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Abstract 

Computer-aided design (CAD) programs are essential to engineering as they allow for 

better designs through low-cost iterations. While CAD programs are typically taught to 

undergraduate students as a job skill, such software can also help students learn engineering 

concepts. A current limitation of CAD programs (even those that are specifically designed for 

educational purposes) is that they are not capable of providing automated real-time help to 

students. To encourage CAD programs to build in assistance to students, we used data generated 

from students using a free, open source CAD software called Aladdin to demonstrate how student 

data combined with machine learning techniques can predict how well a particular student will 

perform in a design task. We challenged students to design a house that consumed zero net energy 

as part of an introductory engineering technology undergraduate course. Using data from 128 

students, along with the scikit-learn Python machine learning library, we tested our models using 

both total counts of design actions and sequences of design actions as inputs. We found that our 

models using early design sequence actions are particularly valuable for prediction. Our logistic 

regression model achieved a >60% chance of predicting if a student would succeed in designing a 

zero net energy house. Our results suggest that it would be feasible for Aladdin to provide useful 

feedback to students when they are approximately halfway through their design. Further 

improvements to these models could lead to earlier predictions and thus provide students feedback 

sooner to enhance their learning. 

 

Keywords: Computer-aided design, Aladdin, machine learning, undergraduate education, 

sustainability 
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1.0 Introduction 

Engineering design is a complex, interactive problem-solving process of satisfying a set of 

specific constraints using scientific and engineering knowledge [15]. Sheppard (2003) 

characterized engineering design as a method to “scope, generate, evaluate, and realize ideas” [18]. 

This process requires experience and understanding of multiple disciplines to address real-world 

problems. Consequently, it is a challenging concept to teach undergraduate students [8; 12], 

particularly first- and second-year students who are in the process of learning fundamental 

disciplinary concepts and have limited experience in the field. As a further complication, the 

Fourth Industrial Revolution (i.e., Industry 4.0) and the Internet of Things require virtual 

prototyping and integration between the physical and the digital worlds. As such, Computer-Aided 

Design (CAD) software is increasingly becoming both a central tool of the modern engineering 

design process as well as a critical educational tool. 

While the engineering industry needs incoming employees to be skilled in using CAD 

software [20; 21], CAD software can also be an essential tool for teaching the engineering design 

process to undergraduate students. In general, CAD software assists the “creation, modification, 

analysis, or optimization of a design” [9]. As for education, CAD software offers flexibility for 

students to create and test their designs in various configurations without the need for physical 

facilities or equipment, which is safer and more cost effective [7; 23]. Using CAD solutions can 

enable students to model mechanical and mechatronic systems using a base geometry and 

parametric representations eliminating physical constraints while allowing students to build and 

see product and process interactions [5]. 

 Modern CAD software also provides an additional benefit for education by allowing 

researchers to collect user interactions in an unobstructive manner, so that we can study how 
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individual students go through the design process [22]. This allows us to observe, characterize, 

and as we demonstrate in this work, predict students’ design performance. Research in this area 

can provide technical solutions that help instructors who may not be able to attend to every 

student’s needs in real-time. Compared with other disciplines in which data mining is viewed as a 

way to develop instructional intelligence, engineering design—a highly open-ended cognitive and 

creative process that is not well understood—may need this kind of automatic tools even more. As 

there is no single correct answer to a design problem, every idea may need to be taken seriously 

and evaluated objectively. This exerts heavy burdens on instructors and calls for the assistance of 

machine learning algorithms [13]. 

In this work, we used data generated by undergraduate students using Aladdin, a CAD 

software program developed by the Institute for Future Intelligence, during an introductory 

engineering technology course. Students were tasked with designing a house that consumed zero 

net energy using Aladdin. As they used Aladdin, their design actions were logged into JavaScript 

Object Notation (JSON) files. We used those files along with a machine learning technique to 

create a Python code that can predict if randomly selected students would achieve the design goal. 

With this work, we aim to answer the following research questions: (1). How does this work help 

with implementing automated CAD interventions to help future learners? (2). How does this work 

support design and manufacturing within Industry 4.0? 

 

2.0 Methods 

2.1 Course Details 

Student data for this work came from the ENGT 18000 (Engineering Technology 

Foundations) course at Purdue University that took place during the Fall 2020 semester. Students 
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who enroll in this course are typically first-year undergraduate students from the School of 

Engineering Technology. Due to the COVID-19 pandemic, students had the option of either taking 

the course in a hybrid format (i.e., where the instructor delivered lectures online, but students were 

expected to attend recitations in person) or in a distance learning format (i.e., where all components 

of the course were conducted online). During the Fall 2020 semester, there were a total of 323 

students enrolled (248 students in the hybrid section and 75 students in the distance learning 

section). 

