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Abstract

Distributed Hash Tables (DHTs) have been used in severdicafipns, but most DHTs have opted to solve
lookups with multiple hops, to minimize bandwidth costs Mtsacrificing lookup latency. This paper presents D1HT,
an original DHT which has a peer-to-peer and self-orgagiarchitecture and maximizes lookup performance with
reasonable maintenance traffic, and a Quarantine mechdoniseduce overheads caused by volatile peers. We
implemented both D1HT and a prominent single-hop DHT, angerformed an extensive and highly representative
DHT experimental comparison, followed by complementamglygtical studies. In comparison with current single-hop
DHTSs, our results showed that D1HT consistently had the $dveandwidth requirements, with typical reductions
of up to one order of magnitude, and that D1HT could be used ev@opular Internet applications with millions
of users. In addition, we ran the first latency experimenmmgaring DHTs to directory servers, which revealed
that D1HT can achieve latencies equivalent to or better thdimectory server, and confirmed its greater scalability
properties. Overall, our extensive set of results allowsdai conclude that D1HT can provide a very effective
solution for a broad range of environments, from largeesaarporate datacenters to widely deployed Internet
application@@.
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I. INTRODUCTION

Distributed hash tables (DHTSs) are a highly scalable smtufor efficiently locating information in large-scale
distributed systems; thus they have been used in a wide raihgpplications, from Internet games to databases.
While most DHTs incur in high latencies, recent results stmwhat DHTs can also be applied in significant
classes of applications with performance constraintsh @ag Internet Service Providers (ISPs), as long as they
guarantee low enough latency to access information. Spaktyfi the development of a proprietary low-latency
DHT was critical to the performance of the Amazons Dynamdesys15], where scalability, self-organization and
robustness were fundamental to supporting a productiotersysver thousands of error-prone nodes, whereas the
use of central directories could lead to several problerk Bowever, the DHT implemented in Dynamo does not
support open environments, has high levels of overheadaurding to its authors, it is unable to scale to very
large systems, besides being very application specificdtitian, recent trends in High Performance Computing
(HPC) and ISP datacenters indicate significant increaséiseirsystem sizes [4]| [20], including a huge demand
from cloud computing [3],[[7], which will challenge the sadllity and fault tolerance of client/servers solutions. |
fact, to support a wide span of large-scale distributediegfbns, new self-organizing DHTs with greater levels of
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scalability, performance and efficiency are required ineottd be used as a commodity substrate for environments
ranging from corporate datacenters to popular InterneliGgions.

The information stored in a DHT is located througlmokup requests, which are solved with the use of
routing tablesstored on all participant peers. As peers can freely entdrleave the network, DHTs typically
use maintenance messages to keep the routing tables upetoHtavever, maintenance messages increase the
DHT'’s network traffic, which contributes adversely to bolte tookup latency and network bandwidth overheads.
Overall, the size of routing tables is a critical issue in aTDgystem and poses a classic latency vs. bandwidth
tradeoff. Concretely, large routing tables allow fasteskiops because peers will have more routing options, but
they increase the bandwidth overheads due to higher maintertraffic.

In this regard, the first DHT proposals (e.q../[29].][301.1i428], [51], [54]) opted to use small routing tables in
such a way that each lookup tak€glog(n)) hops to be solvedn(is the system size), aiming to save bandwidth
to the detriment of latency and thus compromising the useuch snulti-hop DHTs for performance sensitive
applications. However, as similar tradeoffs between kateand bandwidth occur across several technologies, the
latency restrictions tend to be more critical in the longrteas it has already been shown that ‘over time bandwidth
typically improves by more than the square of the latencyetdns’ [39]. From this perspective, a number of
single-hopDHTs have been proposed (e.d., |[17],1[33],1[52]), which abée &o provide low latency access to
information because each peer maintains a full routingetabherefore, the lookup performance achieved by these
single-hop DHTSs should allow their use even in latency-giseEnvironments where multi-hop DHTs cannot satisfy
the latency constraints. Besides, it has been shown thratyftdems with high lookup rates, single-hop DHTs may in
fact reduce theotal bandwidth consumption, since each lookup in a multi-hop Dyfiically consume® (log(n))
more bandwidth than a single-hop lookup, and this extraupokverhead may offset the routing table maintenance
traffic [46], |52]. Nevertheless, most single-hop DHTsldtilcur high bandwidth overheads, have high levels of
load imbalance, or are unable to support dynamic enviromsnen

With these problems in mind, this work provides severaMaaté contributions that will improve the understanding
and use of single-hop DHTs in a wide range of distributedesyst We present D1HT, an original single-hop DHT
combining low bandwidth overheads and good load balance agvelynamic environments, while being able to
efficiently adapt to changes in the system behavior usingfeogganizing and pure P2P approach. We will also
present a Quarantine mechanism that can reduce the systahmeads caused by volatile nodes in P2P systems.

To quantify the latencies and overheads of single-hop Dhiesimplemented D1HT and 1h-Calot [52] from
scratch and evaluated both single-hop DHTs with up to 4,08&pand 2,000 physical nodes in two radically
different environments (an HPC datacenter and a worldwidpedsed network) under distinct churn rates. Those
experiments provided a number of very important resultshag validated the analyses for both DHTSs, confirmed
their low latency characteristics, and showed that D1HTs@tantly has less bandwidth requirements than 1h-Calot.
Besides, our experiments also showed that D1HT has nelgligiPU and memory overheads that allow its use
even in heavily loaded nodes, as it used less than 0.1% ofvtitalle CPU cycles and very small memory to
store the routing tables, even under a high rate of concupeer joins and leaves.

Based on the validation of the D1HT and 1h-Calot analysesfustber performed an analytical comparison
among D1HT, 1h-Calot and OneHop [17] for system sizes of ufpGamillion peers. Our results revealed that
D1HT consistently had the lowest maintenance overheadh, retuctions of up to one order of magnitude in
relation to both OneHop and 1h-Calot. Moreover, these teslso indicated that D1HT is able to support vast
distributed environments with dynamics similar to thosemdely deployed P2P applications, such as BitTorrent,
Gnutella and KAD, with reasonable maintenance bandwidtimadals. Overall, D1HTs superior results are due
to its novel P2P mechanism that groups membership changgsrdpagation without sacrificing latency. This
mechanism was based on a theorem that will be presentedsipdbpier, which allows each peer in a D1HT system
to independently and dynamically adjust the duration oflibiffering period, while assuring low latency lookups.

While scalable performance has been a fundamental arguméator of DHTs over central directory servers,
we are not aware of any published experiments demonstrdtingp fill in this gap, we performed the first
experimental latency comparison among three DHTs and atdige server, using up to 4,000 peers. These
experiments demonstrated the superior single-hop DHTabili#y properties and provided us with other important
results that will be presented in this work.



Except from our preliminary D1HT experiments _[34], all pimys DHT comparative evaluations with real
implementations have used a few hundpdysicalnodes at most and have been restricted to a single enviradnmen
(e.q., [17], [43], [54]). Thus, the evaluation presentedhis paper, which used up to 4,000 peers in two radically
distinct environments, can be regarded as a highly reptathes experimental DHT comparison, and the first to
compare the latencies provided by distinct DHTs and a dirgcterver.

Finally, our extensive set of experimental and analytieasluits allowed us to conclude that D1HT consistently
has the lowest overheads among the single-hop DHTs intemtiise far, besides being more scalable than directory
servers, and that D1HT can potentially be used in a multinfaavironments ranging from HPC and ISP datacenters
to applications widely deployed over the Internet.

