
Sparse Regression Codes

Ramji Venkataramanan, University of Cambridge

Sekhar Tatikonda, Yale University

Andrew Barron, Yale University

ar
X

iv
:1

91
1.

00
77

1v
1

 [
cs

.I
T

]
 2

 N
ov

 2
01

9

Contents

1 Introduction 1
1.1 The Sparse Regression Codebook . 2
1.2 Organization of the monograph . 4

I AWGN Channel Coding with SPARCs 7

2 Optimal Decoding 9
2.1 Problem set-up . 9
2.2 Performance of the optimal decoder . 11
2.3 Performance with i.i.d. Bernoulli dictionaries . 14
2.4 Proofs . 15

2.4.1 Proof of Proposition 2.1 . 15
2.4.2 Proof of Theorem 2.1 . 17
2.4.3 Proof sketch of Theorem 2.2 . 19

3 Computationally Efficient Decoding 23
3.1 Adaptive successive hard-decision decoding . 24

3.1.1 Intuition and analysis . 25
3.2 Iterative soft-decision decoding . 29

3.2.1 State evolution . 31
3.3 Adaptive successive soft-decision decoder . 34
3.4 Approximate Message Passing (AMP) decoder . 39

3.4.1 Analysis of the AMP decoder . 41
3.4.2 Error exponent and gap from capacity with AMP decoding 43

3.5 Comparison of the decoders . 45
3.6 Proofs . 46

3.6.1 Proof of Lemma 3.3 . 46
3.6.2 Proof of Lemma 3.6 . 48
3.6.3 Proof Sketch of Theorem 3.3 . 50

4 Finite Length Decoding Performance 57
4.1 Reducing AMP decoding complexity . 57

4.1.1 Hadamard-based design matrices . 57
4.1.2 Online computation of τ2

t and early termination 58
4.2 Power allocation . 59

4.2.1 Iterative power allocation . 61

ii

4.3 Code parameter choices at finite code lengths . 63
4.3.1 Effect of L and M on concentration . 64
4.3.2 Effect of power allocation on concentration 65

4.4 Comparison with coded modulation . 66
4.5 AMP with partial outer codes . 68

4.5.1 Decoding SPARCs with LDPC outer codes 70
4.5.2 Simulation results . 71
4.5.3 Outer code design choices . 72

5 Spatially Coupled SPARCs 75
5.1 Spatially coupled SPARC construction . 75
5.2 AMP decoder for spatially coupled SPARCs . 77

5.2.1 State evolution for SC-SPARCs . 78
5.2.2 Interpretation of the AMP decoder . 79

5.3 Measuring the performance of the AMP decoder . 79
5.3.1 Asymptotic State Evolution analysis . 80

5.4 Simulation results . 85

II Lossy Compression with SPARCs 89

6 Optimal Encoding 91
6.1 Problem set-up . 91
6.2 Performance of the optimal decoder . 93
6.3 Proof of Theorem 6.2 . 96

6.3.1 Second moment method computations . 98
6.3.2 Refining the second moment method . 101
6.3.3 A non-asymptotic bound for P (X = 0) . 103

7 Computationally Efficient Encoding 107
7.1 Computationally efficient encoding algorithm . 107
7.2 Heuristic derivation of the algorithm . 108
7.3 Main result . 110

7.3.1 Gap from D∗(R) . 112
7.3.2 Successive refinement interpretation . 112

7.4 Simulation results . 113
7.5 Proof of Theorem 7.1 . 115

III Multiuser Communication and Compression with SPARCs 121

8 Broadcast and Multiple-access Channels 123
8.1 The Gaussian broadcast channel . 123
8.2 SPARCs for the Gaussian broadcast channel . 124
8.3 Bounds on error performance . 126

8.3.1 Optimal decoding . 126
8.3.2 AMP decoding . 126

iii

8.4 Simulation results . 127
8.5 The Gaussian multiple-access channel . 129
8.6 SPARCs for the Gaussian multiple-access channel . 130
8.7 Power allocation for AMP decoding . 131
8.8 Simulation results . 134

9 Communication and Compression with Side Information 135
9.1 Binning with SPARCs . 136
9.2 Wyner-Ziv coding with SPARCs . 137
9.3 Gelfand-Pinsker coding with SPARCs . 140

10 Open Problems and Further Directions 143
10.1 Channel coding with SPARCs . 143
10.2 Lossy compression with SPARCs . 144
10.3 Multi-terminal coding schemes with SPARCs . 145
References . 156

iv

Abstract

Developing computationally-efficient codes that approach the Shannon-theoretic limits
for communication and compression has long been one of the major goals of information
and coding theory. There have been significant advances towards this goal in the last
couple of decades, with the emergence of turbo codes, sparse-graph codes, and polar
codes. These codes are designed primarily for discrete-alphabet channels and sources.
For Gaussian channels and sources, where the alphabet is inherently continuous, Sparse
Superposition Codes or Sparse Regression Codes (SPARCs) are a promising class of
codes for achieving the Shannon limits.

This monograph provides a unified and comprehensive over-view of sparse regression
codes, covering theory, algorithms, and practical implementation aspects. The first
part of the monograph focuses on SPARCs for AWGN channel coding, and the second
part on SPARCs for lossy compression (with squared error distortion criterion). In the
third part, SPARCs are used to construct codes for Gaussian multi-terminal channel
and source coding models such as broadcast channels, multiple-access channels, and
source and channel coding with side information. The monograph concludes with a
discussion of open problems and directions for future work.

v

vi

Chapter 1

Introduction

Developing computationally-efficient codes that approach the Shannon-theoretic limits for commu-
nication and compression has long been one of the major goals of information and coding theory.
There have been significant advances towards this goal in the last couple of decades, with the emer-
gence of turbo and sparse-graph codes in the ’90s [21, 30, 93], and more recently polar codes and
spatially-coupled LDPC codes [5, 69, 74]. These codes are primarily designed for channels with
discrete input alphabet, and for discrete-alphabet sources.

There are many channels and sources of practical interest where the alphabet is inherently continu-
ous, e.g., additive white Gaussian noise (AWGN) channels, and Gaussian sources. This monograph
discusses a class of codes for such Gaussian models called Sparse Superposition Codes or Sparse Re-
gression Codes (SPARCs). These codes were introduced by Barron and Joseph [16, 65] for efficient
communication over AWGN channels, but have since also been used for lossy compression [112, 113]
and multi-terminal communication [114]. Our goal in this monograph is to provide a unified and
comprehensive view of SPARCs, covering theory, algorithms, as well as practical implementation
aspects.

To motivate the construction of SPARCs, let us begin with the standard AWGN channel. The goal
is to construct codes with computationally efficient encoding and decoding that provably achieve
the channel capacity C = 1

2 log2(1 + snr) bits/transmission, where snr denotes the signal-to-noise
ratio. In particular, we are interested in codes whose encoding and decoding complexity grows no
faster than a low-order polynomial in the block length n.

Though it is well known that rates approaching C can be achieved with Gaussian codebooks, this has
been largely avoided in practice because of the high decoding complexity of unstructured Gaussian
codes. Instead, the popular approach has been to separate the design of the coding scheme into
two steps: coding and modulation. State-of-the-art coding schemes for the AWGN channel such as
coded modulation [45, 52, 23] use this two-step design, and combine binary error-correcting codes
such as LDPC and turbo codes with standard modulation schemes such as Quadrature Amplitude
Modulation (QAM). Though such schemes have good empirical performance, they have not been
proven to be capacity-achieving for the AWGN channel. With sparse regression codes, we step
back from the coding/modulation divide and instead use a structured codebook to construct low-

1

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1, 0, 0,

Figure 1.1: A Gaussian sparse regression codebook of block length n: A is a design matrix with independent
Gaussian entries, and β is a sparse vector with one non-zero in each of L sections. Codewords are of the form
Aβ, i.e., linear combinations of the columns corresponding to the non-zeros in β. The message is indexed by
the locations of the non-zeros, and the values c1, . . . , cL are fixed a priori.

complexity, capacity-achieving schemes tailored to the AWGN channel.

There have been several lattice based schemes [42, 121] proposed for communication over the AWGN
channel, including low density lattice codes [102] and polar lattices [118, 3]. The reader is referred
to the cited works for details of the performance vs. complexity trade-offs of these codes.

In the rest of this chapter, we describe the sparse regression codebook, and give a brief overview
of the topics covered in the later chapters. First, we lay down some notation that will be used
throughout the monograph.

Notation The Gaussian distribution with mean µ and variance σ2 is denoted by N (µ, σ2). For
a positive integer L, we use [L] to denote the set {1, . . . , L}. The Euclidean norm of a vector x
is denoted by ‖x‖. The indicator function of an event E is denoted by 1{E}. The transpose of a
matrix A is denoted by A∗. The n×n identity matrix is denoted by In, with the subscript dropped
when it is clear from context.

Both log and ln are used to denote the natural logarithm. Logarithms to the base 2 are denoted
by log2. For most of the theoretical analysis, we will find it convenient to use natural logarithms.
Therefore, rate is measured in nats, unless otherwise specified. Throughout, we use n for the block
length of the code.

For random vectors X,Y defined on the same probability space, we write X
d
= Y to indicate that

X and Y have the same distribution.

1.1 The Sparse Regression Codebook

As shown in Fig. 1.1, a SPARC is defined in terms of a ‘dictionary’ or design matrix A of dimension
n×ML, whose entries are chosen i.i.d. ∼ N (0, 1

n). Here n is the block length, and M,L are integers

2

whose values are specified below in terms of n and the rate R. We think of the matrix A as being
composed of L sections with M columns each. The variance of the entries ensures that the lengths
of the columns of A are close to 1 for large n. 1

Each codeword is a linear combination of L columns, with exactly one column chosen per section.
Formally, a codeword can be expressed as Aβ, where β = (β1, . . . , βML)∗ is a length ML message
vector with the following property: there is exactly one non-zero βj for 1 ≤ j ≤ M , one non-zero
βj for M + 1 ≤ j ≤ 2M , and so forth. We denote the set of valid message vectors by BM,L. Since
each of the L sections contains M columns, the size of this set is

|BM,L| = ML. (1.1)

The non-zero value of β in section ` ∈ [L] is set to c`, where the coefficients {c`} are specified a priori.
Since the entries of A are i.i.d. N (0, 1

n), the entries of the codeword Aβ are i.i.d. N (0, 1
n

∑L
`=1 c

2
`).

In the case of AWGN channel coding, the variance 1
n

∑L
`=1 c

2
` is equal to the average symbol power.

Rate: Since each of the L sections contains M columns, the total number of codewords is ML. To
obtain a rate R code, we need

ML = enR or L logM = nR. (1.2)

There are several choices for the pair (M,L) which satisfy (1.2). For example, L = 1 and M = enR

recovers the Shannon-style random codebook in which the number of columns in A is enR. For
most of our constructions, we will often choose M equal to La, for some constant a > 0. In this
case, (1.2) becomes

aL logL = nR. (1.3)

Thus L = Θ(n
logn), and the size of the design matrix A (given by n ×ML = n × La+1) grows

polynomially in n. In our numerical simulations, typical values for L are 512 or 1024.

We note that the SPARC is a non-linear code with pairwise dependent codewords. Indeed, two
codewords Aβ and Aβ′ are dependent whenever the underlying message vectors β, β′ share one or
more common non-zero entries.

Subset superposition coding The SPARC described above has a partitioned structure, i.e., the
message vector contains exactly one non-zero in each of the L sections, with each section having
M entries. One could also define a non-partitioned SPARC, where a message can be indexed by
any subset of L entries of the length-ML vector β. The number of codewords in this case would
be
(
ML
L

)
, compared to ML for the partitioned case. For a given pair (M,L), the non-partitioned

SPARC has a larger number of codewords. However, using Stirling’s formula we find that

log
(
ML
L

)
logML

= 1 +O

(
1

logM

)
.

Hence the ratio of the rates tends to 1 as M grows large. Though subset based (non-partitioned)
superposition codes have a small rate advantage for finite M , we focus on the partitioned structure
in this monograph as it facilitates the design and analysis of efficient coding algorithms.

1In some papers, the entries of A are assumed to be ∼i.i.d N (0, 1). For consistency, throughout this monograph
we will assume that the entries are ∼i.i.d. N (0, 1/n).

3

Figure 1.2: Average bit error rate (left) and codeword error rate (right) vs. rate for SPARC over an AWGN
channel with snr = 15, C = 2 bits. The SPARC parameters are M = 512, L = 1024, n ∈ [5100, 7700].
Curves are shown for for power allocated SPARC (Chapter 4) and spatially coupled SPARC (Chapter 5).
The different ways of measuring error rate performance in a SPARC are discussed in Chapter 2 (p.10). The
SPARC is decoded using the Approximate Message Passing (AMP) algorithm described in Chapters 3 and
5.

1.2 Organization of the monograph

In Part I, we focus on communication over the AWGN channel. The performance of SPARCs with
optimal (least-squares) decoding is analyzed in Chapter 2. Though optimal decoding is infeasible,
its performance provides a benchmark for the computationally efficient decoders described in the
next chapter. It is shown that SPARCs with optimal encoding achieve the AWGN capacity with
an error exponent of the same order as Shannon’s random coding ensemble. Similar results are also
obtained for SPARCs defined via Bernoulli dictionaries rather than Gaussian ones.

In Chapter 3, we describe three efficient iterative decoders. These decoders generate an updated
estimate of the message vector in each iteration based on a test statistic. The first decoder makes
hard decisions, decoding a few sections of the message vector β in each iteration. The other two
decoders are based on soft-decisions, and generate new estimates of the whole message vector in each
iteration. All three efficient decoders are asymptotically capacity-achieving, but the soft-decision
decoders have better finite length error performance.

In Chapter 4, we turn our attention to techniques for improving the decoding performance at
moderate block lengths. We observe that the power allocation (choice of the non-zero coefficients
{c`}) has a crucial effect on the finite length error performance. We describe an algorithm to
determine a good power allocation, provide guidelines on choosing the parameters of the design
matrix, and compare the empirical performance with coded modulation using LDPC codes from
the WiMAX standard. In Chapter 5, we discuss spatially coupled SPARCs, which consist of several
smaller SPARCs chained together in a band-diagonal structure. An attractive feature of spatially
coupled SPARCs is that they are asymptotically capacity-achieving and have good finite length
performance without requiring a tailored power allocation. Figure 1.2 shows the finite length
error rate performance of power allocated SPARCs and spatially coupled SPARCs over an AWGN
channel. The figure is discussed in detail in Sec. 5.4.

4

In Part II of the monograph, we use SPARCs for lossy compression with the squared error
distortion criterion. In Chapter 6, we analyze compression with optimal (least-squares) encoding,
and show that SPARCs attain the optimal rate-distortion function and the optimal excess-distortion
exponent for i.i.d. Gaussian sources. We then describe an efficient successive cancellation encoder
in Chapter 7, and show that it achieves the optimal Gaussian rate-distortion function, with the
probability of excess distortion decaying exponentially in the block length.