The course covered a variety of introductory topics including plotting, programing and data 

analysis using Excel and MATLAB, conducting experiments and reporting results, basic statistics, 

energy, series and parallel circuits, and statics (mechanics). For this work, we focused on the 

energy module of the course, which spanned two weeks of the semester. The energy module 

consisted of a pre-quiz that gauged students’ basic understanding of energy concepts, a lecture, 

two activities based on Aladdin (discussed in more detail in Section 2.2), and a post-quiz that again 

gauged students’ basic understanding of energy concepts. The lecture covered different forms of 

energy (e.g., potential, kinetic, and internal), transformation of energy, the first and second laws 

of thermodynamics, work, and power. The energy section of the course was also used as a bridge 

to help students understand conversions between electrical and mechanical concepts taught in the 

course. 

 

2.2 Aladdin CAD Software 

To help students learn energy concepts during the course, we used a free, open-source CAD 

software tool called Aladdin (formerly known as Energy3D) [23]. Aladdin has been specifically 

designed to help students from middle school through college learn engineering design through 
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computer modeling and simulation. Its intuitive and easy to use interface allows students to quickly 

design 3D buildings (see Figure 1 for an example CAD house designed in Aladdin) and to then 

conduct iterative analyses to improve their design step by step. Features of Aladdin include 

adjusting dimensions of a building, changing components of a building (e.g., doors and windows), 

including trees for shade, and adding solar panels. In addition to design features, Aladdin also 

includes analysis tools such as determining the path of the sun throughout the year as a function 

of geographic location and calculating the net energy use of a building throughout the year. 

 

2.3 Course Implementation 

As mentioned in Section 2.1, we had students use Aladdin as part of the energy module of 

the course. Students were given instructions on how to install the software on their own computers 

and were directed to YouTube tutorials that demonstrated how to use the software. Two 

researchers also went to the in-person recitation sessions to answer questions and help students 

with any issues they had with the software. While this additional help was not available to the 

distance section, we provided answers to frequently asked questions at the recitation sections 

through the learning management system to those students. The instructor and two researchers also 

answered emails from students and provided answers in online meetings directly with students. 

The first activity involving Aladdin was a small design exercise that was intended to help 

students get familiar with the software. For the small design exercise, students were asked to build 

an energy-efficient house using Aladdin. They were asked to choose one factor to change (e.g., 

solar panel tilt), make a prediction of what would happen from the change by providing reasoning 

for what they thought would happen due to the change (using the Claim, Evidence, and Reasoning 

[CER] framework [24]), then observe what happened due to the change, and finally justify why 
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they thought the change happened (again using the CER framework). See Supporting Information 

for the small design exercise journal that students had to complete. 

The second activity with Aladdin was a more involved design challenge. We had students 

design a zero net energy house (viz., a house that consumed zero net energy throughout the year). 

They were asked to design the house in Indianapolis, Indiana (being the closest city available 

within Aladdin that was near the Purdue University campus). They were also instructed that the 

house should not cost more than $200,000, that it should comfortably fit a four-person family (i.e., 

have an area between 150 and 200 square meters and a total height [with wall and roof] of between 

6 to 10 meters). Additionally, each side of the house needed to have at least one window, tree 

trunks needed to be at least 2 meters away from the house, and solar panels could not hang over 

roof edges. Similar to the small design exercise, students were asked to document their design 

process by making predictions, observing changes, and justifying reasons for those changes in a 

design journal. See Supporting Information for the design challenge journal that students had to 

complete. 

 

2.4 Aladdin Data 

Aladdin records actions that users take within the software into JSON files. Those JSON 

files contain individual actions (e.g., adding a wall and moving a solar panel) with timestamps, 

which provide great detail to retrace students’ steps to better understand their design process. See 

Supporting Information for an example JSON file from the course. 