The rest of this paper is organized as follows. The next tvaticges discuss related work and present the D1HT
system design, and in Sectign]IV we present the event dissgiom mechanism used by D1HT. In Sectigds V
and[Vl, we present Quarantine and our D1HT implementatie@cti®nd VIl and VIIl present our experimental and
analytical results, which are discussed in Secfioh I1X. Watbonclude the paper.

Il. RELATED WORK

In recent years, DHTs and P2P systems have been subjecttensénresearch. In particular, the design of a
DHT that supports large-scale networks is a very difficulthpjem on its own, which poses specific challenges
of scalability and efficiency. Therefore, in this work, wects on single-hop DHTs whose event dissemination
mechanisms aim at large and dynamic environments. In pechiesides D1HT, the only two other single-hop
DHTs that support dynamic networks are the OneHop [17] an€dlot [52] systems, both of which differ from
D1HT in the following fundamental ways.

The 1h-Calot[[5R] DHT, which was introduced concurrentithvD1HT [33], also uses a pure P2P topology,
though they differ in significant ways. First, 1h-Calot usesn propagation trees based on peer ID intervals, while
D1HT constructs its dissemination trees using message .T3ésond, 1h-Calot uses explicit heartbeat messages
to detect node failures, while D1HT relies on the mainteeamessages. Third and most important, 1h-Calot peers
cannot effectively buffer events and, at the same time, renthat the lookups will be solved with a single hop,
even for hypothetical systems with fixed size and peer behakn contrast, D1HT is able to effectively buffer
events for real and dynamic systems without sacrificingniate

Besides D1HT, OneHop is the only other single-hop DHT thabig to effectively buffer events for dissemination.
However, while D1HT is a pure P2P and self-organizing syst@meHop relies on a three-level hierarchy to
implement event buffering, and its topology incurs highelevof load imbalance among its different types of
nodes. Additionally, to achieve its best performance, atles in an OneHop system must agree on some system-
wide topological parameters [52], which are likely to befidiflt to implement in practice, especially as the best
parameters should change over time according to the syszenaisd behavior.

In addition to the differences discussed above, D1HT is #&dblachieve overheads that are up to one order of
magnitude smaller than those of both 1h-Calot and OneHopeawill see in Section _VIII.

Except for D1HT, 1h-Calot and OneHop, all other single-hdgTB introduced so far do not support large and
dynamic environments [15], [24], [44], [45], [47]. Amongese, our 1h-Calot overhead results should be also valid
for SFDHT [24] and 1HS[[44], as 1HS is based on the 1h-Calonteaance algorithm and SFDHT uses a similar
event dissemination mechanism.

While single hop DHTs must maintain full routing tables, sbaystems opted to use much smaller routing tables
to solve lookups with a constant number (i@(1)) of multiple hops. For example, soni&1) DHTs useO(y/n)
routing tables to solve lookups with two hops. In this way,airone million peer network, such a DHT system
will maintain a routing table with a few thousands entriesjak will prevent it to address directly all one million
peers with a single hop. On the other hand, these DHTs wileHawer maintenance overhead, and they may
be suitable for applications that are not latency sensiBesides solving lookups witt)(1) multiple hops, those
systems differ from D1HT in other important aspects. Fotanse, Z-Ring([25] uses Pastry [48] to solve lookups
with two hops in systems with up to 16 million nodes. Tulip @id Kelips [18] use gossip to maintain routing

3From now on we will refer to peer joins and leaves simplyesents



tables of sizeO(y/n) to solve lookups with two hops. Structured Superpeers [82] laH* [27] use hierarchical
topologies to solve lookups with three hops.

Accordion [23] and EpiChord [21] do not ensure a maximum nendf lookup hops, but they use parallel lookups
and adaptation techniques to minimize lookup latencied,thay can converge to one hop latencies depending on
the bandwidth available. Some of those techniques can bleingmted over our basic D1HT protocol (e.g., parallel
lookups). Beehivel [41] is a replication framework to spepdaokups for popular keys. Concurrently to D1IHT and
1h-Calot, a mechanism for information dissemination wiabdrithmic trees was proposed In [8], but, in contrast
to D1HT, it does not perform any kind of aggregation. Scrift@][and SplitStream_[9] disseminate information,
but they do not perform aggregation nor use logarithmicstie®@ong several other differences in relation to D1HT.

Quarantine approaches have been proposed as a means\adrititar for preventing vulnerabilities in the Internet,
such as worm threats [36], but, to the best of our knowledys,i$ first work to propose, evaluate and show the
effectiveness of a quarantine approach for P2P systems [33]

Ill. DIHT SYSTEM DESIGN

A D1HT system is composed of a dBtof n peers and, as in Chord [51], the keys are mapped to peers based
on consistent hashinLl9], where both peers and keys have IDs taken from the saewgifiér ring [0 : N], with
N >> n. The key and peer IDs are, respectively, the hashes (e.dA1 JBY]) of the key values and the peer IP
addresses. Similarly to previous studies (elg.| [17]},[#29], [51]), we used consistent hashing and the random
properties of the cryptographic function, which allowedasssume that the events and lookup targets are oblivious
to the peer IDs and randomly distributed along the ring.

In D1HT, each peer has a full routing table, and so any lookap lwe solved with just one hop, provided that
its routing table is up to date. However, if the origin peeuimware of an event that has happened in the vicinity
of the target peer (e.g., a node has joined or left the systéra)lookup may be initially addressed either to a
wrong peer or to a peer that has already left the system. In tases, the lookup will eventually succeed after
retrying [51], but it will take longer than expected. To cdetply avoid thoseaouting failures(as the lookup will
eventually succeed [51], we do consider it asating failure instead of dookup failurg, D1IHT would have to
immediately notify all itsn peers about the occurrence of any event in the system, whiginiply infeasible.

In practice, single-hop DHTs must try to keep the fractiorraiting failures below an acceptable maximum by
implementing mechanisms that can quickly notify all peershie system about the events as they happen. These
event dissemination mechanisms represent the primarinatish among the single hop DHTs, and in the next
section we will present the EDRA mechanism introduced wittHD.

As in other works (e.g./[17]/[33]), we will assume that thestems are churned with an event rate (or churn
rate) r proportional to the system size, according to Equaltiod] lbielow, whereS,,,, is the peer average session
length.

= 21/Sug (.1)

We refer to thesession lengths the amount of time between a peer’s join and its subsetpeam; thus, Equation
[L.I]simply assumes that, as expected, each peer genénatas/ents per session (one join and one leave). As the
average session lengths of a number of different P2P sydtewes already been measured (eld., [6]) [49]) [50]),
the equation above allows us to calculate event rates tleateqresentative of widely deployed applications. In
Sectiong VIl and ' VIll, we will present experimental and apighl results with different session lengths, which will
allow us to evaluate its effect on the maintenance overheads

In D1HT, any message should be acknowledged to allow foamsmissions in the case of failures, which can
be done implicitly by a protocol like TCP or be explicitly ingmented over an unreliable protocol like UDP. We
assume that the maintenance messages are transmitted DPetdJsave bandwidth, but we consider the choice
of the transport protocol for all other messages as an imghation issue. We also consider that the details of
the joining protocol should be decided at the implementakavel. In Sectioh I, we will discuss how we ensure
message delivery in our D1HT implementation and what jgjninotocol we used.

D1HT is a pure P2P and self-organizing system, but its flabltgy does not prevent it from being used as a
component of hierarchical approaches aiming to exploittbterogeneity of the participant nodes in a system. For



example, the FastTrack network [26] has two classes of ndtessuper nodes (SN) and ordinary nodes (ON).
SNs are better provisioned nodes, and each SN acts as al airdcdory for a number of ONs, while flooding
is used among the SNs. As measurements [26] have shown tefitr&ek should have less than 40K SNs with
an average session length of 2.5 hours, the analysis thatilvpresent in Sectio IV shows that we could use
a D1HT system to connect the SNs with maintenance costs aago9 kbps per SN. This overhead should be
negligible, especially if we consider that the SNs are \etivisioned nodes and that we would avoid the flooding
overheads while improving the lookup performance.

