to users and applications, whichcan be frustrated by latency constraints. In addition,
trends in High Performance Computing, ISP and Cloud Computing environments indicate significant increases in
the system sizes, which will challenge the scalability and fault tolerance of client/servers solutions.

As a consequence of our extensive set of results, we may conclude that D1HT can potentially be used in
a multitude of environments, ranging from HPC and ISP datacenters to huge P2P applications deployed over
the Internet, and that its attractiveness should increase over time. This ability to support such a wide range of
environments may allow D1HT to be used as an inexpensive and scalable commodity software substrate for
distributed applications. As one step in that direction, wehave made our D1HT source code available for free
use [14].
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