In Part III, we design rate optimal coding schemes using SPARCs for a few canonical models
in multiuser information theory. In Chapter 8, we show how SPARCs designed for point-to-point
AWGN channels can be combined to construct rate-optimal superposition coding schemes for the
AWGN broadcast and multiple-access channels. In Chapter 9, we show how to implement random
binning using SPARCs. Using this, we can nest the channel coding and source coding SPARCs
constructed in Parts I and II to construct rate-optimal schemes for a variety of problems in multiuser
information theory. We conclude in Chapter 10 with a discussion of open problems and directions
for future work.

Proofs or proof sketches for the main results in a chapter are given at the end of the chapter. The
proofs of some intermediate lemmas are omitted, with pointers to the relevant references. The goal
is to describe the key technical ideas in the proofs, while not impeding the flow within the chapter.

5

6

Part I

AWGN Channel Coding with SPARCs

7

Chapter 2

Optimal Decoding

In this chapter, we consider sparse regression codes for the additive white Gaussian noise (AWGN)
channel, and analyze the performance under optimal (maximum-likelihood) decoding. Though
the optimal decoder has computational complexity that grows exponentially with n, its decoding
performance sets a benchmark for the efficient decoders discussed in the next chapter. The results
in this chapter show that the SPARC error probability with optimal decoding decays exponentially
with n for any rate R less than the AWGN channel capacity. In particular, we will see that the
error probability bound for SPARCs has the same form as the bound for a Shannon-style random
codebook consisting of independent Gaussian codewords [46, 87], but with a weaker constant. We
note that a Shannon-style random codebook is infeasible except for very short code lengths as the
complexity of encoding and decoding grow exponentially with n.

2.1 Problem set-up

Channel Model The discrete-time AWGN channel is described by the model

yi = xi + wi, i = 1, . . . , n. (2.1)

That is, the channel output yi at time instant i is the sum of the channel input xi and the Gaussian
noise variable wi. The random variables wi, 1 ≤ i ≤ n, are i.i.d. ∼ N (0, σ2). There is an average
power constraint P on the input: the codeword x = (x1, . . . , xn) should satisfy 1

n

∑
i=1 x

2
i ≤ P .

The signal-to-noise ratio P
σ2 is denoted by snr.

We wish to use the sparse regression codebook described in Section 1.1 to communicate reliably at
any rate R < C, where the channel capacity C = 1

2 log(1 + snr).

Power Allocation We need to specify the non-zero coefficients c1, . . . , cL in the message vector
so as to satisfy the power constraint. Recall that the entries of each codeword Aβ are i.i.d.

9

N (0, 1
n

∑L
`=1 c

2
`). In this chapter, we consider the flat power allocation with

c1 = c2 . . . = cL =

√
nP

L
.

This choice ensures that for a message β ∈ BM,L, the expected codeword power, given by E‖Aβ‖2/n,
equals P . Using standard large deviations techniques, it can be shown that the distribution of the
average codeword power ‖Aβ‖2/n is tightly concentrated around P [15, Appendix B].

In the next two chapters, we will consider different power allocations where the coefficients c1, . . . , cL
are not equal to one another. One example is the exponentially decaying allocation, where c` ∝
e−C`/L, for ` ∈ [L]. As we will see, such power allocations facilitate computationally feasible
decoders that are reliable at rates close to capacity.

Encoding The encoder splits its stream of input bits into segments of logM bits each. A length
ML message vector β is indexed by L such segments — the decimal equivalent of segment `
determines the position of the non-zero coefficient in section ` of β. The input codeword is then
computed as x = Aβ. Note that computing x simply involves adding L columns of A, weighted by
the appropriate coefficients.

Maximum Likelihood Decoding Assuming that the messages are equally likely is equivalent to
assuming a uniform prior over BM,L for the message vector β. Then the decoder that minimizes
the probability of message decoding error is the maximum likelihood decoder. We will refer to
the maximum likelihood decoder as the optimal decoder. Given the channel output sequence
y = (y1, . . . , yn), the optimal decoder produces

β̂opt = arg min
β̂∈BM,L

‖y −Aβ̂‖2. (2.2)

Probability of Decoding Error A natural performance metric for a SPARC decoder is the section
error rate, which is the fraction of sections decoded incorrectly. If the true message vector is β and
the decoded message vector is β̂, the section error rate is defined as

Esec =
1

L

L∑
`=1

1{β̂` 6= β`}, (2.3)

where β`, β̂` ∈ RM denote the `th section of β, β̂, respectively. We will first aim to bound the
probability of excess section error rate, i.e., the probability of the event {Esec ≥ ε}, for ε > 0.

Assuming that the mapping that determines the non-zero location within a section for each segment
of logM input bits is generated uniformly at random, a section error will, on average, lead to half
the bits corresponding to the section being decoded wrongly. Therefore, when a large number of
segments are transmitted, the bit error rate of a SPARC decoder will be close to half its section
error rate.

10

Finally, one may also wish to minimize the probability of codeword (or message) error, i.e., P(β̂ 6=
β). For this, one can use a concatenated code with the SPARC as the inner code and an outer
Reed-Solomon (RS) code. Later in this chapter (see p. 13), we describe how an RS code of rate
(1− 2ε) can be used to ensure that β̂ = β whenever the section error rate Esec < ε, for any ε > 0.
With a SPARC of rate R, such a concatenated code has rate R(1 − 2ε) and its probability of
codeword error is bounded by P(Esec ≥ ε). The main result of this chapter, Theorem 2.1, shows
that P(Esec ≥ ε) decays exponentially in n for any R < C.

2.2 Performance of the optimal decoder

The goal is to obtain bounds on the probability of excess section error rate, averaged over all
messages and over the space of design matrices. More precisely, for any ε > 0, we wish to bound

P(Esec ≥ ε) = EA,β [P(Esec ≥ ε | A, β)]

=
1

ML

∑
β∈BM,L

EA [P(Esec ≥ ε | A, β)] , (2.4)

where the subscripts indicate the random variable(s) the expectation is computed over. In (2.4), we
note that the probability measure on A is that induced by its i.i.d. N (0, 1) entries. By symmetry,
EA [P(Esec ≥ ε | A, β)] is the same for all β ∈ BM,L. Therefore we shall obtain bounds for

Pβ0(Esec ≥ ε) = EA [P(Esec ≥ ε | A, β0)] , (2.5)

for a fixed message vector β0 ∈ BM,L.

Preliminaries We list some facts and definitions that will be used in the bounds.

If Z, Z̃ are jointly Gaussian random variables with means equal to 0, variances equal to 1, and
correlation coefficient ρ, then we have the following Chernoff bound for the difference of their
squares. For any ∆ > 0,

P
(

1

2
(Z2 − Z̃2) > ∆

)
≤ exp

(
−D(∆, 1− ρ2)

)
, (2.6)

where the Cramér-Chernoff large deviation exponent is

D(∆, 1− ρ2) = max
λ≥0

{
λ∆ +

1

2
log
(
1− λ2(1− ρ2)

)}
. (2.7)

We also define

D1(∆, 1− ρ2) = max
0≤λ≤1

{
λ∆ +

1

2
log
(
1− λ2(1− ρ2)

)}
. (2.8)

Finally, for 0 ≤ α ≤ 1, let

Cα =
1

2
log(1 + α snr). (2.9)

Recalling that the capacity C = C1, we note that Cα − αC is a concave function equal to 0 when α
is 0 or 1, and strictly positive in between.

11

Error probability bounds The first result is a non-asymptotic bound on the probability of excess
section error rate defined in (2.5).

Proposition 2.1. [16, Eq. (24)] For any β0 ∈ BM,L and ε > 0,

Pβ0(Esec ≥ ε) ≤
L∑

`=εL

min {err1(`/L), err2(`/L)} , (2.10)

where for 0 < α ≤ 1, the functions err1(α) and err2(α) are defined as follows.

err1(α) =

(
L

αL

)
exp

(
−nD1

(
Cα − αR,

α snr

1 + α snr

))
, (2.11)

err2(α) = min
tα∈[0,Cα−αR]

err2(α, tα), (2.12)

where

err2(α, tα) =

(
L

αL

)
exp

(
−nD1

(
Cα − αR− tα,

α(1− α) snr

1 + α snr

))
+ exp

(
−nD

(
tα,

α2 snr

1 + α2 snr

))
. (2.13)

The proof of the proposition is given in Section 2.4.1.

The bound in (2.10) can be computed numerically given the rate R and the SPARC parameters
(M,L). The function err1(α) gives the better bound for α close to 0, while err2(α) is better for α
close to 1.

The next result simplifies the non-asymptotic bound and shows that the probability of excess
section error rate decays exponentially in n, with the exponent depending on the gap from capacity
∆ = C −R. First, a few definitions that are needed to state the result.

For x > 0, let

g(x) =
√

1 + 4x2 − 1. (2.14)

It follows that

g(x) ≥ min{
√

2x, x2} for all x ≥ 0. (2.15)

Next, let

w(snr) =
snr

2(1 + snr)2
√

4 + snr3/(1 + snr)
. (2.16)

Finally, let a∗L(snr) be defined as

a∗L(snr) = max
α∈{ 1

L
,...,1− 1

L
}

R log
(
L
Lα

)
D1

(
Cα − αC, α(1−α)snr

1+αsnr

)
L logL

, (2.17)

where the D1 is defined in (2.8). The behavior of a∗L(snr) as L→∞ is described in Remark 2.2.

12

Theorem 2.1. [16] Assume that M = La, where a ≥ a∗L(snr), and that the gap from capacity
∆ = (C − R) is strictly positive. Then, for any ε > 0, the section error rate Esec of the optimal
decoder satisfies

P (Esec ≥ ε) = e−nE(ε,R), (2.18)

with

E(ε, R) ≥ h(ε,∆)− log 2L

n
, (2.19)

where

h(ε,∆) = min

{
ε∆w(snr),

1

4
g

(
∆

2
√
snr

)}
. (2.20)

The proofs of the theorem is based on Proposition 2.1, and is given in Section 2.4.2.

Remark 2.1. The lower bound on g(x) in (2.15) implies that the function h(ε,∆) can be bounded
from below as

h(ε,∆) ≥ min

{
ε∆w(snr),

∆√
32snr

,
∆2

16snr

}
,

revealing that the exponent is, up to a constant, of the form min{ε∆,∆2}.

An improved lower bound on the exponent E(ε, R) is obtained in [16, Appendix C]. This lower bound
replaces the function h(ε,∆) with a larger function h̃(ε,∆), and shows that the exponent is of the
form min{ε,∆2}.

Remark 2.2. The parameter a∗L(snr) approaches the following limiting value as L → ∞. Let v∗

near 15.8 be the solution to the equation (1+v∗) log(1+v∗) = 3v∗. Then [16, Lemma 5] shows that

lim
L→∞

a∗L(snr) =

{
8R snr (1+snr)

[(1+snr) log(1+snr)−snr]2 for snr < v∗,
2R(1+snr)

[(1+snr) log(1+snr)−2 snr] for snr ≥ v∗.
(2.21)

Taking the upper bound of C for R, it can be shown that the above limit is approximately 16/snr2

for small values of snr, and 1 for large snr.

Probability of message error Using a suitable outer code, the bound on the probability of excess
section error in Theorem 2.1 can be translated into a bound on the probability of message error,
i.e., P(β̂ 6= β).

Consider a concatenated code with a SPARC of rate R as the inner code, and a Reed-Solomon
(RS) outer code, chosen as follows. For simplicity, assume that M = 2m. We consider a systematic
(nout, kout) RS code with symbols in GF (2m). From the theory of RS codes [22, 80], we can take

nout = M, kout = d(1− ε)Me. (2.22)

to obtain an RS code with minimum distance

dRS = M − d(1− ε)Me+ 1 symbols. (2.23)

13

The information bits are encoded into the SPARC codeword as follows. First consider the case
where L = M . Here, the RS encoder maps koutm information bits (kout symbols) into a length L
RS codeword. Since each SPARC section has M columns, each symbol of the RS encoder represents
the index for one section of the SPARC. For the case where L < M , we can use the same procedure
by setting the first (M − L) symbols of the systematic RS codeword to 0.

From (2.23), the number of symbol errors that this code is guaranteed to correct in a length nout
codeword is ⌊

dRS

2

⌋
≥ bεMc.

Therefore, the decoded message β̂ equals the transmitted one β whenever the optimal SPARC
decoder makes no more than bεMc section errors. Therefore, the probability of message error for
the concatenated code is bounded by the RHS of (2.18). From (2.22), the rate of the concatenated
code is at least R(1− 2ε), where R is the rate of the SPARC.

We therefore have the following result.

Proposition 2.2. [16] Consider a SPARC with rate R < C, with parameters (M,L) satisfying the
assumptions of Theorem 2.1. Then for any ε > 0, through concatenation with an outer RS code,
one obtains a code of rate R(1 − 2ε) with message error probability bounded by e−nE(ε,R). Here
E(ε, R) is the exponent from Theorem 2.1, which can be bounded from below as in (2.19).

Remark 2.3. Consider the regime where the SPARC rate R is made to approach C as R = C−∆n.
Let ∆n tend to zero at a rate slower than 1/

√
n, e.g., 1

n1/4 or 1
logn). Then choosing ε = ∆n,

Proposition 2.2 shows that we have a code whose overall rate is (C − ∆n)(1 − ∆n) and whose
probability of message error decays as exp(−κn∆2

n), where κ is a universal positive constant.

2.3 Performance with i.i.d. Bernoulli dictionaries

SPARCs defined via an i.i.d. Gaussian design matrix are not suitable for practical implementation,
especially for large code lengths. Large Gaussian design matrix have prohibitive storage complexity
as the entries will span a large range of real numbers which need to be stored with high precision.
To reduce the storage requirement, one could define the SPARC via a Bernoulli design matrix
entries are chosen uniformly at random from the set {1,−1}. As before, the set of valid message
vectors is BM,L, i.e., β which have one non-zero in each of the L sections. In this section, we consider
Bernoulli-defined SPARCs with equal power allocation, i.e., each non-zero entry of β equals

√
P/L.

Each entry of the codeword is therefore a sum of L i.i.d. random variables, each drawn uniformly

from
{√

P/L,−
√
P/L

}
. Therefore, by the central limit theorem, each codeword entry converges

in distribution to an i.i.d. N (0, P) random variable.

The performance of Bernoulli dictionaries with optimal decoding was analyzed by Takeishi et al.
[105, 106]. The main result, stated below, gives an error probability bound that is almost identical
to the one in Theorem 2.1 for the Gaussian case, except for a slightly weaker exponent.