The design challenge was selected as the focus for this study since the primary reason for 

the small design exercise was to get students familiar with the software. We first cleaned the JSON 

files by correcting formatting issues and removing empty files. Empty files were eliminated by 
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traversing through all files and deleting any files with zero size. Occasionally, Aladdin produces 

incorrectly formatted JSON files, for example, due to a user abruptly closing the program. To 

account for files with errors, we created a JSON parsing tool to print out and highlight specific 

errors in each file (see Supporting Information for a link to the Python code). Many corrections 

involved adding a missing punctuation mark or removing non-UTF-8 characters. While the total 

number of students enrolled in both sections of the course was 323, the total number of students 

with complete, error-corrected JSON files for their design challenge was 128. As such, those 128 

students served as the cohort for this study. 

 

2.5 Machine Learning Model 

For our machine learning models, we used the open-source scikit-learn Python library [16]. 

For each student, we used two types of inputs for our models: (1) tallied design actions and (2) 

sequence of design actions. The tallied design actions served as a preliminary test for our modeling, 

with the sequence of design actions being the input that would enable predictions for the purpose 

of providing real-time feedback to students in the future. Additionally, we used both linear and 

logistic regression models when trying to predict final net energy values. The linear regression 

served as a preliminary test for our modeling, with the logistic regression being the primary focus 

of our results. We trained all our models using an 80-20 data split (i.e., 80% of the data used for 

training and 20% used for prediction), which is a common practice in machine learning work [e.g., 

17]. 

In the case of the tallied design actions, we summed design actions (e.g., adding, removing, 

and editing a building element) by each category (e.g., wall, roof, and solar panel) for each student. 

Those tallied actions were then added to a Pandas (a Python data analysis library) data frame 
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where data for each student was a row and each tallied action was a column. Since the goal of the 

design project was to design a zero net energy house, having a zero net energy value at the end 

was considered to be the metric of success. The final net energy for each student was also added 

to a separate Pandas data frame where each student was a row and the column was their final net 

energy value. Students who did not have a final net energy value in their JSON data were removed 

since they could potentially skew the model. For our first set of models, for each student, their 

tallied design actions were the independent variables and their final net energy value was the 

dependent variable. We explored using both linear and logistic regression models (see results in 

Sections 3.1 and 3.2). 

For the case of using sequences of design actions, for each student, we created arrays of 

their design actions and numerically coded each action based on the category of the action. For 

example, all actions pertaining to doors (e.g., adding, removing, or editing them) were coded as 0 

and actions pertaining to solar panels were coded as 6 (see Table 1 for a complete list of codes). 

Those numerically coded sequences of actions then served as independent variables for our models 

(with the dependent variable still being the final net energy values). For these models, we only 

used logistic regression models (see results in Section 3.3) since it was more important for the 

model to be able to predict if students were approximately close to a zero net energy house design 

rather than having the model try to predict the precise final net energy value (as is the case with a 

linear regression) for each student. 

 

3.0 Results  

3.1 Linear Regression Model Using Tallied Design Actions 
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In Figure 2 we show a histogram of the final net energies for our cohort. The histogram 

shows that most students successfully designed a zero net energy house. Figure 3 compares actual 

and predicted final net energies for 11 randomly selected students (20% of 55 students) for our 

initial tests of our linear regression model with tallied design actions. The figure demonstrates that 

a linear regression model is not capable of making accurate predictions based solely on tallied 

designed actions, which is not surprising since the model is attempting to determine the precise 

final net energy values for each student. For the purpose of helping a student with their design in 

real time, it is not necessary for a machine learning model to precisely predict their exact final net 

energy value. Instead the model should determine if a particular student is or is not progressing 

towards a successful design. As such, we decided that a logistic regression model would be better 

suited since we could set a certain range of final net energy values as being sufficiently close to 

the zero net energy design constraint. 

 

3.2 Logistic Regression Model Using Design Action Counts 

Since logistic regression models predict binary outcomes, we needed to choose the model 

dependent variable. We could have limited our cases to only students who designed a house that 

precisely used zero net energy. However, we determined that to be too restrictive since it likely 

would have removed students whose designs were close to zero net energy. To test what range of 

values near zero net energy to consider as meeting the design requirement, we ran logistic 

regression models for a series of final net energy ranges centered on 0 kWh. Figure 4 shows logistic 

regression model accuracies as a function of choosing various ranges of final net energy values to 

be considered as being within the design range. Based on these results, we decided that being 

within the range of -10,000 to +10,000 kWh meant achieving a zero net energy design. In Figure 
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5 we show results of one logistic regression model that shows how many final net energies it was 

able to predict correctly. Of course, due to the stochastic nature of regression models, we also 

tested our logistic regression model for stability. In Figure 6 we show accuracies of our logistic 

regression model for 10 iterations. The figure demonstrates that our model accuracy varies as 

expected but is consistently above 50% (with most cases being above 65%). 