We will not address issues related to malicious nodes andanketattacks, although it is clear that, due to their
high out-degree, single-hop DHTs are naturally less valblerto those kinds of menaces than low-degree multi-hop
DHTs.

IV. EDRA

As each peer in a D1HT system should know the IP address of etleer peer, any event should aeknowledged
by all peers in the system in a timely fashion to avoid staleting table entries. Here, we say that a peer
acknowledgesin event when it either detects the join (or leave) of its pcedsor or receives a message notifying
of an event.

To efficiently propagate any event to all peers in a systentjDfinakes use of the Event Detection and Report
Algorithm (EDRA), which can announce any event to the whagtstem in logarithmic time with a pure P2P
topology and provides good load-balance properties couplth low bandwidth overhead. Additionally, EDRA is
able to group several events into a single message to sadevluth, yet it ensures an upper bound on the fraction
of stale routing table entries.

At first glance, grouping several event notifications per sage seems to be an obvious and easy way to save
bandwidth, as any peer can locally buffer the events thatirodaring a period of time and forward them in a
single message. However, such a mechanism imposes del#ys @vent dissemination, which in turn will lead to
more stale entries in the routing tables; thus, the diffiquiestion is the followingFor how long can each peer
buffer events while assuring that the vast majority of thekips (e.g.99%) will be solved with just one hop?
This problem is especially difficult because the answer dépeon a number of factors that vary unpredictably,
including the system size and churn rate. EDRA addressesgbile based on a theorem that will be presented
in this section, which allows each peer to independentiystdihe length of the buffering period while assuring
that at least a fraction f-of the lookups will be solved with a single hop {s typically 1%, but it can be tuned
according to the application).

In this section, we will formally describe EDRA by means ofed of rules, prove its correctness and load balance
properties, and present its analysis. Before we begin, Welgfine a few functions to make the presentation clearer.
For anyi € N andp € D, theiy, successor of is given by the functiosucc(p, i), wheresuce(p, 0)=p andsucc(p, 1)
is the successor ofucc(p,i-1) for ¢ > 0. Note that fori > n, succ(p,i)=succ(p,i-n). In the same way, the,,
predecessor of a pegris given by the functiomred(p, i), wherepred(p,0)=p andpred(p, i) is the predecessor of
pred(p,i-1), for i > 0. As in [29], for anyp € D andk € N, stretch(p, k)={Vp; € D | p;=succ(p,i) A 0 <1i < k}.
Note thatstretch(p,n-1)=D for anyp € D.

A. The EDRA Rules

In this section, we will first present a brief description dEA and then formally define it. To save bandwidth,
each peer buffers the events acknowledged during intenfat3 seconds @ intervals), whereo is dynamically
tuned (as it will be seen in Sectibn T\V+D). At the end ddanterval, each peer propagates the events locally buffered
by sending up tgp=[log,(n)] maintenance messages, as shown in Figure 1. Each mainéemeassaga/ (I) will
have a Time-To-Live (TTL) countet in the range [@) and will be addressed teucc(p, 2'). To perform event
aggregation while assuring that any event will reach allrpée the system, each messabg!/) will include all
events brought by any messabg3),j > [, received in the preceding seconds. To initiate an event dissemination,
the successor of the peer suffering the event will include &ll messages sent at the end of the curfeématerval.

The rules below formally define the EDRA algorithm we haveettyi described above:
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Rule 1: Every peer will send at least one and up tmaintenance messages at the end of gadec interval
(© interval), wherep=[log,(n)].

Rule 2: Each maintenance messadél) will have a distinct TTLI, 0 <[ < p, and carry a number of events.
All events brought by a messadé (/) will be acknowledgedvith TT'L=[ by the receiving peer.

Rule 3: A message will only contain events acknowledgednduttie ending interval. An event acknowledged
with TT'L=l, | > 0, will be included in all messages wWithT'L < [ sent at the end of the curreft
interval. Events acknowledged wifiT’ L=0 will not be included in any message.

Rule 4: Messages witd"T'L=0 will be sent even if there is no event to report. Messageis Wi'L > 0 will
only be sent if there are events to be reported.

Rule 5: If a peerP does not receive any message from its predecesBorT ;... sec,P will probe p to ensure
that it has left the system and, after confirmatidhwill acknowledgep leaving.

Rule 6: When a peer detects an event in its predecessor (joinasl or left the system), this event is considered
to have beeracknowledgedvith TT'L=p (so it is reported througlp messages according to Rule 3).

Rule 7: A peerp will send all messages WIti'T L= to succ(p, 2').

Rule 8: Before sending a messagestac(p, k), p will discharge all events related to any peersimetch(p, k).

Rules 4 and 5 should allow each peer to maintain pointersstodtrect successor and predecessor even in the
case of peer failures. Moreover, to improve robustnessparyp should run a local stabilization routine whenever
it does not receive a reply to a msg with TTL=0 or when it reesi@ msg with TTL=0 (or TTL=1) from others
than its predecessor (@red(p,1)), and this routine should allow any peer to detect its cérpgedecessor and
successor even if multiple consecutive peers fail simelbasly. As there are already routines proposed in the
literature that can accomplish these tasks (&.0. [51]),eagd its details to be decided at the implementation level.

Figure[1 shows how EDRA disseminates information about semteto all peers in a system according to the
rules just presented, and it illustrates some propertiaswie will formally prove in the next section. The figure
presents a D1HT system with 11 peews< 4), where peep crashes and this evenis detected and reported by its
successoP. The peers in the figure are shown in a line instead of a ringdditate the presentation. Note th&t
acknowledges after Tj.;..: Sec (Rule 5) withl'T'L = p (Rule 6). According to Rules 3 and P, will forward ¢ with
p = 4 messages addressedRrp=succ(P, 2"), Py=succ(P,2'), Py=succ(P,2?) and Pg=succ(P, 2%), as represented
by the solid arrows in the figure. AB,, Py and Py will acknowledges with TTL > 0, they will forward it to
P3=succ(Ps,2%), Ps=succ(Py,2"), Ps=succ(Py,2') and Py=succ(Ps,2°), as represented by the dashed arrows.
BecauseP;s will acknowledges with T7TL=1, it will further forward it to P;=succ(Ps,2") (doted arrow). Note
that Rule 8 prevent$k from forwardinge to succ(Ps,2') and succ(Ps, 2?), which in fact areP and P;, saving
these two peers from having to acknowledgvice.

B. EDRA Correctness

The EDRA rules ensure that any event will be delivered to aérp in a D1HT system in logarithmic time, as
we will shortly show in Theorerhl1. For this theorem, we wilhage message delays and consider that all peers
have synchronous intervals, i.e., tBeintervals of all peers start at exactly the same time. Themtes of message



delays means that any message will arrive immediately atléttination, and because we are also considering
synchronou® intervals, any message sent at the end 6f aterval will arrive at its destination at the beginning
of the subsequer® interval. We will also assume that no new event happens alhtieers are notified about the
previous event. All these practical issues will be addreésseSectior 1V-C.

Theorem 1. An event that is acknowledged by a pegwith TT'L=[ and by no other peers iB will be forwarded
by p through! messages in such a way thawill be acknowledged exactly once by all peerssinetch(p, 2'-1)

and by no other peer in the system. The average filyg. for a peer instretch(p,2!-1) to acknowledge will

be at most - ©/2 after p acknowledged.