Theorem 2.2. [106] With the same assumptions and notation as in Theorem 2.1, the section error

14

rate of a SPARC defined with a Bernoulli dictionary satisfies

P (Esec ≥ ε) = e−nE(ε,R), (2.24)

with

E(ε, R) ≥ h(ε,∆)− ι(L), (2.25)

where ι(L) = O(1/
√
L).

We note that the only difference from result for the Gaussian case is that in the lower bound
for E(ε, R), the log(2L)/n term is now replaced with ι(L) = O(1/

√
L). A proof sketch of the

proposition is given in Section 2.4.3.

2.4 Proofs

2.4.1 Proof of Proposition 2.1

We obtain (2.10) by proving that for ` ∈ {1, . . . , L},

Pβ0(Esec = `/L) ≤ err1(`/L), (2.26)

Pβ0(Esec = `/L) ≤ err2(`/L), (2.27)

where err1(·) and err2(·) are defined in the statement of the proposition.

For any β ∈ BM,L, let S(β) = {j : βj = 1} denote the set of non-zero indices. Let S∗ = S(β0)
denote the set of non-zero indices for the true message vector β0, and let S denote the set of non-
zero indices in the decoded message vector When there are ` section errors, the set S differs from
S∗ in exactly ` elements. Letting XS = AβS and XS∗ = AβS∗ = Aβ0, the ML decoder decodes S
only when the received vector Y satisfies ‖Y −XS‖2 ≤ ‖Y −XS∗‖2, or equivalently, when T (S) ≤ 0,
where

T (S) =
1

2n

[‖Y −XS‖2
σ2

− ‖Y −XS∗‖
2

σ2

]
. (2.28)

The analysis proceeds by obtaining a bound for Pβ0(T (S) ≤ 0) that holds for each choice of S.

Noting that there are
(
L
`

)
M ` choices for S, the natural way to combine these is via a union bound:

Pβ0(Esec = `/L) =

(
L

`

)
M ` Pβ0(T (S) ≤ 0).

However, such a union bound gives a result weaker than that of Proposition 2.1. Therefore, we
obtain (2.26) and (2.27) by decomposing T (S) in two different ways and using a modified union
bound.

15

Proof of (2.26) [16, Lemma 3]: Let S1 = S ∩ S∗ and S2 = S − S1 denote, respectively, the
intersection and difference between sets S and S∗. With α = `/L, the sizes of S2 and S1 are αL
and L − αL, respectively. With this notation, the probability of the event {Esec = `/L} can be
bounded as follows. For any λ > 0, the indicator of the event satisfies

1{Esec = `/L} ≤
∑
S1

(∑
S2

e−nT (S)
)λ
. (2.29)

We decompose the test statistic T (S) as T1 + T2, where

T1 =
1

2n

[‖Y −XS1‖2
σ2 + αP

− ‖Y −XS∗‖
2

σ2

]
, (2.30)

and

T2 =
1

2n

[‖Y −XS‖2
σ2

− ‖Y −XS1‖2
σ2 + αP

]
. (2.31)

Observing that T1 depends only on the indices in S∗ (and not on those in S2), we take expectations
on both sides of (2.29) to write

Pβ0(Esec = `/L) ≤
∑
S1

Ee−nλT1(S1) EXS2
|Y,XS1

,XS∗

(∑
S2

e−nT2(S)
)λ

(a)

≤
∑
S1

Ee−nλT1(S1)

[∑
S2

EXS2
e−nT2(S)

]λ
(b)
=
∑
S1

Ee−nλT1(S1)

[∑
S2

(
1 +

αP

σ2

)−n
2

]λ
,

(c)

≤
∑
S1

Ee−nλT1(S1) e−nλ(Cα−αR). (2.32)

where (a) is obtained using Jensen’s inequality (arranging for λ to be not more than 1), and noting
that XS2 is independent of (Y,XS1 , XS∗). Step (b) is obtained by writing

e−nT2(S) = exp

(
−1

2

[
‖Y −XS1 −XS2‖2

σ2
− ‖Y −XS1‖2

σ2 + αP

])
,

and evaluating the expectation with respect to XS2 , which is i.i.d. ∼ N (0, αP). For step (c), we
observe that the sum over S2 involves at most M ` = enRα terms, and use the definition of Cα from
(2.9).

We note from (2.30) that T1(S1) is distributed as

T1(S1)
d
=

1

2n

n∑
i=1

(
Z2
i − Z̃2

i

)
,

where each pair (Zi, Z̃i) is bivariate Gaussian with squared correlation equal to 1/(1 + αsnr). The
pairs are i.i.d. for 1 ≤ i ≤ n. Using this, the expectation in (2.32) is found to be

Ee−nλT1(S1) = (1− λ2αsnr/(1 + αsnr))−n/2.

The proof is completed by using this in (2.32), noting that the sum over S1 has
(
L
Lα

)
terms, and

optimizing the bound over λ ∈ [0, 1].

16

Proof of (2.27) [16, Lemma 4]: For any S which differs from S∗ in ` sections, we decompose the
test statistic in (2.28) as T (S) = T̃ (S) + T ∗, where

T̃ (S) =
1

2n

[‖Y −XS‖2
σ2

− ‖Y − (1− α)XS∗‖2
σ2 + α2P

]
, (2.33)

T ∗ =
1

2n

[‖Y − (1− α)XS∗‖2
σ2 + α2P

− ‖Y −XS∗‖
2

σ2

]
. (2.34)

Let tα ∈ [0, Cα − αR]. Then,

Pβ0(Esec = `/L) ≤ Pβ0(∃S : T̃ (S) ≤ tα) + Pβ0(T ∗ ≤ −tα). (2.35)

We note that T ∗ does not depend on S: it is a mean zero average of the difference of squared
Gaussian random variables, with squared correlation 1/(1 + α2snr). The second term on the RHS
of (2.35) can therefore be bounded via a Chernoff bound (as in (2.6)) to obtain the second term in
(2.13).

The analysis of the first term in (2.35) is very similar to the proof of (2.26) above. We write
T̃ (S) = T̃1 + T̃2, where

T̃1 =
1

2n

[‖Y −XS1‖2
σ2 + αP

− ‖Y − (1− α)XS∗‖2
σ2 + αP

]
,

T̃2 =
1

2n

[‖Y −XS‖2
σ2

− ‖Y −XS1‖2
σ2 + αP

]
. (2.36)

The key difference between T̃1 and T1 (defined in (2.30)) is that the two standard normals have
a higher correlation coefficient in T̃1. Indeed, the squared correlation coefficient between the two
standard normals in (2.36) is ρ2

α = (1 + α2snr)/(1 + αsnr), and the moment generating function is
found to be

Ee−nλT̃1(S1) = (1− λ2α(1− α)snr/(1 + αsnr))−n/2.

Following steps similar to (2.32) yields the second term in (2.13).

This proves (2.27), and therefore Proposition 2.1.

2.4.2 Proof of Theorem 2.1

To prove Theorem 2.1, we use the following weaker bound implied by Proposition 2.1: Pβ0(Esec ≥
ε) ≤∑L

`=εL err2(`/L), where err2(·) is defined in (2.13). Let

∆α = Cα − αR− tα, ∆̃α = Cα − αC, 1− ρ2
α =

α(1− α)snr

1 + αsnr
. (2.37)

Noting that ∆α = ∆̃α+α(C −R)− tα, the idea is to cancel the combinatorial coefficient
(
L
Lα

)
using

exp(−nD1(∆̃α, 1−ρ2
α)), and produce an exponentially small error probability using exp(−n[D1(∆α, 1−

ρ2
α)−D1(∆̃α, 1− ρ2

α)]).

17

The derivative of D1(∆, 1− ρ2
α) with respect to ∆, denoted by D′1(∆), is equal to

D′1(∆) =


2∆

(1−ρ2
α)(1+

√
1+4∆2/(1−ρ2

α))
if ∆ < 1−ρ2

α
ρ2
α
,

1 otherwise.
(2.38)

Since the derivative is non-decreasing in ∆, using a first-order Taylor expansion we deduce

D1(∆α, 1− ρ2
α) ≥ D1(∆̃α, 1− ρ2

α) + (∆α − ∆̃α)D′1(∆̃α). (2.39)

Then using the definition of err2 in (2.13), we have for 1
L ≤ α ≤ 1− 1

L ,

err2(α) ≤ exp
(
− nD

(
tα,

α2 snr

1 + α2 snr

))
+

(
L

αL

)
exp(−nD1(∆̃α, 1− ρ2

α)) exp(−n(α(C −R)− tα)D′1(∆̃α))

≤ exp
(
− nD

(
tα,

α2 snr

1 + α2 snr

))
+ exp(−n(α(C −R)− tα)D′1(∆̃α)) (2.40)

where the last inequality is obtained by using the relation nR = L logM = aL logL, and the fact
that a ≥ a∗L(snr) (see (2.17)). Choosing tα = α(C −R)/2, we obtain

err2(α) ≤ exp

(
− nD

(
α(C −R)

2
,

α2 snr

1 + α2 snr

))
+ exp

(
−nα(C −R)D′1(∆̃α)

2

)
(a)

≤ exp

(
− nD

(
α(C −R)

2
,

α2 snr

1 + α2 snr

))
+ exp

(
− nα(C −R)w(snr)

)
(b)

≤ exp

(
−n
4
g

(
(C −R)

√
1 + α2snr

2
√

snr

))
+ exp

(
− nα(C −R)w(snr)

)
(2.41)

where the function g is defined in (2.14). In the above, inequality (a) is obtained using the lower
bound D′1(∆̃α) ≥ 2w(snr), with w(snr) being defined in (2.16). This lower bound is obtained by
using the definition of 1 − ρ2

α from (2.37) and the lower bound ∆̃α ≥ snr
4(1+snr)2α(1 − α) in the

expression for D′1(∆̃α) in (2.38). Inequality (b) is obtained using the following lower bound [16,
Lemma 6]:

D(x, 1− ρ2) ≥ 1

4
g

(√
1 +

4x2

1− ρ2
− 1

)
.

Finally, using (2.41) in (2.10) and noting that there are at most L terms in the sum, we deduce

Pβ0(Esec ≥ ε) ≤ 2L exp

(
−nmin

{
ε∆w(snr),

1

4
g
(∆

2
√

snr

)})
= exp

(
−h(ε,∆)− log 2L

n

)
,

where ∆ = (C −R), and h(ε,∆) is defined in (2.20). This completes the proof of Theorem 2.1.

18

2.4.3 Proof sketch of Theorem 2.2

We will prove the theorem via the following bound similar to Proposition 2.1:

Pβ0(Esec ≥ ε) ≤
L∑

`=εL

err′2(`/L) (2.42)

where err′2(·) is defined as follows. For 0 < α ≤ 1,

err′2(α) = min
tα∈[0,Cα−αR]

err′2(α, tα), (2.43)

where

err′2(α, tα) =

(
L

αL

)
exp

(
−nD1

(
Cα − αR− tα,

α(1− α) snr

1 + α snr

)
− ι1

)
+ exp

(
−nD

(
tα,

α2 snr

1 + α2 snr
− ι2

))
. (2.44)

Here ι1 = O(1/
√
L) and ι2 = O(1/L).

The only difference between err′2(·) and err2(·) defined in (2.13) is the presence of ι1 and ι2 in the
former. Using the bound in (2.42), Theorem 2.2 can be established using steps similar to those
used for Theorem 2.1 in Sec. 2.4.2.

We now sketch the proof of (2.42). The proof hinges on two key lemmas. The first uniformly
bounds the ratio between a binomial pmf and a Gaussian with the same mean and variance.

Lemma 2.3. [105] Let φ(x; µ, σ2) denote the normal density with mean µ and variance σ2. Then
for any ` ∈ N,

max
k∈{0,1,...,`}

(
`
k

)
2−`

φ(k; `/2, `/4)
≤ exp(ϕ(`)),

where ϕ(`) ≤ 5/` for ` ≥ 1000.

The next two lemmas give bounds on the ratio of certain Reimann sums to the corresponding
integrals.

Lemma 2.4. [106] For n ∈ N, let h = 2/
√
n and xk = −√n + 2k√

n
for k = 0, 1, . . . , n.For µ ∈ R

and s > 0, define

Id = h
n∑
k=0

exp

{
−s

2

2
(xk − µ)2

}
,

Ic =

∫ ∞
−∞

exp

{
−s

2

2
(x− µ)2

}
dx.

Then

Id ≤
(

1 +
ηs2

n

)
Ic,

where η = 3/
√

8πe ≤ 0.37.

19

Lemma 2.5. For n, n′ ∈ N, let h = 2/
√
n, X = {−√n+ 2k√

n
| k = 0, 1, . . . , n}, and let h′ = 2/

√
n′,

X = {−
√
n′ + 2k√

n′
| k = 0, 1, . . . , n}.

(a) For a two-dimensional vector x = [x1, x2]T ∈ R2 and a 2× 2 positive definite matrix B, define

Id =

∫
R
h
∑
x1∈X

exp
{
−xTBx/2

}
dx2,

Ic =

∫
R2

exp
{
−xTBx/2

}
dx.

Then Id ≤
(

1 + ηB11

n

)
Ic, where η is defined in Lemma 2.4, and Bij denotes the (i, j)th element

of the matrix B.

(b) For a three-dimensional vector x = [x1, x2, x3]T ∈ R3 and a 3 × 3 positive definite matrix B,
define

Id =

∫
R
hh′

∑
x1∈X1

∑
x1∈X2

exp
{
−xTBx/2

}
dx3,

Ic =

∫
R3

exp
{
−xTBx/2

}
dx.

Then Id ≤
(

1 + ηB11

n

)(
1 + ηB22

n′

)
Ic.

The proof is along the lines of that of (2.27) on p.17. We have

Pβ0(Esec = `/L) ≤ Pβ0(∃S : T̃ (S) ≤ tα) + Pβ0(T ∗ ≤ −tα). (2.45)

with T̃ (S) and T ∗ defined as in (2.33)-(2.34). Using a Chernoff bound, the second term can be
bounded as

Pβ0(T ∗ ≤ −tα) ≤ e−nλtαEY,XS∗e
−nλT ∗ . (2.46)

The moment generating function can be written as

EY,XS∗e
−nλT ∗ =

[
EZ1,Z̃1

eλ(Z2
1−Z̃2

1)/2
]n
, (2.47)

where

Z1 ∼ N (0, 1), Z̃1 =
(σZ + α

√
P W1)√

σ2 + α2P
.

Here W1 (independent of Z1) is the sum of L independent equiprobable ±1 random variables,
normalized to have unit variance. If W1 was Gaussian, then the moment generating function in
(2.47) would be exactly equal to (1−λ2α2snr/(1+α2snr))−n/2. For the W1 arising from a Bernoulli
dictionary, using Lemmas 2.3, 2.4 and 2.5, it can be shown that

EY,XS∗e
−nλT ∗ ≤

(
eι2

1− λ2α2snr/(1 + α2snr)

)n
.