 

3.3 Logistic Regression Model Using Sequence of Design Actions 

While our results in Sections 3.1 and 3.2 demonstrate that our regression models 

(particularly our logistic regression models) are capable of predicting student success based on 

their tallied design counts, they are not ideal for the purposes of providing students feedback in 

real time since they rely on tallied design actions, which are of course only available after students 

have completed their designs. As such, it is important to consider sequences of design actions as 

independent variables for our logistic regression models. In Figure 7 we show accuracies of our 

logistic regression models as a function of using varying percentages of the initial set of design 

action sequences. For example, using 10% of a student’s action sequence means using only the 

first 10% of their design actions as the independent variable for our models. To demonstrate 

stability, we ran each percentage of action sequence for 10 iterations. Our results show that even 

when using only the very beginning of students’ design action sequences (i.e., 10%), our models 

are generally better than chance at predicting if a particular student will successfully design a zero 

net energy house. If 60% of design action sequences are used, then our models have a 60% or 

greater chance of predicting success. 
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4.0 Discussion 

4.1 How Does This Work Help With Implementing Automated CAD Interventions to Help 

Future Learners? 

Providing students with feedback throughout their learning process is critical for their 

growth and success [6]. In the case of design-based learning, where students need to both learn 

and apply designated concepts [10; 11], formative assessments (also called responsive teaching) 

are especially necessary to provide students with timely feedback. This is the case since design-

based learning has challenges such as “chance of design” whereas students may develop a 

successful solution without an in-depth understanding of the relevant theoretical concepts [1; 4; 

14]. Specifically, when we asked students to design a zero net energy house, it is possible that 

students got to the desired outcome merely by trying a series of haphazard design actions. Thus, if 

not considered with caution, design-based learning challenges may limit a student’s ability to 

transfer knowledge to novel contexts or problem scenarios [2]. This then requires great attention 

from instructors toward formative assessments and providing quality feedback to students. But, as 

any instructor knows, this is a time intensive process [3], and as such, is difficult to scale to all 

students especially in large classes and in the online learning environments that will only continue 

to become more prevalent. 

Results from this research may begin to open the potential to scale quality formative 

assessment and real-time feedback when using CAD software such as Aladdin. We developed an 

algorithm that could begin to automate the process of providing just-in-time learning to students 

to improve their designs as well as the understanding of important engineering concepts related to 

these improvements. This type information can be tied to on-screen avatars in the future to engage 

learners in design dialogue, which guides them while they learn which design actions could lead 
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to more successful outcomes and why. Stables (2017) piloted the use of digital avatars as surrogate 

mentors to design students in a way that prompted an ongoing conversation between the learner 

and the avatar [19]. These conversations were based on a dialogic framework that consisted of a 

sequence of questions that asked learners to a) describe what they were designing, b) provide an 

evaluation of their current progress, c) speculate on how their project could be improved, and d) 

to comment on their plans for next steps. Preliminary research on this approach indicated that the 

design dialog made students think more deeply about their design work. While this on-screen 

dialog was based on questions related to established design heuristics, this type of work could be 

tied to design efficiency data within the CAD program and, using machine learning, could provide 

just-in-time feedback to the students. By intervening and allowing students to recognize which of 

their actions will not likely lead to an optimal design, students can better learn what effect certain 

design actions have on outcomes such as the net energy use of a building. This would not only 

help students learn about design processes, but also support them in reaching success with the 

outputs of their design work. In summary, expanding this work has potential to scale the quality 

of feedback provided to students via formative assessments particularly for present and future 

online, hybrid, and HyFlex educational environments. 

 

4.2 How Does This Work Support Design and Manufacturing Within Industry 4.0? 

While further research related to this study and the implementation of machine learning 

within CAD programs can be positioned to enhance student learning, this work can also connect 

to, and support, the next generation of design and manufacturing. As design and manufacturing 

continue to converge to optimize and streamline production processes through online 

communities, the predictive nature of machine learning could provide opportunities to enhance the 



 14 

potential of design work. Today, artificial intelligence and machine learning are revolutionizing 

industry and providing artificial intelligence-driven parametric design, such as generative design, 

to quickly and easily generate thousands of variations of a design based on a set of desired criteria. 

This provides a large set of alternative directions for a design that one may have never considered. 