Proof: By strong induction inl. Fori=1, the EDRA rules imply thap will only forward ¢ through a message
with TT L=0 to succ(p, 1). As this message should be sent at the end of the cu@rénterval, succ(p, 1) will ac-
knowledge: at mostO sec aftep acknowledged it, making the average time for peetgimtch(p, 1)={p, succ(p, 1)}
to beTsy,.=(© + 0)/2=0/2 (at most). Thus, the claim holds fér1.

Forl > 1, the EDRA rules imply thap will forward ¢ throughl messages at the end of the curréninterval,
each one with a distinct TTL in the range [0), Then, after© sec (at most) each pegr=succ(p,2), 0 < k <,
will have acknowledged with TT'L=k. Applying the induction hypothesis to each of theseknowledgements, we
deduce that each acknowledgment made by a peénplies that all peers iBtretch(py, 28-1) will acknowledge
e exactly once. Accounting for all1 acknowledgments made by the peggsand that Rule 8 will prevent from
being acknowledged twice by any peersitretch(p, 2°-n), we conclude that will be acknowledged exactly once
by all peers instretch(p, 2!-1). By the induction hypothesis, none of those peers will fadvato a peer outside
this range, sa will not be acknowledged by any other peers in the system.ifithection hypothesis also ensures
that the average time for the peers in eaetetch(py, 28-1) to acknowledge will be (at most)k - ©/2 after the
respective peep, acknowledged it, which will lead t@,,,.=l - ©/2 (at most) forstretch(p,2'-1).

[ |

Applying Theoren Il and the EDRA rules to a peer join (or leabe) is acknowledged by its succesgor
we can conclude that this event will be further acknowledgedctly once by all peers intretch(p,2°-1)=D.
Moreover, the upper bound on the average acknowledge tirthéoavp - © /2. We can thus formally ensure three
very important EDRA properties. First, any event will be aanced to all peers in a D1HT system, ensuring that
they will receive the necessary information to maintainirtheuting tables. Second, each peer will be notified of
any event just once, avoiding unnecessary bandwidth osdehand ensuring good income load balance. Third,
for each event, the average notification time is bounde@ b /2, and this result will be used in Section 1V-D
to develop a mechanism that will allow each peer in a D1HTesysto dynamically find the optimal value f&
based on the current system size and behavior.

We can also show that the last peer to acknowledge an event weusucc(p,n — 1) (which is pred(p, 0)),

p - © secs aftep had acknowledged the event. In practipeed(p,0) will know about the event much before, due
to the stabilization routine discussed in Secfion IV-A.

C. Practical Aspects

In Theoreni 1, we did not consider the effects of message sl@lagt asynchronou intervals; thus, we will turn
to them in this section. To compute those effects, we wiluases that each maintenance message will require an
average delay of,,, to reach its target, and it will typically arrive at the midddf a© interval. Therefore, under
those more realistic assumptions, each peer in the evesgrdisation path should add an averagéQf+0 /2 to
the event propagation time, leading to the adjusted value - d.,, + ©)/4. Note that we have not yet considered
the time to detect the event, which we will assume tdlhe...=2 - O, reflecting the worst-case scenario in which,
after one missing message withi'L=0, a peer will probe its predecessor for up@osec before reporting its
failure. Thus, the upper bound on the average acknowledge ftior any event will be

Tavg:2'9+p'(@+2'5avy)/4 sec (|V.1)

Equatior V.1 overestimateR,,, because it only considers the worst-case of peer failurbsreas we should have
setTyeeet = 0 for joins and voluntary leaves.



In TheorentlL, we also considered that no new event would mapp# all peers had been notified of a previous
event, which is not a reasonable assumption for real andndignsystems. While the admission of new peers should
be correctly handled by the joining protocol, peer leavesnanre complicated, and we may not expect that all peers
in a system will have identical routing tables. For instarveleen a peer fails before forwarding the locally buffered
events, the propagation chain for these events will be glgrtbroken. However, because this problem may occur
only once per peer session (at most), it should not have afisamt effect, as the duration of the buffering period
(a few tens of seconds at most [33]) is typically orders of nitagle smaller than the average session length (e.g.,
almost three hours for KAD and Gnutella). For example, fategns with Gnutella behavior the results presented
in [33] show that this problem should happen only once forualdb000 intervals. So even if all nodes leaves
were due to failures at the exact end of thentervals (which is a very conservative assumption), léss 10.07%
of the events forwarded by each peer during its lifetime wdag lost due to this reason. If we consider that half
of the leaves are due to failures (which is also conservatared that those failures typically occurs at the middle
of the © intervals, then less than 0.02% of the events forwarded bip paer would be lost (in other words, only
one in around 6000 events forwarded by each peer would getlesto this issue).

In fact, in Sectiof VI, we will see that D1IHT was able to solwere than 99% of the lookups with just one hop
in all experiments, even under a high rate of concurrensjaind leaves, which is a strong experimental evidence
that the routing failures due to those practical issues Ishoot be relevant in relation tg.

Besides the problems discussed so far, there are a numbeadifcal situations that can lead to stale routing
table entries in D1HT and other DHT systems, and we will noaible to completely remedy all of them. For that
reason, as in many other systems (elg.| [17]) [18], [21]], [B3D]), any D1HT implementation should allow the
peers to learn from the lookups and maintenance messagesftorp additional routing table maintenance without
extra overhead. For example, a message received from arownkpeer should imply its insertion in the routing
table. In the same way, routing failures will provide infation about peers that have left or joined the system.
In addition, many other known mechanisms that are commosédun other DHT systems could be implemented
on top of our base D1HT design, such as event re-announcsifigjtand gossip [45] to improve routing table
accuracy, or parallel lookups (as in_[21], [23]) to mitigdte latency penalties caused by timeouts due to missed
leave notifications. We should point out that even with pardbokups, the D1IHT lookup bandwidth demands
should be smaller than those of multi-hop DHTSs for large ayst

D. Tuning EDRA

In this section, we will show how to tune EDRA to ensure thatvig fraction 11 of the lookups will be solved
with one hop, whergf can be statically defined (e.gf=1%) or dynamically adjusted.

As the lookups are solved with just one hop, to achigvie is enough to ensure that the hops will fail with
probability f, at most. As discussed in Section Ill, we may assume thatoibleup targets are random, as in many
other studies (e.g.. [17].[22], [32],_[51]). Then, the age fraction of routing failures will be a direct result of
the number of stale routing table entries. In that mannesatsfy f, it suffices to assure that the average fraction
of stale routing table entries is kept belgW{17].

Given that the average acknowledge time is at nigg}, the average number of stale routing table entries will
be bounded by the numbers of events occurred in theTlagtseconds, i.e.,,, - . Then, we should satisfy the
inequality 75,4 - /n < f, and thus, by Equations IIl.1 and V.1, the maxim@nvalue should be

©=(2-f Sawg—2p:davg)/(8+ p) sec. (IV.2)

The equation above requires each peer to know the averageagedelay; to ease the implementation, we will
simply assume that,,,=© /4, which is an overestimation according to previously puigis results [33],[49]. Then

©=(4-f-Sawg)/(164+3-p) sec. (IV.3)

As all D1HT peers know about any event in the system, EqualiBbd] and[1V.3 allow each peer to dynamically
calculate the optimal value foP based on the event rate that is observed locally, withoutnted for further
communication or agreement with other peers. This alloveh gmeer in a D1HT system to independently adapt
to the environment dynamics to maximize the buffering pknaithout penalizing latency, even for large real



systems whose size and peer behavior typically change muer tn contrast, as discussed in Secfidn Il, peers in
all other P2P single hop DHTs are unable to independentiyutate the length of event buffering periods, even
for hypothetical systems with fixed size and peer behavior.