20

Using this in (2.46) yields the second term in (2.44).

For the first term in (2.45), we write T̃ (S) = T̃1 + T̃2 where T̃1 and T̃2 are defined in (2.36). Then,
using steps similar to (2.32), we obtain

Pβ0(∃S : T̃ (S) ≤ tα) ≤ entα
∑
S1

EY,XS∗e
−nλT1(S1)

[∑
S2

EXS2
e−nT2(S)

]λ
. (2.48)

Again, using Lemmas 2.3, 2.4 and 2.5, the two moment generating functions in (2.48) can be
bounded to yield the first term in (2.44). The details of the computation can be found in [105,
Section III.C] and [106].

21

22

Chapter 3

Computationally Efficient Decoding

In this chapter, we will discuss computationally efficient decoders for SPARCs over the AWGN
channel. The goal is to design and analyze feasible capacity-achieving decoders whose complexity
is polynomial in the code length n, in contrast to the infeasible maximum-likelihood decoder.

The channel model and the encoding procedure are as described in Sec. 2.1. The first idea for
designing a efficient decoder is to use a decaying power allocation across sections. As shown in Fig.
3.1, the non-zero coefficients in the message vector β are

c1 =
√
nP1, c2 =

√
nP2, . . . , cL =

√
nPL.

Without loss of generality, we assume that the power allocation is non-increasing across sections,
i.e., P1 ≥ P2 . . . ≥ PL. Denoting the column of A corresponding to the `th non-zero entry of β by
Ai` , for ` ∈ [L], the received sequence y ∈ Rn is

y =
√
nP1Ai1 +

√
nP2Ai2 + . . .+

√
nPLAiL + w. (3.1)

The decoding task is to recover the non-zero locations i1, . . . , iL. The idea of power allocation is
to facilitate an iterative decoder that first decodes (either exactly or approximately) the sections

A:

β: 0,
√
nP2, 0,

√
nPL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0,
√
nP1,0, 0,

Figure 3.1: A Gaussian sparse regression codebook with power allocation. The power allocation coefficients
P1, . . . , PL are of order 1

L and satisfy P1 + . . .+ PL = P .

23

with the highest power, then the sections with the next highest power etc. Correctly recovering a
subset of the indices, say allows the decoder to cancel their contribution from y, thereby making
the decoding of the remaining sections easier.

In the next section, we discuss an adaptive ‘hard-decision’ decoder based on the successive cancel-
lation idea above. In Sections 3.3 and 3.4, we discuss two ‘soft-decision’ versions of the iterative
decoder. All three decoders are asymptotically capacity-achieving, but the soft-decision decoders
have better finite length error performance. In the next chapter, we will discuss how to design
alternative power allocations to optimize finite length error performance.

We emphasize that the decoders above do not pre-specify an order in which the sections are decoded.
Rather, the power allocation makes it likely that sections with higher power are decoded before
those with lower power. This is similar in spirit to how algorithms such as Orthogonal Matching
Pursuit for recovering sparse vectors can be significantly more powerful when the magnitudes of
the non-zero coefficients have a decaying profile [58].

3.1 Adaptive successive hard-decision decoding

For our theoretical results we will use the following exponentially decaying allocation, with the
power in section ` proportional to e−2C`/L:

P` = P · e
2C/L − 1

1− e−2C · e
−2C`/L, ` ∈ [L]. (3.2)

Recalling that C = 1
2 log(1 + snr), we note that 1− e−2C = snr/(1 + snr).

This power allocation is motivated by thinking of the L sections of the SPARC as corresponding
to L users of a Gaussian multiple-access channel (MAC) with total power constraint P . Indeed,
consider the equal-rate point on the capacity region of a L-user Gaussian MAC where each user gets
rate C/L. It is well-known [32, 37] that this rate point can be achieved via successive cancellation
decoding, where user 1 is first decoded, then user 2 is decoded after subtracting the codeword of
user 1, and so on. For this successive cancellation scheme, the power allocation for the L users is
determined by the following set of equations:

1

2
log

(
1 +

P`
σ2 + P`+1 . . .+ PL

)
=
C
L
, ` ∈ [L]. (3.3)

Sequentially solving the set of equations in (3.3), starting from ` = L, yields the exponentially
decaying power allocation in (3.2).

Continuing the analogy with an L-user MAC, we ask: can the above successive cancellation scheme
be used for SPARC decoding to achieve rates close to C? Unfortunately, successive cancellation
performs poorly for SPARC decoding. This is because L, the number of sections (‘users’) in the
codebook grows with n. Indeed, for the choice M = La, L grows as n/ log n, while M , the number
of codewords per user, only grows polynomially in n. An error in decoding one section affects the
decoding of future sections, leading to a large number of section errors after L steps. We note that

24

in the standard MAC set-up, the number of users L remains constant as the code length n grows;
hence the rate per user is also of constant order.

The first feasible SPARC decoder, proposed in [65], controls the accumulation of section errors
using adaptive successive decoding. The idea is to not pre-specify the order in which sections are
decoded, but to look across all the undecoded sections in each step, and adaptively decode columns
which have a large inner product with the residual. The adaptive successive decoding algorithm
proceeds as follows.

Given y = Aβ + w, start with estimate β0 = 0.

Initial step [t = 1]

1. Compute the inner product of
√
n y/‖y‖ with each column of A.

2. Pick the columns corresponding to inner products that cross a threshold
√

2 logM+a to form
β1, for a fixed constant a > 0.

3. Form the initial fit as weighted sum of columns: Fit1 = Aβ1.

Iterate [step t+ 1, t ≥ 1]

1. Compute the normalized residual Rest =
√
n (y − Fitt)/‖y − Fitt‖.

2. Compute the inner product of Rest with each remaining column of A.

3. Pick the columns that cross the threshold
√

2 logM + a to form βt+1.

4. Compute the new fit Fitt+1 = Aβt+1.

Stop if there are no additional inner products above threshold, or after (snr) logM steps.

3.1.1 Intuition and analysis

First step The key observation is that in Step 1, the columns of A that are not sent (i.e., correspond
to a zero entries in β) will produce normalized inner products whose joint distribution is close to
i.i.d. N (0, 1). On the other hand, the column that was sent in section ` will produce an inner
product that is close to a standard normal plus a shift of size

√
nP`/(P + σ2). This is made precise

in the following lemma.

Lemma 3.1. [65, Lemma 3] For j ∈ [ML], let Aj denote the jth column of A, and let Z1,j =√
nA∗jy/‖y‖. Then for j ∈ section `, ` ∈ [L] we have

Z1,j
d
=

√
nP`

P + σ2

χn√
n

1{j sent}+N1,j , (3.4)

25

where N1 = (N1,j : 1 ≤ j ≤ ML) is multivariate normal with zero mean and covariance matrix

I− ββ∗

n(P+σ2)
. Furthermore, χ2

n = ‖y‖2/(P+σ2) is a Chi-square n random variable that is independent

of N1.

Proof. Recall from (3.1) that y =
√
nP1Ai1 + . . .+

√
nPLAiL+w, where i1, . . . , iL denote the indices

of the sent terms. Also recall that w ∼ N (0, σ2I) and Aj ∼ N (0, 1
n I) are i.i.d. for 1 ≤ j ≤ ML.

Using this we find that the conditional distribution of Aj given y, for j in section `, is:

Aj | y ∼
{
N (0, 1

n I) if j 6= i`,

N
(
y
√
nP`

n(P+σ2)
, 1
n(1− P`

P+σ2)I
)

if j = i`.
(3.5)

Hence the conditional distribution of Aj given y may be expressed as

Aj =
1√
n

(
βj

P + σ2

y√
n

+ Uj

)
(3.6)

where Uj ∼ N (0, (1 − β2
j

n(P+σ2)
)) is independent of y. Moreover, for a given row index i, since

E[Aj,iAk,i] = 1
n1{j = k}, we have E[Uj,iUk,i] =

−βjβk
n(P+σ2)

for j 6= k. Therefore, for any i ∈ [n] the

random vector (U1,i, . . . , UML,i) has distribution N (0, (1− ββ∗

n(P+σ2)
)I).

From (3.6) we have

Z1,j =
√
nA∗j

y

‖y‖ =
βj√
P + σ2

‖y‖√
n(P + σ2)

+
U∗j y

‖y‖ . (3.7)

Letting N1,j =
U∗j y

‖y‖ and N1 = (N1,j : 1 ≤ j ≤ ML), to complete the proof we need to show that

N1 is a multivariate normal that is independent of y with covariance matrix I − ββ∗

n(P+σ2)
. Indeed,

conditioning on any (non-zero) realization of y it is seen that N1 is a N (0, (1− ββ∗

n(P+σ2)
)I) random

vector. This completes the proof.

In Lemma 3.1, since χn/
√
n is close to 1 for large n, the shift in the inner product corresponding

to the sent term in section in ` is√
nP`

P + σ2
=

√
LP`

R(P + σ2)
logM

(a)
=

√
C
R

(1 +O
(

1
L

)
)e−2C`/L

√
2 logM, (3.8)

where (a) is obtained using the exponential power allocation in (3.2), and the fact that e2C/L− 1 =
2C
L (1 + O(1

L)). Since R < C we observe from (3.8) that the shift will be larger than
√

2 logM for
1 ≤ ` ≤ `0, where `0 is determined by C/R.

On the other hand, for any column j that is not sent in section `, the shift is zero, and the test
statistic Z1,j normal. Recalling that each section has M columns, we note that the maximum
of M standard normals concentrates near

√
2 logM for large M [56]. Therefore, if the constant a

defining the threshold is chosen to be small compared to
√

2 logM , then the true columns in sections
1 ≤ ` ≤ `0 are likely to have inner products that exceed the threshold

√
2 logM + a. On the hand,

a > 0 ensures that the probability of inner product of a wrong column crossing the threshold is
small. It is evident that the value of a determines the trade-off between the probabilities of false
alarm and missed detection.

26

Subsequent steps Let dect denote the set of sections decoded up to the end of step t. Then the
residual Rest removes the contribution of the sections in dect from y. Assuming that no mistakes
were made until step t, by analogy with the Step 1 analysis above we expect the shift for the sent
term in (a yet to be decoded) section ` to be close to√

nP`
σ2 + P (1− xt)

, (3.9)

where xt = 1
P

∑
k∈dect

Pk is the fraction of power that has already been decoded. Thus as decoding
successfully progresses, xt increases with t, making the shift in (3.9) larger and facilitating the
decoding of sections with lower power.

However, establishing a result analogous to Lemma 3.1 for t > 1 is challenging. This is because the
dependence between the residual Rest and the matrix A cannot be easily characterized. Indeed,
recall that Rest has been generated via decisions based on inner products with columns on A
computed in previous steps.

To address this, Barron and Joseph consider a slightly modified version of the decoder, where at
the end of each step t, we compute Gt, the part of Fitt that is orthogonal to y,Fit1, . . . ,Fitt−1. That
is, with G0 , y, the collection

G0

‖G0‖
,
G1

‖G1‖
, . . . ,

Gt
‖Gt‖

forms an orthonormal basis for Fit1, . . . ,Fitt. Then in step (t + 1), instead of residual-based inner
products, we compute the following test statistic for each column j in an undecoded section:

Zcomb
t,j = (Aj)

∗
[
λ0

G0

‖G0‖
+ . . .+ λt

Gt
‖Gt‖

]
(3.10)

where λ0, . . . , λt are deterministic positive constants such that
∑t

k=0 λ
2
k = 1. For an appropriate

choice of λk’s, the test statistic in (3.10) closely mimics the residual based statistic. Essentially, λk
is chosen to be a deterministic proxy for the inner product

(Rest)
∗Gk

‖Rest‖‖Gk‖
.

With this choice, the test statistic Zcomb
t,j can be shown to have a distributional representation that

is approximately a shifted normal. That is,

Zcomb
t,j

(a)
≈
√

nP`
σ2 + P (1− xt)

1{j sent}+Nt,j , (3.11)

where Nt,j is normal zero-mean random variable with variance near 1. The parameter xt quantifies
the expected success rate, and can be interpreted as the expected fraction of power in the sections
decoded by the end of iteration t. It can be recursively computed as follows, starting from x0 = 0.
With τ =

√
2 logM + a denoting the threshold used in each step and Φ denoting the standard

27

0 5 10 15 20 25 30 35
t

10 3

10 2

10 1

100

1
x t

soft
hard, a=1.0
hard, a=0.8
hard, a=0.0

Figure 3.2: Evolution of (1 − xt) with iteration t. The SPARC parameters are M = 512, L = 1024, snr =
15, R = 0.8C, P` ∝ e−2C`/L with C in nats. Curves are shown for three different values of the threshold
τ =
√

2 logM + a, with a = 1, 0.8, 0. The dashed curve shows the evolution of (1 − xt) for the soft-decison
decoder discussed in the next section.

normal distribution function, we have

xt+1 =
L∑
`=1

P`
P

Φ

(√
nP`

σ2 + P (1− xt)
− τ
)

(3.12)

=

L∑
`=1

P`
P

Φ

(√
2 logM

(√
C
R
· σ2 + P

σ2 + P (1− xt)
e−2C`/L − 1

)
− a+O(1

L)

)
(3.13)

where (3.13) is obtained using the expression for
√
nP` from (3.8).

Figure 3.2 shows the progression of (1 − xt) with t, for three different values of the threshold√
2 logM + a, with a = 1, 0.8, 0. The parameter (1− xt) quantifies the expected fraction of power

in the undecoded sections after iteration t. Observe from (3.12) that a smaller value of the threshold
τ results in a smaller value of (1−xt); this is illustrated by the curves shown in Fig. 3.2. However,
the recursive formula (3.12) is an idealized prediction: it gives the expected fraction of power in
the decoded sections at the end of each iteration t, assuming that there are no false alarms, i.e., no
sections have been incorrectly decoded. For finite block lengths the value of a > 0 in the threshold
τ =
√

2 logM + a plays a crucial role in determining the false alarm rate. The larger the value of
a, the lower the probability of false alarms.

A rigorous statement specifying the distributional representation of Zcomb
t,j , taking into account the

false alarm rate, is given in [65, Lemma 4]. This representation leads to the following performance
guarantee for the decoder, which in essence states that rates up to

C∗ :=
C

1 + δM
(3.14)

can be achieved with O(δM) fraction of section errors, where

δM :=
1√

π logM
. (3.15)

28

Theorem 3.1. [65, Theorem 2] Let the rate R < C∗ be expressed in the form

C∗
1 + κ

logM

(3.16)

with κ > 0. Then, with the exponentially decaying power allocation in (3.2) the adaptive successive
decoder has section error rate less than

δerr :=
1

2C√π logM
+

3κ+ 5

8C logM
(3.17)

with probability at least 1− Pe, where

Pe = κ1,Me
−κ2Lmin{κ3∆2, κ4∆}. (3.18)

In (3.18), ∆ = C∗−R
C∗ , κ1,M is a polynomial in M , and κ2, κ3 and κ4 are constants that depend on

snr.