Although artificial intelligence may generate design options, there is still a need for decisions to be 

made when both inputting the criteria as well as selecting the best design for the situation. This is 

where machine learning algorithms can be of use in further supporting design work and increasing 

productivity while reducing time-consuming redesigns. The further implementation of these 

technologies can then also be used for learning within the workplace and human resource 

development. As such, CAD software will likely continue to implement machine learning and 

artificial intelligence to become a more critical tool for modern engineering design as well as 

education and workforce development. 

 

5.0 Limitations and Future Work 

There are several limitations to this study that can be improved with future work. One 

limitation is that we do not know why certain sequences of design actions produced successful 

zero net energy designs while others did not. In this work, we demonstrated that there are patterns 

in the design action sequences that help our machine learning model predict success. However, 

future work can explore the meanings of specific design actions, so that the machine learning 

model can be further improved. Another limitation is that we have not yet explored how students’ 

design performance connected to their knowledge of energy concepts. Are better designers also 

the ones that have a better understanding of energy concepts? Are there some who performed 

poorly in the pre- and/or post-quizzes who performed well as designers? These are some of the 



 15 

questions that can be addressed in future work. Additionally, future work can improve the machine 

learning models by integrating additional emerging techniques such as recurrent neural networks 

(RNN). 

 

6.0 Conclusions 

We trained machine learning models to predict if a particular student would achieve a 

successful design as they used a CAD software to design a zero net energy house. This work 

indicates that it is possible to use students’ design action sequences to predict their engineering 

design success. Specifically, our logistic regression model achieved a >60% chance of predicting 

if a student would succeed in designing a zero net energy house by using the first 60% of their 

design action sequences. While this means that we can currently implement interventions when 

students are about halfway through their design process, future improvements could lead to 

predictions of success based on a smaller set of design actions. That would in turn mean that we 

will be able to create software interventions earlier in the design process. Timely and effective 

feedback that is built into the CAD software can greatly improve student learning and engineering 

designs in the future. 

 

Supporting Information 

We provide the small design exercise and the design challenge journals that students had 

to complete as Supporting Information. We also provide an example JSON file from the course. 

Codes developed as part of this work can be found at 

https://github.com/singh486/Aladdin_machine_learning 

 

https://github.com/singh486/Aladdin_machine_learning
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Tables 

 

Design Action Category Description Code 

Door Actions related to doors (e.g., add, edit, and remove) 0 

Floor Actions related to floors 1 

Foundation Actions related to the foundation 2 

Wall Actions related to walls 3 

Window Actions related to windows 4 

Roof Actions related to the roof 5 

Solar panel Actions related to solar panels 6 

Tree Actions related to trees 7 

Building Actions related to the whole building 8 

Analysis Actions related to analysis (e.g., show heliodon) 9 

Parameters Actions pertaining to geography (e.g., change latitude)  10 

Thermal Actions pertaining to thermal characteristics 11 

Color Actions that change colors of building components 12 

Table 1. Design action categories with brief descriptions for each along with their 

corresponding numerical codes 
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Figures 

 

 
 

Figure 1. An example house in Aladdin 
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Figure 2. Histogram of final net energy values for the study cohort showing that most students 

achieved the goal of designing a zero net energy house. There are 2 outliers that do not appear on 

the figure (one student who had a final net energy of ~210,000 kWh and another who had 

~660,000 kWh). 
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Figure 3. Actual (blue) and predicted (orange) final net energies for 11 randomly selected 

students using our linear model with tallied design action counts. 
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Figure 4. Logistic regression model accuracies as a function of choosing various ranges of final 

net energy values to be considered as being within the design range. Nominally we considered 

being within the range of -10,000 to +10,000 kWh as achieving a zero net energy design. 
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Figure 5. Results of a logistic regression model showing correct and incorrect predictions of 

achieving a zero net energy design using the complete sequence of design actions for each student. 
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Figure 6. Accuracy of logistic regression models for 10 iterations to demonstrate that model 

accuracy varies as expected but is mostly above 65%. 
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Figure 7. Accuracy of logistic regression models as a function of using varying percentages of the 

initial set of design action sequences (with 10% meaning using the first 10% of the design actions 

for each student and 100% meaning using the whole sequence of design actions). Each percentage 

of action sequence has been run for 10 iterations to demonstrate stability of the results. Repeated 

horizonal markers indicate multiple occurrences of the same accuracy for a given percentage of 

action sequence. Markers are colored by percentage of action of sequence for improved visibility. 
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