To make D1HT more robust to sudden bursts of events, we eatetick original DIHT analysis to allow each
peer to overestimate the maximum number of events it mayeb#f) according to Equatioh 14 below. This
equation was derived from Equatibn V.3 with the assumptiat peers in a D1HT system observe similar event
rates (which led us to assume thatF/0).

E=@8-f-n)/(164+3-p) events (IV.4)

E. Maintenance Traffic and Load Balance

While we have proven that EDRA ensures a good income loashbejdt does not seem at first glance to provide
good balance in terms of outgoing traffic. For instance, guke[1, peer” sent four messages reportipgerash,
while P; did not send a single message. But we should not be conceritiedhe particular load that is generated
by a single event, as it should not exceed a few bytes per Negertheless, we must guarantee good balance with
respect to the aggregate traffic that is necessary to diesggninformation about all events as they happen, and
this outgoing maintenance load balance will rely on the aandlistribution properties of the hash function used.
As discussed in Sectidnlll, the chosen function is expettedistribute the peer IDs randomly along the ring.
Then, as in many other studies (e.q../[171][22].][29].] [51§e will assume that the events are oblivious to the
peer IDs, leading to a randomly distributed event nat& hus, the average number of messages each peer sends
per © interval will be (including message acknowledgments)

(Nmsgs - (vm +vq) +7-m-©)/© Dbit/sec (IV.5)

where m is the number of bits to describe an event, apg and v, are the bit overheads (i.e., headers) per
maintenance message and per message acknowledgmenttivedpeAs no peer will exchange maintenance
messages with any node outsitle Equatior V.5 will reflect both the incoming and outgoingeeage maintenance
traffic.

F. Number of Messages

EquatiorL IV.5 requires us to determine the average numbmestages a peer sends, which is exactly the purpose
of the following theorem.

Theorem 2. The set of peer$ for which a generic peep acknowledges events wilfil’ L > | satisfies|S|=2"1.

Proof: By induction onj, wherej=p-I. For j=0, Rule 2 ensures that there is no message Witlh. > I=p. Then,
the only events that acknowledges witH'T'L > p are those related to its predecessor (Rule 6§sfpred(p, 1)},
which leads tgS|=1=20=2",

Forj > 0,1 = p-j < p. As S is the set of peers for which acknowledges events with7'L. > [, we can say that
S=51U 52, whereS1 and S2 are the sets of peers for whighacknowledges events withT' L=l andTTL > I,
respectively. By the induction hypothesjs2|=2/—(+1 . As | < p, the predecessar will not be in S1 (Rule 6).
Thus, as Rule 7 implies thatonly receives messages wifil’'L=I from a peerk, wherek=pred(p,2'), we have
that S1 will be the set of peers for whickh forwards events through messages viith L=I. By Rule 3,51 is the
set of peers for whictk acknowledges events withT L > [, and as the induction hypothesis also applies to the
peerk, it follows that|S1|=2°—(+1), By Theorenill, we know that any peemacknowledges each event only once,
ensuring thatS1 and S2 are disjoint, and thugS|=|S1| 4 [S2|=2°~(+1) 4 2p=(+1)=gp-, |

The EDRA Rules 3 and 4 ensure that a peeavill only send a message withTL = [ > 0 if it acknowledges
at least one event witi'T'L > [+ 1. Then, based on Theordrh 2, we can state ghaill only send a message with
TTL =1 > 0if at least one in a set &f~'~! peers suffers an event. As the probability of a generic peféering
an event in & interval is© - r/n, the probabilityP(l) of a generic peer sending a message WitiL = [ # 0
at the end of eacl interval is

Pl)=1-(1-2-7-0/n)*, wherek =2°"1"1, (IV.6)



As the messages with7T'L=0 are always sent, the average number of messages sentlbpescper© interval
will be

p—1
Nisgs =14+ P(1). (IV.7)
=1

V. QUARANTINE

In any DHT system, peer joins are costly, as the joining peearto collect information about its keys and the
IP addresses to fill in its routing table, and this joining thead may be useless if the peer departs quickly from
the system. While ideally all peers in a DHT system should lble &0 solve lookups with a single hop at any
time, in extremely large and dynamic systems the overheadset! by the most volatile peers can be excessive.
Moreover, P2P measurement studies [12]] [49]] [50] havevahihat the statistical distributions of session lengths
are usually heavy tailed, which means that peers that hame tennected to the system for a long time are likely
to remain alive longer than newly arrived peers. To addiessd issues, we propose@aarantinemechanism, in
which a joining peer will not be immediately allowed to takaripin the D1HT overlay network, but it will be able
to perform lookups at any moment. In this way, the most viglgtieers will cause insignificant overheads to the
system, while the other peers will be able to solve lookup$ st one hop most of the time (typically, during
more than 95% of their session lengths).

To join a D1HT system, a peer retrieves the keys and IP addresses from a set of eéshich can include
just one peer, e.g., the successor of the joining peer). Withrantine, the peers & will wait for a Quarantine
periodT;, (which can be fixed or dynamically tuned) before sending #skand IP addresses tp postponing its
insertion into the D1HT ring. While is in Quarantine, its join will not be reported, and it will tniwe responsible
for any key. The overhead reductions attained can be acallytiquantified based on the Quarantine period and
the statistical distribution of the session lengths, as sgystem withn peers, only they peers with sessions longer
thanT;, will effectively take part of the overlay network and haveithevents reported.

To be able to perform lookups during its Quarantine, a quarad peerp will choose the nearest (in terms
of latency) and best provisioned peers fr@nand will forward its lookups to thosgatewaypeers. To avoid
excessive loads, each gateway peer may limit the rate olijmok will solve on behalf of quarantined peers, even
though the experimental results that we will show in Sed#dRC| where each D1HT peer used less than 0.1%
of the available CPU cycles, indicate that the load imposethe gateway peers should not be high. Anyway, this
extra load should be much inferior than those handled byrpepes (or supernodes) in hierarchical systems like
FastTrack[[26], OneHop_[17] or Structured Superpeers [32].

With the Quarantine mechanism, we avoid the join and leawrhmads for peers with session lengths smaller
than 77, but newly incoming peers will have their lookups solvedwothops while they are in Quarantine. We
believe that this extra hop penalty should be acceptablsdueral reasons. First, the additional hop should have
low latency, as it will be addressed to a nearby peer. Sedhisl extra overhead will only be necessary during
a short period (e.g., less than 6% of the average sessioth)eridhird, the Quarantine mechanism should have
beneficial effects even to the volatile and gateway peershe&s will not incur the overhead of transferring the
keys and routing tables. Fourth, the Quarantine mechartigmld significantly reduce the maintenance overheads
of all peers in the system (as will be confirmed by the resuktsented in Section_V1lI).

Furthermore, the Quarantine mechanism can also be usedher purposes. For instance, Quarantine can be
used to minimize sudden overheads due to flash crowds, byasicigl, whenever the event rate reaches the upper
limit that can be comfortably handled by the system.

VI. D1IHT IMPLEMENTATION

We implemented D1HT from scratch, resulting in more thard8.llnes of dense C++ code, even though we did
not yet implement the Quarantine mechanism. This impleatiemt is fully functional and was tested on thousands
of nodes running Linux, and its source code is freely avéaldba].