Remark 3.1. As in Proposition 2.2, we can concatenate the SPARC with an outer Reed-Solomon
code of rate (1− 2δerr) to guarantee that the message error probability is bounded by Pe in (3.18).
Thus Theorem 3.1 tells us that the adaptive successive decoder can achieve rates of the order of
1/
√

logM below capacity.

Choosing L = Ma, we have M of order (n/ log n)a, and hence the minimum gap from capacity is
of order 1/

√
log n. This gap is much larger than that of the optimal decoder, which can achieve

rates up to order 1/nα below capacity with error probability decaying exponentially in n1−2α, for
any α ∈ (0, 1

2) (see Remark 2.3).

Remark 3.2. It is shown in [64, Sec. 4.18] that the gap from capacity can be improved to
O(log logM/ logM) using a power allocation that is slightly modified from the one in (3.2). The
power P` is now chosen proportional to

max{e− 2C`
L , e−2C(1 + c√

2 logM
)},

for a suitably chosen constant c. This allocation slightly boosts the power for sections ` close to L.
This helps ensure that, even towards the end of the algorithm, there will be sections for which the
true terms are expected to have inner product above threshold.

3.2 Iterative soft-decision decoding

Theorem 3.1 shows that the adaptive successive hard-thresholding decoder is asymptotically capacity-
achieving. However, the empirical section error rate at practically feasible code lengths is rather
high for rates near capacity. We now discuss two soft-decision decoders, the adaptive successive
soft-decision decoder and the approximate message passing (AMP) decoder, which have better er-
ror performance at finite code lengths. Instead of making hard decisions about which columns to
decode in each step, the soft-decision decoders generate iteratively refined estimates of the mes-
sage vector in each step. Both soft-decision decoders share a few key underlying principles. We

29

first discuss these principles in this section. The specifics of the two decoding algorithms are then
described in the next two sections.

The decoder starts with β0 = 0 (the all-zero vector of length ML), and generates an updated
estimate of the message vector in each step; these estimates are denoted by β1, β2, The key
idea in soft-decision decoding is to form the new estimate in each step by updating the posterior
probabilities of each entry of β being the true non-zero in its section. This is done as follows.

At the end of each step t, the decoder produces a test statistic statt ∈ RML that has the form

statt ≈ β + τtZ, (3.19)

where Z is a standard normal random vector independent of β. That is, statt is approximately
distributed as the true message vector plus an independent standard Gaussian vector with known
variance τ2

t . The test statistic statt is produced based on y,A and the previous estimates β1, . . . , βt.
The details of how statt is produced to ensure that (3.19) holds depend on the type of soft-decision
decoder used. These details are described in Sections 3.3 and 3.4.

In step (t+ 1), the decoder generates an updated estimate βt+1 based on statt. Assuming that the
distributional property in (3.19) exactly holds at the end of step t, the Bayes-optimal estimate for
β that minimizes the expected squared error in the next step (t+ 1) is

βt+1 = ηt(statt) := E[β | β + τtZ = statt]. (3.20)

The conditional expectation above can be computed as follows using the known prior on β in which
the location of the non-zero within section is uniformly random. For statt = s = (s1, . . . , sML) and
index i ∈ sec(`), ` ∈ [L] we have

ηti(statt = s) = E[βi | β + τtZ = s] = E[βi | {βj + τtZj = sj}j∈sec(`)]

=
√
nP` P (βi =

√
nP` | {βj + τtZj = sj}j∈sec(`))

=

√
nP` f({sj}j∈sec(`) | βi =

√
nP`)P (βi =

√
nP`)∑

k∈sec(`) f({sj}j∈sec(`) | βk =
√
nP`)P (βk =

√
nP`)

(3.21)

where we have used Bayes’ theorem with f(·|βk =
√
nP`) denoting the joint density of {βj +

τtZj}j∈sec(`) conditioned on βk being the non-zero entry in section `. Since β and Z are independent
with Z having i.i.d. N (0, 1) entries, for each k ∈ sec(`) we have

f({βj + τtZj = sj}j∈sec(`) | βk =
√
nP`)

∝ e−(sk−
√
nP`)

2/2τ2
t

∏
j∈sec(`),j 6=k

e−s
2
j/2τ

2
t . (3.22)

Using (3.22) in (3.21), together with the fact that P (βk =
√
nP`) = 1

M for each k ∈ sec(`), we
obtain

ηti(statt = s) = E[βi |β + τtZ = s] =
√
nP`

esi
√
nP`/τ

2
t∑

j∈sec(`) e
sj
√
nP`/τ

2
t

. (3.23)

30

3.2.1 State evolution

To compute βt+1 using (3.23) requires the parameter τ2
t , which is the variance of the noise in the

desired distributional representation statt = β+ τtZ. This noise variance has two components: one
is the channel noise variance σ2, and the other is the mean-squared estimation error 1

nE‖β − βt‖2.

Starting with τ2
0 = σ2 + P , we recursively compute τ2

t+1 for t ≥ 0 as follows:

τ2
t+1 = σ2 +

1

n
E‖β − E[β|β + τtZ]‖2 = σ2 +

1

n
E‖β − ηt(β + τtZ)]‖2, (3.24)

where the expectation on the right is over β and the independent standard normal vector Z. The
recursion (3.24) to generate τ2

t+1 from τ2
t can be written as

τ2
t+1 = σ2 + P (1− xt+1) (3.25)

where xt+1 = x(τt), with

x(τ) :=
L∑
`=1

P`
P

E

 exp
{√

nP`
τ

(
U `1 +

√
nP`
τ

)}
exp

{√
nP`
τ

(
U `1 +

√
nP`
τ

)}
+
∑M

j=2 exp
{√

nP`
τ U `j

}
 . (3.26)

In (3.26), {U `j } are i.i.d. N (0, 1) random variables for j ∈ [M] and ` ∈ [L]. For consistency, we
define x0 = 0.

The equivalence between the recursions in (3.24) and (3.25) is established by the following propo-
sition.

Proposition 3.2. [95] Under the assumption that statt = β + τtU , where U ∈ RML is standard
normal and independent of β, the quantity xt+1 = x(τt) satisfies

xt+1 =
1

nP
E[β∗βt+1], 1− xt+1 =

1

nP
E[‖β − βt+1‖2], (3.27)

and consequently, (3.24) and (3.25) are equivalent.

Proof. For convenience of notation, we label the ML components of the standard normal vector U
as {U `j }j∈[M],`∈[L]. For any `, U ` denotes the length M vector {U `j }j∈[M]. We have

1

nP
E[β∗βt+1] =

1

nP
E[β∗ ηt(β + τtU)]

(a)
=

1

nP

L∑
`=1

E[
√
nP` η

t
sent(`)(β` + τtU

`)]

(b)
=

1

nP

L∑
`=1

E

√nP` √
nP` · e

√
nP`(

√
nP`+τtU

`
1)/τ2

t

e
√
nP`(

√
nP`+τtU

`
1)/τ2

t +
∑M

j=2 e
√
nP`τtU

`
j /τ

2
t


=

L∑
`=1

P`
P

E

 e

√
nP`
τt

(U`1+

√
nP`
τt

)

e

√
nP`
τt

(U`1+

√
nP`
τt

)
+
∑M

j=2 e

√
nP`
τt

U`j

 = xt+1.

(3.28)

31

In (a) above, the index of the non-zero term in section ` is denoted by sent(`). Step (b) is obtained
by assuming that sent(`) is the first entry in section ` — this assumption is valid because the prior
on β is uniform over BM,L(P1, . . . , PL).

Next consider
1

nP
E[‖β − βt+1‖2] = 1 +

E[‖βt+1‖2]− 2E[β∗βt+1]

nP
. (3.29)

Under the assumption that statt = β + τtZ, recall from Section 3.2 that βt+1 can be expressed as
βt+1 = E[β | statt]. We therefore have

E[‖βt+1‖2] = E[‖E[β|statt]‖2] = E[(E[β|statt]− β + β)∗E[β|statt]]

(a)
= E[β∗E[β|statt]] = E[β∗βt+1], (3.30)

where step (a) follows because E[(E[β|statt]−β)∗E[β|statt]] = 0 due to the orthogonality principle.
Substituting (3.30) in (3.29) and using (3.28) yields

1

nP
E[‖β − βt+1‖2] = 1− E[β∗βt+1]

nP
= 1− xt+1.

The parameter xt can be interpreted as the power-weighted fraction of sections correctly decodable
after step t: starting from x0 = 0. The recursion defined by (3.26) and (3.25) to compute the
parameters (xt, τ

2
t)t=0,1,... is called state evolution. This terminology is due to the similarity with

density evolution, the recursion used to predict the performance of LDPC codes [93].

Figure 3.2 on page 28 shows the progression of (1− xt) for soft-decision decoding in dashed lines,
alongside the solid lines for hard-decision decoding. For the soft-decision case, xt is recursively
computed using the state evolution recursion in (3.26) and (3.25). As we do not make hard decisions
on decoded columns until the end, there is no false alarm rate to be controlled in each iteration. If
the iterative soft decision decoder is run for T steps, we wish to ensure that xT is as close to one
as possible, implying that the expected squared error 1

nE‖β − βT ‖2 ≈ 0 under the distributional
assumption for statt.

Figure 3.3 shows the progression of the MSE 1
n‖β − βt‖2 for 200 trials of the AMP decoder (green

curves); it is seen that the average is closely tracked by (1 − xt) (black curve). The theoretical
analysis of the soft-decision decoders discussed in the next two sections shows that the decoding
performance of the soft-decision decoders in each step t is closely tracked by the parameter xt as
the SPARC parameters (L,M, n) grow large.

The following lemma specifies the state evolution recursion in the large system limit, i.e., as
L,M, n→∞ such that L logM = nR. We denote this limit by lim.

Lemma 3.3. [95, Lemma 1] For any power allocation {P`}`=1,...,L that is non-increasing with `,
we have

x̄(τ) := limx(τ) = lim

bξ∗(τ)Lc∑
`=1

P`
P
, (3.31)

32

Figure 3.3: Comparison of state evolution predictions with AMP performance. The SPARC parameters are
M = 512, L = 1024, snr = 15, R = 0.7C, P` ∝ e−2C`/L with C in nats. The average of the 200 trials (green
curves) is the dashed red curve, which is almost indistinguishable from the state evolution prediction (black
curve).

where ξ∗(τ) is the supremum of all ξ ∈ (0, 1] that satisfy

limLPbξLc > 2Rτ2.

If limLPbξLc ≤ 2Rτ2 for all ξ > 0, then x̄(τ) = 0. (The rate R is measured in nats.)

Proof. In Sec. 3.6.1.

Recalling that xt+1 = x(τt) is the expected power-weighted fraction of correctly decoded sections
after step (t + 1), for any power allocation {P`}, Lemma 3.3 can be interpreted as follows: in the
large system limit, sections ` such that ` ≤ bξ∗(τ̄t)Lc will be correctly decodable in step (t + 1),
i.e., the soft-decision decoder will assign most of the posterior probability mass to the correct term.
Conversely all sections whose power falls below the threshold will not be decodable in this step.

For the exponentially decaying power allocation in (3.2), we have for ξ ∈ (0, 1]:

limLPbξLc = σ2(1 + snr)1−ξ ln(1 + snr). (3.32)

Using this in Lemma 3.3 yields the following result.

Lemma 3.4. [95, Lemma 2] For the power allocation {P`} given in (3.2), we have for t = 0, 1, . . .:

x̄t := limxt =
(1 + snr)− (1 + snr)1−ξt−1

snr
, (3.33)

τ̄2
t := lim τ2

t = σ2 + P (1− x̄t) = σ2 (1 + snr)1−ξt−1 (3.34)

where ξ−1 = 0, and for t ≥ 0,

ξt = min

{(
1

2C log

(C
R

)
+ ξt−1

)
, 1

}
. (3.35)

33

Proof. The result is obtained by applying Lemma 3.3 with the exponential power allocation, and
using induction on t.

A direct consequence of (3.33) and (3.35) is that x̄t strictly increases with t until it reaches one,

and the number of steps T ∗ until x̄T ∗ = 1 is T ∗ =
⌈

2C
log(C/R)

⌉
.

The constants {ξt}t≥0 have a nice interpretation in the large system limit: at the end of step t+ 1,
the first ξt fraction of sections in βt+1 will be correctly decodable with high probability. The other
(1 − ξt) fraction of sections will not be correctly decodable from βt+1 as the power allocated to
these sections is not large enough. An additional 1

2C log
(C
R

)
fraction of sections become correctly

decodable in each step until step T ∗, when all the sections are correctly decodable with high
probability.

The discussion in this section — starting from the way the estimates (βt)t≥1 are generated, up to
the interpretation of the state evolution parameters (xt, τ

2
t)t≥0 — has been based on the assumption

that the decoder has available test statistics of the form statt = β+τtZ at the end of each iteration.
In the next two sections, we will describe two decoders which produce statt of approximately this
form when the SPARC parameters (L,M, n) are sufficiently large.

3.3 Adaptive successive soft-decision decoder

The soft-decision decoder proposed by Barron and Cho [17, 27, 26] computes the test statistic statt

at the end of step t as a function of (A, y,Fit1, . . . ,Fitt), where we recall Fitt = Aβt. As in hard
decision decoding (see p. 27), starting with G0 , y, let Gt be the part of Fitt that is orthogonal to
G0, . . . , Gt−1. Then the collection

G0

‖G0‖
,
G1

‖G1‖
, . . . ,

Gt
‖Gt‖

forms an orthonormal basis for y,Fit1, . . . ,Fitt. Also define, for t ≥ 0:

Zt =
√
n
A∗Gt
‖Gt‖

(3.36)

We compute a linear combination of Z0, . . . ,Zt given by

Zcomb
t = λ0Z0 + . . .+ λtZt, (3.37)

where λ0, . . . , λt are coefficients chosen such that
∑t

k=0 λ
2
k = 1. (These coefficients may depend

on A and y.) The adaptive successive soft-decision decoder then computes the statistic statt =
τtZcomb

t + βt, where τt is the state evolution parameter defined in (3.25) and βt is the estimate at
the end of step t. The new estimate is generated as βt+1 = ηt(statt), where ηt is defined in (3.23).
The algorithm is summarized in Fig. 3.4.

The key question is: how do we choose coefficients λt = (λ0, . . . , λt) such that statt has the desired
representation statt ≈ β + τtZ. To answer this, we use the following lemma which specifies the

34

Step 0: Initialize β0 = 0 and G0 = y.