Our implementation uses a variant of the Chord joining prot§s1], with a few important differences. First, any
join is announced to the whole system by EDRA. Second, the pesup gets the routing table from its successor



byte 1 byte 2 byte 3 byte 5 byte 9 byte 10 byte 11 byte 12

joins joins leaves leaves
Type | SegNo PortNo SystemID )

vp q v default other default other

T [ B T T T T
Message ~ Sequence  Sender port number D1HT/OneHop system ID #joins with  #joins with  # leaves with # leaves with
type Number default port other port default port other port
number numbers number numbers
Fig 2.a: DIHT and OneHop message headers

byte 1 byte 2 byte 3 byte 5 byte 9 byte 15 byte 20
Type | SeqNo PortNo SystemID finger IPv4 address peer |Pv4 address

m y . Y
Message  Sequence Sender port Calot system ID Finger IPv4 address with port number IPv4 address (including port number) of
type Number number the peer suffering the event

Fig 2.b: 1h-Calot message headers.

Fig. 2. Message headers used in our implementations angsasallhe SegNo field is necessary to assure message delery DP, and

the SystemlID field allows any peer to discard unsolicitedsagss received from other DHT systems. Each 1h-Calot nmainte message
has a fixed size of 48 bytes£384 bits, including 28 bytes for the IPv4 and UDP headeraghED1HT and OneHop message has a fixed
part with 40 bytes«,, =320 bits, including IPv4 and UDP headers), followed by thed addresses (without port numbers) of the peers that
have joined and left the system in the default pent=@2 bits), and the IPv4 addresses (with port numbers) of dergpthat have joined
and left the system using others ports<48 bits). All acknowledgment and heartbeat messages éothttee systems have just the four first
fields shown (Type, SeqNo, PortNo and SystemID), an@.s@;,=288 bits (including IPv4 and UDP headers).

ps. Third, to preventp from missing events while its joining is notified to the systep, will forward to p any
event it knows untilp receives messages with all different TTLs.

To save bandwidth and minimize latency, the maintenancdaoidip messages are sent with UDP, and TCP is
used for all other types of communications (routing tabémsfers, stabilizations, etc.). Each D1HT instance has
a default IPv4 port, but any peer may choose an alternativevgioen joining the system. Thus, we expect that
most events will be identified only by the peer’s four byte4Raddress (as most peers should use the default port),
which led us to propose the message header layout as shovigure2. Then, for Equation IM5, we expect that
the averagen value will be around 32 bits.

Each D1HT peer stores its routing table as a local hash tabkxed by the peer IDs in such a way that any peer
needs only to store the IPv4 addresses of the participams gigeluding the port number), leading to a memory
overhead of abouti6bytes in each peer (plus some additional space to treatualdmsh collisions). In this way,
for environments such as HPC and ISP datacenters, eacingaatile will require a few hundred KBs at most.
For a huge one million Internet wide D1HT deployment, eaalting table would require around 6 MB, which is
negligible for domestic PCs and acceptable even for smaicds, such as cell phones and media players.

VIlI. EXPERIMENTAL EVALUATION

In this section, we will present our D1HT and 1h-Calot expemtal results, which will be complemented by
our analytical evaluations presented in Seclion]VIII.

It is worth noting the extensive experimental results weseng in this section. First, we used two radically distinct
environments, specifically an HPC datacenter and a worklwlidpersed network. Second, our DHT comparison
used the largest experimental testbed set up so far, witlo WRODO peers and 2,000 physical nodes. Finally, we
report the first latency comparison among DHTs and a dirgcterver.

A. Methodology

The D1HT implementation used in our experiments was preseint Sectiori MI, which includes only the base
D1HT proposal without any extension. In this way, we shoudttdr evaluate the unique D1HT contributions, but
we expect that our experimental results will reflect a woestecscenario in relation to production grade and better
tuned D1HT implementations, which would probably includewmber of well known optimizations (e.g., peer
re-announcements, parallel lookups, etc.), even thoughnguiementation has been already thoroughly tested.

Because 1h-Calot was not implemented by its authors, wedchdeMvelop a real implementation of that system for
our experiments. To allow for a fair comparison, we impletedriLh-Calot after our D1HT code, and both systems
share most of the code, in an effort to ensure that differemtehe results are not due to implementation issues.



Because each 1h-Calot maintenance message carries jusvent it does not make sense to include counters in
its message headers, which will then have the format shovigare[2.

In 1h-Calot each event incurs:2maintenance messages (including acks), and each peer feemdseartbeats
per minute (which are not acknowledged), and so the analydierage 1h-Calot peer maintenance bandwidth will
be given by

Beaiot = (1 (ve +vq) +4-n-v,/60) bps (VIL1)

wherev,, v, andv, are the sizes of the maintenance, acknowledgment and batrtiessages, respectively (as
shown in Figuré ).

Each experiment evaluated both systems with a specificosemgth.S,,, and a given network size. In all
experiments, we usef,,,=174 min, as this value is representative of Gnutella [4%] @was used in other DHT
studies (e.g.,.[17],.[33]). In some experiments, we alsadusg,,=60 min to exercise the systems under more
dynamic scenarios. The bandwidth results considered tlyraffic for routing table maintenance and peer failure
detection, as the other overheads involved, such as loakfiictand routing table transfers, should be the same
for all single-hop DHTs. For all experiments, we defined theting tables with 6K entries (around 36KB).

Each experiment had two phases, where the first one was usgbvothe system up to the target size and
the second phase was used for the measurements. In the fisst, rach system started with just eight peers, and
one peer joined per second until the target size was reacksdliing in a steep growth rate (the systems doubled
in size in just eight seconds, with an eightfold growth inslésan one minute), which should stress the joining
protocols. The second phase always lasted for 30 min, whitd @eer performed random lookups. We ran each
experiment three times and reported the average results.

In both phases of all the experiments, the systems were edurocording to EquatidnIlll1 and the chosen,

(60 or 174 min), and the peer leaves were random. Half of tlee leaves were forced with a POSB{ GKI LL
signal, which does not allow the leaving peer to warn its nleays nor to flush any buffered event. To maintain
the system size, any leaving peer rejoined the system i timiautes with, unless otherwise stated, the same IP
and ID, which allowed us to evaluate both systems in a scemdth concurrent joins and leaves.

Even though our experiments stressed the joining prot@asmposed a high rate of concurrent joins and leaves,
both D1IHT and 1h-Calot were able to solve more than 99% of db&ups with a single hop in all experiments.

B. PlanetLab Bandwidth Experiments

To evaluate the system overheads in a worldwide dispersetbament, we ran experiments using 200 physical
PlanetLab([5] nodes, with either 5 or 10 D1HT and 1h-Calotrpger node, leading to system sizes of 1K or 2K
peers, respectively. Each peer performed one random lop&upecond during the second phase of our PlanetLab
experiments.

Figure[3 shows the sum of the outgoing maintenance bandwadghirements of all peers for each system. The
figure shows that both DHTs had similar overheads for the lsmgystem size, while with 2K peers the demands
of 1h-Calot were 46% higher than those of D1HT. The more extenexperiments and analyses presented in
Sectiong VII-C and VIl will show that this difference wilignificantly increase with larger system sizes. Figure 3
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Cluster | # nodes CPU [eF]
A 731 Intel Xeon 3.06GHz single cor¢ Linux 2.6
B 924 AMD Opteron 270 dual core | Linux 2.6
C 128 AMD Opteron 244 dual core | Linux 2.6
D 99 AMD Opteron 250 dual core | Linux 2.6
F 509 Intel Xeon E5470 quad core | Linux 2.6

TABLE |
CLUSTERS USED IN OUR EXPERIMENTSEACH NODE HAS TWOCPUs.

also shows that the analyses of both systems were able tcptieeir bandwidth demands, which differ to some
extent from previous results [34], where the D1HT analysisrestimated its overheads by up to 25%. We credit
those differences to a few factors. First, DIHT had an irsgeéa bandwidth demands due to the implementation
of the mechanisms to clog® intervals based on Equation 1V.4, which was not used in theeements reported

in [34]. Additionally, because the D1HT analysis is strgndependent om=[log,(n)], it leads to more precise
predictions wherp is close tolog,(n) (i.e., whenn is slightly smaller than a power of 2, which is the case with
all experiments presented here) and to overestimatedisesbkenp is significantly greater thatvg,(n) (as with

the results presented in [34]).

C. HPC Bandwidth Experiments

We also performed experiments on a subset of five clustersSatisanic Processing HPC datacenter [38] (see
Table[). In that network, each node has a Gigabit Ethernehection to an edge switch, while each edge switch
concentrates 16 to 48 nodes and has a 2 Gbps or 10 Gbps Ethenmeiction to a non-blocking core switch.

Each peer performed one random lookup per second duringettend phase of these experiments, which were
conducted with the clusters under normal datacenter ptaiyevhere typically most of the nodes were experiencing
100% CPU use, as imposed by the Seismic Processing pael Nevertheless, we were able to run all our
experiments smoothly, without any single interferenceha hormal datacenter production, confirming that it is
absolutely feasible to run these DHT systems in heavily édaproduction environments. In fact, in all our HPC
bandwidth experiments the average CPU use per D1HT peer gla® I0.1% (including the cycles used by the
joining mechanism and the lookups).

Figures[4(d) andl 4(pb) show the sum of the outgoing maintendandwidth requirements of all peers for
each system for different churn rates. We plotted the medsand analytical requirements, showing that, as
in the PlanetLab results, the analyses for both systems prese. The figures also show that D1HT had lower
maintenance bandwidth requirements for all cases studiesk more confirming in practice that D1HT can provide
a more lightweight DHT implementation than 1h-Calot. Thalgtical results that will present in Sectibn VIl show
that the difference in favor of D1HT will grow to more than oomler of magnitude for bigger systems.

We also ran our biggest case (4,000 peers) with the leaviegspejoining with new IPs and IDs to evaluate
whether the reuse of IDs caused any relevant bias in ourtsesalfact, without reusing the IDs, the fraction of
the lookups solved with one hop dropped by less than 0.1%ijtbetmained well above our 99% target, which
allowed us to conclude that the reuse of IDs did not have agwifgiant effect in our results.
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Fig. 4. Experimental and analytical outgoing maintenareedividth demands for DIHT and 1h-Calot in the HPC datacenter
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Fig. 5. Lookup latencies measured in the HPC environmertt igdie and busy (100% CPU use) nodes.

D. HPC Latency Experiments

In this section, we will present our latency experimentdqrered in the HPC datacenter. As the lookup latencies
are sensitive to the network load, we used 400 idle nodes @arster A (see Tablg |) but, as we expect that DHTs
should be able to be used in heavy loaded production envieatsnwe measured the latencies with those nodes
both in the idle state and under 100% CPU load (by running twa®6 [13] instances per node). Because we used
dedicated nodes, we could increase the lookup rate durmgdbond phase of the experiments to 30 lookups/sec
per peer, which allowed us to evaluate the systems undertansia lookup load.

In addition to D1HT and 1h-Calot, we also ran a multi-hop DHagtry) and a directory server (Dserver). In
an effort to avoid inserting bias due to implementation éssuDserver was essentially a D1HT system with just
one peer. We first ran Dserver in a Cluster B node, which rehdld®% CPU load when serving lookups from
1,600 peers, thus providing a first indication of the scéitglissues of this client/server approach, after which we
picked up a dedicated node from Cluster F. For the multi-héprDwe used Chimerg_[11] not only because it
implements Pastry [48] (using base 4), which is one of thetrposminent multi-hop DHTSs, but also because it
did not require any prerequisites to be installed in the HRGters (e.g., Java, Python, etc.).

As our time windows with the dedicated cluster were limitagk ran the four systems concurrently in each
experiment. To study different system sizes, we varied tnabers of DHT peers and Dserver clients per node
from two to ten. For example, when running six peers per nagegconcurrently ran six D1HT peers, six 1h-Calot
peers, six Chimera peers and six Dserver clients in eachecldsnode.

The D1HT and 1h-Calot peers were churned with,=174 min, while Dserver and Chimera were not churned.
To verify whether the base latencies of the studied systéffexr due to implementation issues, we first ran the
four systems with just two peers and the observed one-hepdets were quite similar (around 0.14 ms).

Figure[5(@) and 5(b) show the latencies measured with theswodthe idle state and under 100% CPU load,
respectively. As the measured Chimera latencies were highae expected, we also plotted the expected Chimera
latencies assuming that each hop takes 0.14 ms. We beliaivththdifferences between the measured and expected
Chimera latencies were due to either implementation issupseasurement artifacts, but even the expected latencies
are much higher than those for the single-hop DHTSs, whicHigoa that a multi-hop DHT solution is less suitable
for latency-sensitive applications. While Chimera laiesccould be improved by using a larger base (e.g., 16), its
performance would still be worse than that of D1HT.

We can see from Figure 5(a) that all systems, except for Qlainm@esented very similar latencies with idle
nodes and smaller system sizes, which was expected becdi$E &nhd 1h-Calot solved more than 99% of the
lookups with one hop, while Dserver ran similar code. Howgelkserver started to lag behind the single-hop DHT
systems at 3,200 peers (120% higher latencies), and at 4083 it provided latencies more than one order of
magnitude higher, revealing its scalability limitations.

We may observe in Figurg 5(b) that the latencies of all systelegraded with busy nodes and that, quite
surprisingly, the D1HT and 1h-Calot latencies increasaghsil/ with the system size when running on busy nodes.
To verify whether this unexpected behavior was related ¢oetktra load generated by the artifact of running several
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Fig. 6. Lookup latencies measured in the HPC environmerit tuitsy (100% CPU use) nodes.

peers and four different systems per node under an inteoogeporate and full CPU load, we ran the 100% CPU
load experiments with just 200 physical nodes, varying mglaé number of peers per node from two to ten. The
results are plotted in Figuig 6 along with the latencies messwith 400 nodes. For simplicity, in Figuré 6, we
only plot the D1HT results, even though we also ran 1h-C&bimera and Dserver for both the 200 and 400 node
experiments. Confirming our hypothesis, the figure indedlet the latency degradation observed was related to
the number of peers per physical node (and the overload thppded on the already 100% busy nodes), as the
latencies measured with 200 and 400 nodes and the same nafigesrs per node were quite similar, even though
the 400-node systems had twice the size. For instance, withgdeers per node, the average latencies measured
with 200 nodes (total of 800 peers) and 400 nodes (total diQLpgers) were both 0.15 ms. With eight peers per
node, the results with 200 nodes (total of 1,600 peers) afdwdes (total of 3,200 peers) were 0.23 ms and 0.24
ms, respectively. These results indicate that the D1HT upditencies should not vary with the system size, but
they can degrade with overloaded peers, while they aresstillar to or better than those provided by Dserver and
Chimera.

VIIl. A NALYTICAL RESULTS

As our experiments have validated the 1h-Calot and D1HTyaeal and the OneHop analysis had already been
validated in a previous work [17], we will now compare thokeet systems analytically. As discussed in Section
[ the 1h-Calot results presented in this section showdd &k valid for the 1HS [44] and SFDHIT [24] systems. In
a previous work[[33], we have already provided an extendedDanalysis, studying the variation of the D1HT
overheads an® intervals for different values of’, churn rates and system sizes; thus, here we will focus on
comparing the overheads of the systems being studied.