Step t+ 1, for 0 ≤ t ≤ (T − 1):

1. Compute Fitt = Aβt

2. If t ≥ 1, compute Gt, the orthogonal projection of Fitt onto the space orthogonal to
G0, . . . , Gt−1.

3. Compute Zt =
√
nA∗Gt/‖Gt‖, and

Zcomb
t = λ0Z0 + . . .+ λtZt,

where (λ0, . . . , λt) are given by (3.51).

4. Compute statt = τtZcomb
t + βt where τt is given by (3.25).

5. Generate the updated estimate βt+1 = ηt(statt), where ηt is defined in (3.23).

The number of iterations T is determined using the state evolution recursion, as discussed
on p. 38.

Figure 3.4: Adaptive successive soft-decision decoder with deterministic coefficients of combination.

conditional distribution of the components Zt defined in (3.36). We need some definitions before
stating the result.

Let b0,e, b1,e, . . . , bt,e ∈ RML+1 be the successive orthonormal components of the length of the
extended vectors

βe :=

[
β√
nσ

]
, β1

e :=

[
β1

0

]
, . . . , βte :=

[
βt

0

]
. (3.38)

Let b0, . . . , bt ∈ RML be the vectors formed from the upper ML coordinates of b0,e, . . . , bt,e. Let
Σt,e = I − b0,eb∗0,e − b1,eb∗1,e . . . − bt,eb∗t,e denote the (ML + 1) × (ML + 1) projection matrix onto
the space orthogonal to the vectors in (3.38). The upper left ML ×ML portion of this matrix is
denoted Σt.

Lemma 3.5. [17, Lemma 1] For t ≥ 0, let

Ft−1 = (Z0, ‖G0‖, . . . ,Zt−1, ‖Gt−1‖),

with F−1 being the empty set. Then for t ≥ 0, given Ft−1, the conditional distribution PZt|Ft−1
of

Zt is determined by the representation

Zt = bt
‖Gt‖
ςt

+ Zt, (3.39)

where Zt has conditional distribution N (0,Σt). Here, ς2
0 = σ2 +P and for t ≥ 1 it is ς2

t = β̂∗t ςt−1β
t.

Moreover, ‖Gt‖2/ς2
t is distributed as a χ2

n−t random variable independent of Zt and Ft−1.

35

As number of iterations of the algorithm is small compared to n, ‖Gt‖ςt is close to
√
n. The lemma

tells us that for each t, Z is approximately equal to
√
nbt plus a standard normal vector. We use

this property to choose coefficients (λ0, . . . , λt) which lead to statt having the desired form.

Idealized coefficients. Consider the choice λid
t = (λ0, . . . , λt) given by

λid
t =

1

cid
t

(
(
√
n(P + σ2)− b∗0βt), −b∗1βt, . . . ,−b∗tβt

)
, (3.40)

where cid
t is a normalizing constant to ensure that

∑
k λ

2
k = 1. Since b0 = β/

√
n(σ2 + P) and

the decoder does not know β, this choice of coefficients cannot be used in practice. We call these
idealized coefficients because understanding the test statistic produced by these will help us design
good deterministic or observation-based coefficients.

Recalling that b0,e, . . . , bt,e form an orthonormal basis, the normalizing constant in (3.40) is com-
puted as

(cid
t)2 = (

√
n(P + σ2)− b∗0βt)2 + (−b∗1βt)2 + . . .+ (−b∗tβt)2

= n(σ2 + P) + ‖βt‖2 − 2
√
P + σ2

β∗βt√
P + σ2

= nσ2 + ‖β − βt‖2,
(3.41)

where we have used the fact that ‖β‖2 = nP .

Let us now examine the distributional properties of the Zcomb
t generated using these idealized

coefficients via (3.37). Lemma 3.3 tells us that given Fk−1, Zk is closely approximated by
√
nbk+Zk

with Zk standard normal, for 0 ≤ k ≤ t. Therefore, with the idealized coefficients we obtain

Zcomb
t = λ0Z0 + . . .+ λtZt
d≈
√
n(P + σ2)

√
nb0 −

[
(b∗0β

t)
√
nb0 + . . .+ (b∗tβ

t)
√
nbt
]

cid
t

+ Z

=

√
n(β − βt)
cid
t

+ Z =
β − βt√

σ2 + ‖β − βt‖2/n
+ Z, (3.42)

where Z ∈ RML is standard normal. If we assume (via an induction hypothesis) that statt−1 =
β+τt−1Z

′ for a standard normal vector Z ′ ∈ RML, then Proposition 3.2 tells us that 1
nE[‖β−βt‖2] =

P (1− xt). Therefore, for large n, the term

σ2 +
‖β − βt‖2

n
≈ σ2 + P (1− xt) = τ2

t .

Hence the statistic statt = τtZcomb
t + βt has the following approximate representation:

statt = τtZcomb
t + βt ≈

√
σ2 +

‖β − βt‖2
n

Zcomb
t + βt

d
= β + τtZ, (3.43)

where the distributional representation follows from (3.42).

36

Deterministic coefficients. Since b0 = β/
√
n(σ2 + P) is unknown, the idealized coefficients in (3.40)

cannot be used to produce statt. We now specify a deterministic choice for λt which mimics the
idealized coefficients using deterministic proxies for the inner products b∗0β

t, b∗1β
t, . . . , b∗tβ

t. Recall
that the vectors b0,e, . . . , b1,e are obtained by performing a successive orthonormalization on the
extended vectors (βe, β

1
e , . . . , β

t
e) defined in (3.38). We therefore have

B :=
[
βe β

1
e , . . . β

t
e

]
= [b0,e b1,e . . . bk,e]


b∗0,eβe b∗0,eβ

1
e . . . b∗0,eβ

t
e

0 b∗1,eβ
1
e . . . b∗1,eβ

t
e

...
...

. . .
...

0 0 . . . b∗t,eβ
t
e

 . (3.44)

Noting that the last entry in each of β1
e , . . . , β

t
e is zero, we observe that

B∗B =


β∗eβe β∗β1 . . . β∗βt

(β1)∗β (β1)∗β1 . . . (β1)∗βt

...
...

. . .
...

(βt)∗β (βt)∗βt

 = R∗R, (3.45)

where

R =


b∗0βe b∗0β

1 . . . b∗0β
t

0 b∗1β
1 . . . b∗1β

t

...
...

. . .
...

0 0 . . . b∗tβ
t

 . (3.46)

The high-level idea in obtaining the deterministic coefficients is as follows. Observe that the entries
in the last column of R (highlighted) are exactly those that are required to compute the idealized
weights of combination in (3.40). These can be estimated by replacing each entry of the matrix in
(3.45) with its idealized (deterministic) value, and then computing the Cholesky decomposition of
this matrix. The last column of the resulting upper triangular matrix then provides a deterministic
proxy for the highlighted terms in (3.46).

In detail, to obtain the deterministic coefficients we use the following result implied by Proposition
3.2: under the assumption (via an induction hypothesis) that statk = β + τkZ

′
k for 0 ≤ k ≤ (t− 1),

we have
1

n
E[β∗βk] =

1

n
E[(βm)∗βk] = Pxk, 1 ≤ k ≤ m ≤ t. (3.47)

Therefore, replacing each entry of B∗B/n by its expected value, we obtain the matrix
τ2

0 x1P . . . xtP
x1P x1P . . . x1P

...
...

. . .
...

xtP xtP

 = R̂∗R̂, (3.48)

where R̂ is the upper triangular matrix obtained via the Cholesky decomposition. This is found to

37

be

R̂ =


τ0 τ0 − τ2

1

√
ω0 . . . τ0 − τ2

t

√
ω0

0 τ2
1

√
ω1 . . . τ2

t

√
ω1

...
...

. . .
...

0 0 . . . τ2
t

√
ωt ,

 (3.49)

where

ω0 =
1

τ2
0

, ωk =
1

τ2
k

− 1

τ2
k−1

, k ≥ 1. (3.50)

The last column of R̂ (highlighted) is a deterministic estimate for (b∗0β
t/
√
n, . . . , b∗tβ

t/
√
n). This

is used to replace the idealized coefficients in (3.40), yielding the following deterministic choice for
λt:

λdet
t = (τt

√
ω0, −τt

√
ω1, . . . , ,−τt

√
ωt), t ≥ 0. (3.51)

At the end of each iteration t ≥ 1, these coefficients are used to first produce Zcomb
t , which is then

used to compute statt = τtZcomb
t + βt. The updated estimate of the message vector in step (t+ 1)

is βt+1 = ηt(statt), where ηt is defined in (3.23).

The performance of the adaptive successive decoder with deterministic coefficients in (3.51) is given
by the following theorem.

Theorem 3.2. [26, Lemma 11] [27, Lemma 7] Consider a SPARC with a rate R < C, parameters
(n,L,M) chosen according to (1.2), and power allocation P` ∝ e−2C`/L. For t ≥ 1, let

At :=

{∣∣∣∣ 1

nP
β∗βt − xt

∣∣∣∣ > ε

}
∪
{∣∣∣∣ 1

nP
‖βt‖2 − xt)

∣∣∣∣ > ε

}
,

where xt is defined by the state evolution recursion in (3.25) and (3.25). Then,

P{∪tk=1Ak} ≤
t∑

k=1

6(k + 1) exp

(−2Lε2

c2(logM/R)2k−1

)
, (3.52)

where c2 = max` LP`/P , which is a constant close to 2C(1 + snr)/snr for large L.

We run the decoder for T steps, where T can be determined using the SE recursion in (3.25) as
the minimum number of steps after which 1 − xT is below a specified small value δ. Or, using

the asymptotic SE characterization in Lemma 3.4, we can take T = T ∗ =
⌈

2C
log(C/R)

⌉
. The large

deviations bound for 1
nP β

∗βT and 1
nP ‖βT ‖2 in (3.52) can then be translated into a bound on the

excess section error rate. We defer the explanation of how this is done to the next section where
we analyze the AMP decoder. (See Eq. (3.120) and the surrounding discussion.)

As an alternative to the deterministic coefficients of combination, Cho and Barron [27, 26] propose
another method of choosing coefficients based on the Cholesky decomposition of B∗B = RR∗ in
(3.45). This method uses the known values of (βk)∗βm, 1 ≤ k ≤ m ≤ t, in the matrix B∗B and esti-
mates based on Lemma 3.5 for the diagonal entries ofR to recursively solve for the (b∗0β

t, . . . , b∗t−1β
t).

38

These resulting values are then used to generate Zcomb
t via (3.40). The reader is referred to [27,

Sec. 4.3] or [26, Sec. 4.3] for details of the Cholesky decomposition based estimates and the
corresponding performance analysis.

3.4 Approximate Message Passing (AMP) decoder

Approximate message passing (AMP) refers to a class of algorithms [36, 83, 19, 20, 72, 91, 35]
that are Gaussian or quadratic approximations of loopy belief propagation algorithms (e.g., min-
sum, sum-product) on dense factor graphs. In its basic form [36, 20], AMP gives a fast iterative
algorithm to solve the LASSO [109] under certain conditions on the design matrix. The LASSO
is the following convex optimization problem. Given a matrix A ∈ Rn×N , an observation vector
y ∈ Rn, and a scalar λ > 0, compute

arg min
β̂∈RN

‖y −Aβ̂‖22 + λ‖β̂‖1, (3.53)

where the `1-norm is defined as ‖β̂‖1 =
∑N

i=1 β̂i. The `1 penalty added to the least-squares
term promotes sparsity in the solution. The LASSO has been widely used in applications such as
compressed sensing and sparse linear regression; see, e.g., [110].

When A has i.i.d. entries drawn from a Gaussian or sub-Gaussian distribution, AMP has been
found to converge to the LASSO solution (3.53) faster than the best competing solvers (based on
first-order convex optimization). This is because AMP takes advantage of the distribution of the
matrix A, unlike generic convex optimization methods. The AMP also yields sharp results for the
asymptotic risk of LASSO with Gaussian matrices [20].

For SPARCs, recall from (2.2) that the optimal decoder solves the optimization problem

β̂opt = arg min
β̂∈BM,L

‖y −Aβ̂‖2. (3.54)

One cannot directly use the LASSO-AMP of [36, 20] for SPARC decoding as it does not use the
prior knowledge about β, i.e., the knowledge that β has exactly one non-zero value in each section,
with the values of the non-zeros also being known.

We start with the factor graph for the model y = Aβ + w, where β ∈ BM,L(P1, . . . , PL). Each row
of A corresponds to a constraint (factor) node, while each column corresponds to a variable node.
We use the indices a, b to denote factor nodes, and indices i, j to denote variable nodes. The AMP
algorithm is obtained via a first-order approximation to the following message passing updates that
iteratively computes estimates of β from y. For i ∈ [N], a ∈ [n], set β0

j→a = 0, and compute the
following for t ≥ 0:

zta→i = ya −
∑

j∈[N]\i

Aajβ
t
j→a, (3.55)

βt+1
i→a = ηti (stata→i) , (3.56)

39

Step 0: Initialize β0 = 0 and z−1 = 0.

Step t+ 1, for 0 ≤ t ≤ (T − 1): Compute

zt = y −Aβt +
zt−1

τ2
t−1

(
P − ‖β

t‖2
n

)
, (3.59)

statt = A∗zt + βt, (3.60)

βt+1 = ηt(statt). (3.61)

where the constants (τ2
t)t≥0 required in (3.59) and (3.61) are given by the SE recursion

described in (3.25). Instead of pre-computing τ2
t , it can also be estimated online as ‖zt‖2/n

(see Sec. 4.1.2). The number of iterations T is determined either using the state evolution
recursion as discussed on p. 38, or using the termination criterion in Sec. 4.1.2.

Figure 3.5: Approximate Message Passing (AMP) Decoder.

where ηti(·) is the estimation function defined in (3.23), and for i ∈ sec(`), the entries of the test
statistic stati→a ∈ RM are defined as

(stata→i)i =
∑

b∈[n]\a

Abiz
t
b→i,

(stata→i)j =
∑
b∈[n]

Abjz
t
b→j , j ∈ sec(`)\i.

(3.57)

As before, the update function (3.56) is based on the assumption that stata→i ≈ β+ τtZ. In (3.55),
note that the dependence of zta→i on i is only due to the term Aaiβ

t
i→a being excluded from the

sum. Similarly, in (3.56) the dependence of βti→a on a is due to excluding the term Aaiz
t
a→i from

the argument. We therefore write

zta→i = zta + δzta→i, and βt+1
i→a = βt+1

i + δβt+1
i→a. (3.58)

Using a first-order Taylor approximation for the updates (3.55) and (3.56) around the terms zta and
βt+1
i and simplifying yields the AMP decoding algorithm which produces iterates (zt, βt+1) in each

iteration. The AMP algorithm is described in Fig. 3.5. (See [95, Appendix A] for details of the
derivation.)

The vector zt in (3.59) is a modified residual: it consists of the standard residual y − Aβt, plus

an extra term zt−1

τ2
t−1

(P − ‖βt‖2n). This extra ‘Onsager’ term is crucial to ensuring that statt has

the desired distributional property. To get some intuition about the role of the Onsager term, we
express statt as

statt = A∗zt + βt = A∗(y −Aβt) + βt +
A∗zt−1

τ2
t−1

(
P − ‖β

t‖2
n

)
= β +A∗w + (I−A∗A)(βt − β) +

A∗zt−1

τ2
t−1

(
P − ‖β

t‖2
n

)
(3.62)

40

We can interpret the second and third terms on the RHS of (3.62) as noise terms added to β. The
term A∗w is a random vector independent of β with i.i.d N (0, σ2) entries. For the next term, the
entries of the symmetric matrix (I−A∗A) can be shown to be approximately N (0, 1

n), with distinct
entries being approximately pairwise independent. Therefore, if the (βt − β) were independent of

A, then the vector (I − A∗A)(βt − β) would be approximately i.i.d.∼ N (0, ‖β
t−β‖2
n); consequently

the second and third terms of (3.62) combined would be close to standard normal with variance

σ2 + ‖β
t−β‖2
n ≈ τ2

t . However, (βt−β) is not independent of A, since A is used to generate β1, . . . , βt.
The role of the last term in (3.62) is to asymptotically cancel the correlation between A and (βt−β),
so that statt is well approximated as β + τtZ. This intuition is made precise in the analysis of the
AMP decoder in the next subsection.

3.4.1 Analysis of the AMP decoder

We now obtain a non-asymptotic bound on error performance of the AMP decoder. To do this, we
first need a lower bound on how much the state evolution parameter xt increases in each iteration
of the algorithm.

Lemma 3.6. [97] Let δ ∈ (0,min{∆R,
1
2}], where ∆R := (C − R)/C. Let f(M) := M−κ2δ

2

δ
√

logM
, where

κ2 is the universal constant in Lemma 3.3(b). Consider the sequence of state evolution parameters
x0 = 0, x1, . . . computed according to (3.25) –(3.26) with the exponentially decaying power allocation
in (3.2). For sufficiently large L,M , we have:

x1 ≥ χ1 := (1− f(M))
P + σ2

P

(
1− (1 + δ/2)R

C − 5

L

)
, (3.63)

and for t > 1:

xt − xt−1

≥ χ := (1− f(M))

[
σ2

P

(
1− (1 + δ/2)R

C

)
− f(M)

(1 + δ/2)R

C

]
− 5(1 + σ2/P)

L
, (3.64)

until xt reaches (or exceeds) (1− f(M)).

Proof. In Section 3.6.2.

Number of iterations and the gap from capacity We want the lower bounds χ1 and χ in (3.63)
and (3.64) to be strictly positive and depend only on the gap from capacity ∆R = (C − R)/C as
M,L→∞. For all δ ∈ (0,∆R], we have(

1− (1 + δ/2)R

C

)
≥
(

1−
(

1 +
∆R

2

)
(1−∆R)

)
=

∆R + ∆2
R

2
. (3.65)

41

Therefore, the quantities on the RHS of (3.63) and (3.64) can be bounded from below as

χ1 ≥ (1− f(M))
P + σ2

P

(
∆R + ∆2

R

2
− 5

L

)
, (3.66)

χ ≥ (1− f(M))

[
σ2

P

(
∆R + ∆2

R

2

)
− f(M)

]
− 5(1 + σ2/P)

L
. (3.67)

We take δ = ∆R, which1 gives the smallest value for f(M). We denote this value by

fR(M) :=
M−κ2∆2

R

∆R
√

logM
. (3.68)

From (3.67), if fR(M)/∆R → 0 as M →∞, then σ2

P

(
∆R+∆2

R
2

)
will be the dominant term in χ for

large enough L,M . The condition fR(M)/∆R → 0 will be satisfied if we choose ∆R such that

∆R ≥
√

log logM

κ2 logM
, (3.69)

where κ2 is the universal constant of Lemma 3.4. From here on, we assume that ∆R satisfies (3.69).

Let T be the number of iterations until xt exceeds (1 − fR(M)). We run the AMP decoder for T
iterations, where

T := min
t
{t : xt ≥ 1− fR(M)}

(a)

≤ (1− fR(M))

χ

(b)
=

P/σ2

(∆R + ∆2
R)/2

(1 + o(1)), (3.70)

where o(1) → 0 as M,L → ∞. In (3.69), inequality (a) holds for sufficiently large L,M due to
Lemma 3.6, which shows for large enough L,M , the xt value increases by at least χ in each iteration.
The equality (b) follows from the lower bound on χ in (3.67), and because f(M)/∆R = o(1).

After running the decoder for T iterations, the decoded message β̂ is obtained by setting the
maximum of βT in each section ` ∈ [L] to

√
nP` and the remaining entries to 0. From (3.70), we

see that the number of iterations T increases as R approaches C. The definition of T guarantees
that xT ≥ (1− fR(M)). Therefore, using τ2

T = σ + P (1− xT) we have

σ2 ≤ τ2
T ≤ σ2 + PfR(M). (3.71)

Performance of the AMP decoder The main result is a bound on the probability of the section error
rate exceeding any fixed ε > 0.

1As Lemma 3.4 assumes that δ ∈ (0,min{ 1
2
,∆R}], by taking δ = ∆R we have assumed that ∆R ≤ 1

2
, i.e., R ≥ C/2.

This assumption can be made without loss of generality — as the probability of error increases with rate, the large
deviations bound of Theorem 3.3 evaluated for ∆R = 1

2
applies for all R such that ∆R <

1
2
.

42

Theorem 3.3. [97] Fix any rate R < C. Consider a rate R SPARC Sn with block length n, design
matrix parameters L and M determined according to (1.2), and an exponentially decaying power
allocation given by (3.2). Furthermore, assume that M is large enough that

∆R ≥
√

log logM

κ2 logM
,

where κ2 is the universal constant used in Lemmas 3.3(b) and 3.4. Fix any ε > 2snr
C fR(M), where

fR(M) := M−κ2∆2
R

∆R
√

logM
.

Then, for sufficiently large L,M , the section error rate of the AMP decoder satisfies

P (Esec(Sn) > ε) ≤ KT exp

{
−κTL

(logM)2T−1

(
εσ2C

2
− PfR(M)

)2
}
, (3.72)

where T is defined in (3.70). The constants κT and KT in (3.72) are given by κT = [c2T (T !)17]−1

and KT = C2T (T !)11 where c, C > 0 are universal constants (not depending on AMP parameters
L,M, n, or ε) but are not explicitly specified.

Remark 3.3. The dependence of the constants KT , κT on T ! is due to the induction-based proof of a
key concentration result used in the proof (Lemma 3.10). These constants have not been optimized,
but we believe that the dependence of these constants on T ! is inevitable in any induction-based
proof of the result.

3.4.2 Error exponent and gap from capacity with AMP decoding

In this subsection we consider the behavior of the bound in Theorem 3.3 in two different regimes.
The first is where R < C is held constant as L,M → ∞ (with n = L logM/R) — this is the
so-called “error exponent” regime. In this case, ∆R is of constant order, so fR(M) in (3.68)
decays polynomially with growing M . The other regime is where R approaches C as L,M → ∞
(equivalently, ∆R shrinks to 0), while ensuring that the error probability remains small or goes to

0. Here, (3.69) specifies that ∆R should be of order at least
√

log logM
logM .

Error exponent For any ensemble of codes, the error exponent specifies how the codeword error
probability decays with growing code length n for a fixed R < C [46]. In the SPARC setting, we
wish to understand how the bound on the probability of excess section error rate in Theorem 3.3
decays with n for fixed values of ε > 0 and R < C. (As explained in Remark 5 following Theorem
3.3, concatenation using an outer code can be used to extend the result to the codeword error
probability.) With optimal encoding, it was shown in [16] that the probability of excess section
error rate decays exponentially in nmin{ε∆,∆2}, where ∆ = (C − R). For the AMP decoder, we
consider two choices for (M,L) in terms of n to illustrate the trade-offs involved:

1. M = La, for some constant a > 0. Then, (1.2) implies that L = Θ(n
logn) and M = Θ((n

logn)a).

Therefore, the bound in Theorem 3.3 decays exponentially in n/(log n)2T .

43

2. L = κn/log log n, for some constant κ, which implies M = R
κ log n. With this choice the

bound in Theorem 3.3 decays exponentially in n/(log log n)2T .

Note from (3.70) that for a fixed R < C, the number of AMP iterations T is an Θ(1) quantity that
does not grow with L,M, or n. The excess section error rate decays more rapidly with n for the
second choice, but this comes at the expense of much smaller M (for a given n). Therefore, the
first choice allows for a much smaller target section error rate (due to smaller fR(M)), but has a
larger probability of deviation from the target. One can also compare the two cases in terms of
decoding complexity, which is O(nMLT) with Gaussian design matrices. The complexity in the
first case is O(n2+a/(log n)1+a), while in the second case it is O(n2 log n/log log n).

Gap from capacity We now consider how fast R can approach the capacity C with growing n, so
that the probability of excess section error rate still decays to zero. Recall that lower bound on the
gap from capacity is already specified by (3.69): for the state evolution parameter xT to converge

to 1 with growing M (predicting reliable decoding), we need ∆R ≥
√

log logM
κ2 logM . When ∆R takes this

minimum value, the minimum target section error rate fR(M) in Theorem 3.3 is

fR(M) =

√
κ2

logM
√

log logM
. (3.73)

We evaluate the large deviations bound of Theorem 3.3 with ∆R at the minimum value of
√

log logM
κ2 logM ,

for ε > 2snr
C fR(M), with fR(M) given in (3.73). From (3.70), we have the bound

T ≤ 2snr

∆R
≤ κ4

√
logM

log logM
(3.74)

for large enough L,M . Then, using Stirling’s approximation to write log(T !) = T log T − T +
O(log T), Theorem 3.3 yields

− logP (Esec(Sn) > ε) ≥ κ5Lε
2

c2T (T !)17(logM)2T−1
−O(T log T)

=
κ5Lε

2

exp{2T log c+ 17(T log T − T) + (2T − 1) log logM +O(log T)} −O(T log T)

≥ Lε2

exp
{
κ6

√
(logM)(log logM)

(
1 +O(1

log logM)
)} −O (√(logM)(log logM)

)
(3.75)

where the last inequality above follows from (3.74).

We now evaluate the bound in (3.75) for the case M = La considered in Sec 3.4.2. We then we

44

have L = Θ(n
logn) and M = Θ((n

logn)a). Substituting these in (3.75), we obtain

− logP (Esec(Sn) > ε) ≥ κ7nε
2

(log n) exp{κ8

√
(log n)(log log n)}

= κ7 exp
{

log n− κ8

√
(log n)(log log n)− log log n

}
ε2

= κn
1−O

(√
log logn

logn
+ log logn

logn

)
ε2. (3.76)

Therefore, for the case M = La, we can achieve a probability of excess section error rate that

decays as exp

{
−κn1−O

(√
log logn/logn

)
ε2
}

, with a gap from capacity (∆R) that is of order
√

log logn
logn .

Furthermore, from (3.73) we see that ε must be of order at least 1
logn

√
log logn

.

We note that this gap from capacity is of a much larger order than that for polar codes over
binary input, symmetric memoryless channels [55]. Guruswami and Xia showed in [55] that for
such channels, polar codes of block length n with gap from capacity of order 1

nµ can achieve a

block error probability decaying as 2−n
0.49

with a decoding algorithm whose complexity scales as
n · poly(log n). (Here 0 < µ < 1

2 is a universal constant.) For AWGN channels, there is no known
coding scheme that provably achieves a polynomial gap to capacity with efficient decoding.

Recall the lower bound on the gap to capacity arises from the condition (3.67) which is required to
ensure that the (deterministic) state evolution sequence x1, x2, . . . is guaranteed to increase by at
least an amount proportional to ∆R in each iteration. As described in Remark 3.2 the capacity gap
for the iterative hard-decision decoder can be improved to O(log logM

logM) by modifying the exponential
power allocation to flatten the power allocation for a certain number of of sections at the end. We
expect such a modification to yield a similar improvement in the capacity gap for the AMP decoder,
but we do not detail this analysis as it is involves additional technical details.

3.5 Comparison of the decoders

All three decoders discussed in this section – the adaptive successive hard-decision decoder, the
adaptive successive soft-decision decoder, and the AMP decoder — achieve near-exponential decay
of error probability in the regime whereR < C remains fixed. However, the finite length performance
of the two soft-decision decoders is significantly better than that of the hard-decision decoder. This
is because of the need to control the proliferation of false alarms in hard-decision decoding.

In the regime where R < C is fixed, the number of iterations also remains fixed. Consequently, the
complexity of all three decoders is O(nML). The complexity is determined by the matrix-vector
products that need to be computed in each step, using the design matrix A ∈ Rn×ML. Among the
two soft-decision decoders, the AMP decoder has lower per iteration complexity (though still of
the same order) as it does not require orthonormalization or Cholesky decomposition to compute
the test statistic. In the next chapter, we describe how replacing the Gaussian design matrix with
a Hadamard-based design matrix can lead to significant savings in both running time and memory.

In the regime where ∆R shrinks to 0 with growing M , the decoders discussed in this chapter are

45

no longer efficient as they require M to increase exponentially in 1/∆R (cf. (3.69)). An interesting
open question is whether SPARCs can achieve a smaller gap from capacity with efficient decoding.
The spatially coupled SPARC discussed in Chapter 5 is a promising candidate, but a fully rigorous
analysis of AMP-decoded spatially coupled SPARCs remains open.

3.6 Proofs

3.6.1 Proof of Lemma 3.3

From (3.26), x(τ) can be written as

x(τ) :=

L∑
`=1

P`
P
E`(τ), (3.77)

where

E`(τ) = E

 e

√
nP`
τ

U`1

e

√
nP`
τ

U`1 + e−
nP`
τ2
∑M

j=2 e

√
nP`
τ

U`j

 . (3.78)

The result needs to be proved only for ξ∗ > 0. (For brevity, we supress the dependence of ξ∗ on τ .)
Since P` is non-increasing with `, it is enough2 to prove that for ξ ∈ (0, 1],

lim EbξLc(τ) =

{
1, if ξ < ξ∗,
0, if ξ > ξ∗.

(3.79)

Using the relation nR = L lnM , we can write

nPbξLc

τ2
= νbξLc lnM, where νbξLc =

LPbξLc

Rτ2
.

From the definition of ξ∗ in the lemma statement and the non-increasing power-allocation, we see
that lim νbξLc > 2 for ξ < ξ∗, and lim νbξLc < 2 for ξ > ξ∗.

For brevity, in what follows we drop the superscripts on U
bξLc
j , and denote it by Uj for j ∈ [M].