As in our experiments, our analytical results compute ohly traffic for routing table maintenance, we used
f=1%, and we assumed random events and lookups. The OneHbysiana available from[[17], for which we
will consider the same message formats used in our D1HT imghéation, as shown in Figufé 2, because they
have been shown to be realistic in practice. Besides, thédiOmeesults always considered the optimal topological
parameters and did not account for the failure of slice aritlleaders. The OneHop and 1h-Calot results do not
consider message delays, while for DIHT we usggd=0.25 sec, which is an overestimation compared to the
Internet delay measurements presented_in [49].

We varied the system size frohd* to 107, which are representative of environments ranging fromelaorporate
datacenters to huge Internet applications, and studiedgeeessions of 60, 169, 174 and 780 min, where the latter
three were observed in KAD_[50], Gnutella [49] and BitToitr¢2] studies. This range of session lengths is more
comprehensive than those used in most DHT evaluations (&4, [22], [23], [32]-[34]) and is representative of
widely deployed P2P applications.
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Fig. 7. Log-log plots showing the analytical outgoing maimnce bandwidth demands for D1HT, 1h-Calot and OneHop Gasot show
values below 1 kbps).

Figures[7(d) ta 7(dl) show log-log plots comparing the amedytbandwidth demands of D1IHT and 1h-Calot
peers against those of the best (ordinary nodes) and wdict (saders) OneHop cases. From these figures we
can see that the OneHop hierarchical approach imposes énghs lof load imbalance between slice leaders and
ordinary nodes. Moreover, a D1HT peer typically has maimtee requirements one order of magnitude smaller
than OneHop slice leaders, while attaining similar ovedsezompared to ordinary nodes. Compared to D1HT, the
1h-Calot overheads were at least twice greater and typicalé order of magnitude higher for the cases studied.
The requirements for a D1HT peer in systems withl0° and average sessions of 60, 169, 174 and 780 min are
20.7 kbps, 7.3 kbps, 7.1 kbps and 1.6 kbps, respectivelyoitrast, the overheads for the OneHop slice leaders
and 1h-Calot peers for systems witk10° and KAD dynamics were above 140 kbps.

The Quarantine analysis will be based on data from studegsotbserved thai1% of the Gnutella sessions [12]
and 24% of the KAD sessions_ [50] lasted less than 10 minutes, whica nvenient value for the Quarantine
period T;,. Then, Figure§ 8(a) arld 8{b) show the overhead reductiomddad by Quarantine for D1IHT systems
with dynamics similar to KAD and Gnutella, witly,=10 min. We can see that the maintenance bandwidth reduction
grows with the system size, as for very small systems theheegls were dominated by messages with TTL=0,
which are always sent even when there are no events to réyfiidugh the length of the Quarantine period studied
was less than 6% of the average session length for both systeenoverhead reductions witi=107 for KAD and
Gnutella dynamics reached 24% and 31% respectively, shpthim effectiveness of the Quarantine mechanism.
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Fig. 8. Estimated overhead reductions brought by Quararitin systems with KAD and Gnutella behaviors.



IX. DISCUSSION

In addition to validating the D1HT analysis, our experingoonfirmed that D1IHT was able to solve more than
99% of the lookups with a single hop and very low CPU and menmsegrhead, even with nodes under high CPU
load or peers widely dispersed over the Internet. For irgtaim all our HPC bandwidth experiments, the average
CPU usage per peer was less than 0.1%, and the memory sizemufing table storage were around 36 KB per
peer.

Our results also showed that D1IHT had the lowest overheads@ml single-hop DHTs that support dynamic
environments, with typical reductions of one order of magge for big systems. D1HTs performance advantage
was due to its ability to group events for dissemination vétipure P2P approach, even for large and dynamic
environments where the system size and peer behaviors eluaegtime. In contrast, other single-hop DHTSs either
do not provide means for their peers to group events [24], [458], [47], [52] or use a hierarchical approach with
high levels of load imbalance and other intrinsic issuieg.[17

Compared to a directory server, DIHT achieved similar leitsn for small systems while attaining better
scalability, which allowed it to provide latencies up to areler of magnitude better for the larger systems studied,
even with nodes under full CPU load, revealing that D1IHT Boahn attractive solution for large-scale latency-
sensitive applications.

Considering that back in 2004 the BitTorrent peer averagentttad speed was already around 240 kbps [40],
we may assume that the D1HT with 1.6-16 kbps maintenanceheads should be negligible for systems with
one to ten million peers and BitTorrent behavior. Moreoasrother studies found that most domestic connections
have atleast512 kbps of downstream bandwidth with very low occupatid®l,[128], we argue that we should not
penalize lookup latencies to save fractions below 10% ofatvedlable bandwidth. Thus, in the near future, even
systems with up to ten million nodes with KAD or Gnutella dymies will probably be able to benefit from the
lowest latencies provided by D1HT with less then 65 kbps teai@nce overheads.

While 1h-Calot could also be used in HPC and ISP datacentsrsise would require the development and
maintenance of a DHT dedicated to those environments. Itrastn the distinguished D1HT ability to provide
both low latency and small overheads may allow it to supposide range of environments, in such a way that
D1HT can act as a commodity DHT, which makes D1HT a very aitraoption for these corporate datacenters,
specially as they are preferably built on commodity hardnamd software 4], [53].

X. CONCLUSION

While latency issues should become much more critical tremdidth restrictions over time, the first DHT
proposals have opted to trade off latency for bandwidth, @eent single-hop DHTSs typically have either high
overheads or poor load balance. In this work, we presentddTDWhich has a pure P2P and self-organizing
approach and is the first single-hop DHT combining low maiatee bandwidth demands and good load balance,
along with a Quarantine mechanism that is able to reducebeheads caused by volatile peers in P2P systems.

We performed a very extensive and representative set of Déffiparative experiments, which validated the
D1HT analysis and was complemented by analytical studipscifically, by using an experimental environment
that was at least 10 times greater than those of all previddis @mparative experiments, the present work became
the first to assess five key aspects of DHT behavior in suchtipahsettings. Concretely, the present work is the
first to i) report DHT comparative experiments in two differenvironments; ii) compare DHT lookup latencies;
iii) perform experiments with two different single-hop DHETiv) compare the latencies of multi and single hop
DHTs; and v) compare DHTSs to central directories.

Overall, our results showed that D1HT consistently had thvebt maintenance costs among the single-hop
DHTs, with overhead reductions of up to one order of magumitioat large systems, and indicated that D1HT could
be used even for huge systems with one million peers and dgaaimilar to those of popular P2P applications.

Our experiments also showed that D1HT provides latenciegppeoable to those of a directory server for small
systems, while exhibiting better scalability for largeresnwhich shows that it is an attractive and highly scalable
option for very large latency-sensitive environments.

We believe that DIHT may be very useful for several Intermet datacenter distributed applications, since the
improvements in both bandwidth availability and procegsiapacity that we should continuously get will bring



performance expectations to users and applications, wtachbe frustrated by latency constraints. In addition,
trends in High Performance Computing, ISP and Cloud Compguinvironments indicate significant increases in
the system sizes, which will challenge the scalability amdltftolerance of client/servers solutions.

As a consequence of our extensive set of results, we may wbmdhat D1HT can potentially be used in
a multitude of environments, ranging from HPC and ISP datisre to huge P2P applications deployed over
the Internet, and that its attractiveness should increase time. This ability to support such a wide range of
environments may allow D1HT to be used as an inexpensive aathilde commodity software substrate for
distributed applications. As one step in that direction, m&ve made our D1HT source code available for free
use [14].
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