From (3.78), EbξLc(τ) can be written as

EbξLc(τ) = E

 e
√
νbξLc lnM U1

e
√
νbξLc lnM U1 +M−νbξLc

∑M
j=2 e

√
νbξLc lnM Uj


= EE

 e
√
νbξLc lnM U1

e
√
νbξLc lnM U1 +M−νbξLc

∑M
j=2 e

√
νbξLc lnM Uj

∣∣∣U1

 . (3.80)

2We can also prove that lim Ebξ∗Lc = 1
2
, but we do not need this for the exponentially decaying power allocation

since it will only affect a vanishing fraction of sections as L increases. Since E` ∈ [0, 1], these sections do not affect
the value of limx(τ) in (3.78).

46

The inner expectation in (3.80) is of the form

E

 e
√
νbξLc lnM U1

e
√
νbξLc lnM U1 +M−νbξLc

∑M
j=2 e

√
νbξLc lnM Uj

∣∣∣U1

 = EX
[

c

c+X

]
,

where c = exp
(√

νbξLc lnM U1

)
is treated as a positive constant, and the expectation is with

respect to the random variable

X := M−νbξLc
M∑
j=2

exp
(√

νbξLc lnM Uj

)
. (3.81)

Case 1: ξ < ξ∗. Here we have lim νbξLc > 2. Since c
c+X is a convex function of X, applying

Jensen’s inequality we get EX [c
c+X] ≥ c

c+EX . The expectation of X is

EX = M−νbξLc
M∑
j=2

E
[
e
√
νbξLc lnM Uj

]
(a)
= M−νbξLc(M − 1)MνbξLc/2 ≤M1−νbξLc/2,

with (a) is obtained from the moment generating function of a Gaussian random variable. Therefore,

1 ≥ EX
[

c

c+X

]
≥ c

c+ EX
≥ c

c+M1−νbξLc/2

=
1

1 + c−1M1−νbξLc/2
.

(3.82)

Recalling that c = exp
(√

νbξLc lnM U1

)
, (3.82) implies that

EX

[
e
√
νbξLc lnM U1

e
√
νbξLc lnM U1 +X

∣∣∣ U1

]
≥ 1

1 +M1−νbξLc/2 e−
√
νbξLc lnM U1

. (3.83)

When {U1 > −(lnM)1/4}, the RHS of (3.83) is at least

[1 +M1−νbξLc/2 exp
(

(lnM)3/4√νbξLc)]−1.

Using this in (3.80), we obtain that

1 ≥ EbξLc(τ) ≥ P (U1 > −(lnM)1/4)

1 +M1−νbξLc/2 e(lnM)3/4√νbξLc
M→∞−→ 1, (3.84)

since lim νbξLc > 2. Hence EbξLc → 1 when lim νbξLc > 2.

Case 2: ξ > ξ∗. Here we have lim νbξLc < 2. The random variable X in (3.81) can be bounded
from below as follows.

X ≥M−νbξLc max
j∈{2,...,M}

e
√
νbξLc lnM Uj

= M−νbξLce[maxj∈{2,...,M} Uj]
√
νbξLc lnM .

(3.85)

47

Using standard bounds for the standard normal distribution, it can be shown that

P

(
max

j∈{2,...,M}
Uj <

√
2 lnM(1− ε)

)
≤ e−Mε(1−ε)

, (3.86)

for ε = ω
(

ln lnM
lnM

)
.3 Combining (3.86) and (3.85), we obtain that

exp(−M ε(1−ε)) ≥ P
(

max
j∈{2,...,M}

Uj <
√

2 lnM(1− ε)
)

≥ P
(
X < M−νbξLce

√
2 lnM(1−ε)

√
νbξLc lnM

)
= P

(
X < M

√
2νbξLc(1−ε)−νbξLc

)
.

Since lim νbξLc < 2 and ε > 0 can be an arbitrarily small constant, there exists a strictly positive
constant δ such that δ <

√
2νbξLc(1−ε)−νbξLc for all sufficiently large L. Therefore, for sufficiently

large M , the expectation in (3.6.1) can be bounded as

EX
[

c

c+X

]
≤ P (X < M δ) · 1 + P (X ≥M δ) · c

c+M δ

≤ e−Mε(1−ε)
+ 1 · c

c+M δ
≤ 2

1 + c−1M δ
.

(3.87)

Recalling that c = exp
(√

νbξLc lnM U1

)
, and using the bound of (3.87) in (3.80), we obtain

EbξLc(τ) ≤ E

[
2

1 +M δe−
√
νbξLc lnM U1

]

≤ P (U1 > (lnM)1/4) · 2 +
2P (U1 ≤ (lnM)1/4)

1 +M δe−
√
νbξLc (lnM)3/4

(a)

≤ 2e−
1
2 (lnM)1/2

+ 1 · 2

1 + eδ lnM−√νbξLc (lnM)3/4

(b)−→ 0 as M →∞.

(3.88)

In (3.88), (a) is obtained using the bound Φ(x) < exp(−x2/2) for x ≥ 0, where Φ(·) is the Gaussian
cdf; (b) holds since δ and lim νbξLc are both positive constants.

This proves that EbξLc(τ) → 0 when lim νbξLc < 2. The proof of the lemma is complete since we
have proved both statements in (3.79).

3.6.2 Proof of Lemma 3.6

We will use the following lower bound on the function x(τ) in (3.26).

3Recall that f(n) = ω(g(n)) if for each k > 0, |f(n)| / |g(n)| ≥ k for all sufficiently large n.

48

Lemma 3.7. [97, Lemma 2.1] Consider the exponential power allocation power allocation in (3.2),
and let ν` := LP`/(Rτ

2). Then x(τ) ≥ xL(τ), where for sufficiently large M and any δ ∈ (0, 1
2),

xL(τ) ≥
(

1− M−κ1δ2

δ
√

logM

)
L∑
`=1

P`
P

1 {ν` > 2 + δ} (3.89)

+
1

4

L∑
`=1

P`
P

1

{
2

(
1− κ2√

logM

)
≤ ν` ≤ 2 + δ

}
, (3.90)

where κ1, κ2 are universal positive constants.

Let xt−1 = x < (1 − f(M)). We only need to consider the case where νL < (2 + δ), because
otherwise all the {ν`}`∈[L] values are at least (2 + δ), and (3.90) guarantees that xt ≥ (1− f(M)).

With xt−1 = x, we have τ2
t−1 = σ2 + P (1− x). Therefore, from (3.32) we have

ν` =
LP`
Rτ2

t−1

=
τ2

0

Rτ2
t−1

L((1 + snr)1/L − 1) (1 + snr)−`/L , ` ∈ [L]. (3.91)

Using this in (3.90), we have

xt ≥ (1− f(M))

L∑
`=1

P`
P

1 {ν` > 2 + δ}

(a)
= (1− f(M))

L∑
`=1

P`
P

1

{
`

L
<

1

2C log

(
L((1 + snr)1/L − 1)τ2

0

(2 + δ)Rτ2
t−1

)}
(b)

≥ (1− f(M))
L∑
`=1

P`
P

1

{
`

L
≤ 1

2C log

(
2Cτ2

0

(2 + δ)Rτ2
t−1

)}
(c)

≥ (1− f(M))
P + σ2

P

[
1− exp

{
− log

(
2Cτ2

0

(2 + δ)Rτ2
t−1

)
+

2C
L

}]
(d)

≥ (1− f(M))
P + σ2

P

[
1− (2 + δ)Rτ2

t−1

2Cτ2
0

− 5

L

]
. (3.92)

In the above, (a) is obtained using the expression for ν` in (3.91), while (b) by noting that L((1 +
snr)1/L − 1) = L(e2C/L − 1) ≥ 2C. Inequality (c) is obtained by using the geometric series formula:
for any ξ ∈ (0, 1), we have

bξLc∑
`=1

P` = (P + σ2)(1− e−2CbξLc/L) ≥ (P + σ2)(1− e−2Cξe2C/L).

Inequality (d) uses e2C/L ≤ 1 + 4C/L for large enough L. Substituting τ2
t−1 = σ2 +P (1− x), (3.92)

49

implies

xt − x ≥ (1− f(M))
P + σ2

P

(
1− 5

L

)
− (1− f(M))

(1 + δ/2)R

C

(
P + σ2

P
− x
)
− x

= (1− f(M))
P + σ2

P

(
1− (1 + δ/2)R

C − 5

L

)
− x

(
1− (1− f(M))

(1 + δ/2)R

C

)
. (3.93)

Since δ < (C − R)/C, the term (1+δ/2)R
C is strictly less than 1, and the RHS of (3.93) is strictly

decreasing in x. Using the upper bound of x < (1− f(M)) in (3.93) and simplifying, we obtain

xt − x ≥ (1− f(M))
σ2

P

(
1− (1 + δ/2)R

C

)
− f(M)(1− f(M))

(1 + δ/2)R

C − 5(1 + σ2/P)

L
. (3.94)

This completes the proof for t > 1. For t = 1, we start with x = 0, and we get the slightly stronger
lower bound of χ1 by substituting x = 0 in (3.93).

3.6.3 Proof Sketch of Theorem 3.3

The main ingredients in the proof of Theorem 3.3 are two technical lemmas (Lemma 3.8 and Lemma
3.10). After laying down some definitions and notation that will be used in the proof, we state the
two lemmas and use them to prove Theorem 3.3.

Definitions and notation for the proof. For consistency with earlier analyses of AMP, we use notation
similar to [19, 95]. Define the following column vectors recursively for t ≥ 0, starting with β0 = 0
and z0 = y.

ht+1 := β0 − (A∗zt + βt), qt := βt − β0,

bt := w − zt, mt := −zt. (3.95)

Recall that β0 is the message vector chosen by the transmitter. The vector ht+1 is the noise in the
effective observation A∗zt + βt, while qt is the error in the estimate βt. A key ingredient of the
proof is showing that ht+1 and mt are approximately i.i.d. N (0, τ2

t), while bt is approximately i.i.d.
N (0, τ2

t − σ2).

Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, w.

Lemma 3.8 iteratively computes the conditional distributions bt|St,t and ht+1|St+1,t . Lemma 3.10
then uses this conditional distributions to show the concentration of the mean squared error ‖qt‖2/n.

50

For t ≥ 1, let

λt :=
−1

τ2
t−1

(
P − ‖β

t‖2
n

)
. (3.96)

We then have
bt + λtm

t−1 = Aqt, and ht+1 + qt = A∗mt, (3.97)

which follows from (3.59) and (3.95). From (3.97), we have the matrix equations

Bt + [0|Mt−1]Λt = AQt and Ht +Qt = A∗Mt, (3.98)

where for t ≥ 1,

Mt := [m0 | . . . | mt−1], Qt := [q0 | . . . | qt−1]

Bt := [b0| . . . |bt−1], Ht = [h1| . . . |ht], Λt := diag(λ0, . . . , λt−1).
(3.99)

The notation [c1 | c2 | . . . | ck] is used to denote a matrix with columns c1, . . . , ck. We define
M0, Q0, B0, H0, and Λ0 to be all-zero vectors.

We use mt
‖ and qt‖ to denote the projection of mt and qt onto the column space of Mt and Qt,

respectively. Let αt := (αt0, . . . , α
t
t−1)∗ and γt := (γt0, . . . , γ

t
t−1)∗ be the coefficient vectors of these

projections, i.e.,

mt
‖ =

t−1∑
i=0

αtim
i, qt‖ =

t−1∑
i=0

γtiq
i. (3.100)

The projections of mt and qt onto the orthogonal complements of M t and Qt, respectively, are
denoted by

mt
⊥ := mt −mt

‖, qt⊥ := qt − qt‖ (3.101)

The proof of Lemma 3.10 shows that for large n, the entries of αt and γt concentrate around
constants. We now specify these constants. With τ2

t and xt as defined in (3.25) and (3.26), for
t ≥ 0 define

σ2
t := τ2

t − σ2 = P (1− xt). (3.102)

The concentrating values for γt and αt are

γ̂t := (0, . . . , 0, σ2
t /σ

2
t−1)∗ ∈ Rt,

α̂t := (0, . . . , 0, τ2
t /τ

2
t−1)∗ ∈ Rt.

(3.103)

Let (σ⊥0)2 := σ2
0 and (τ⊥0)2 := τ2

0 , and for t > 0 define

(σ⊥t)2 := σ2
t

(
1− σ2

t

σ2
t−1

)
, and (τ⊥t)2 := τ2

t

(
1− τ2

t

τ2
t−1

)
. (3.104)

Lemma 3.8 (Conditional distribution lemma [95, Lemma 4]). For the vectors ht+1 and bt defined
in (3.95), the following hold for 1 ≤ t ≤ T , provided n > T , and Mt and Qt have full column rank.
(We recall that the number of iterations T is defined in (3.70).)

h1|S1,0

d
= τ0Z0 + ∆1,0, and ht+1|St+1,t

d
=

τ2
t

τ2
t−1

ht + τ⊥t Zt + ∆t+1,t, (3.105)

b0|S0,0

d
= σ0Z

′
0, and bt|St,t

d
=

σ2
t

σ2
t−1

bt−1 + σ⊥t Z
′
t + ∆t,t. (3.106)

51

where Z0, Zt ∈ RN and Z ′0, Z
′
t ∈ Rn are i.i.d. standard Gaussian random vectors that are indepen-

dent of the corresponding conditioning sigma algebras. The deviation terms are ∆0,0 = 0,

∆1,0 =

[(‖m0‖√
n
− τ0

)
I− ‖m

0‖√
n

Pq0

]
Z0

+ q0

(‖q0‖2
n

)−1(
(b0)∗m0

n
− ‖q

0‖2
n

)
, (3.107)

and for t > 0,

∆t,t =
t−2∑
r=0

γtrb
r +

(
γtt−1 −

σ2
t

σ2
t−1

)
bt−1 +

[(
‖qt⊥‖√
n
− σ⊥t

)
I− ‖q

t
⊥‖√
n

PMt

]
Z ′t

+Mt

(
M∗tMt

n

)−1
(
Htq

t
⊥

n
− Mt

n

∗
[
λtm

t−1 −
t−1∑
r=1

λrγ
t
rm

r−1

])
, (3.108)

∆t+1,t =

t−2∑
r=0

αtrh
r+1 +

(
αtt−1 −

τ2
t

τ2
t−1

)
ht

+

[(‖mt
⊥‖√
n
− τ⊥t

)
I− ‖m

t
⊥‖√
n

PQt+1

]
Zt

+Qt+1

(
Q∗t+1Qt+1

n

)−1
(
B∗t+1m

t
⊥

n
− Q∗t+1

n

[
qt −

t−1∑
i=0

αtiq
i

])
. (3.109)

The next lemma uses the representation in Lemma 3.8 to show that for each t ≥ 0, ht+1 is the
sum of an i.i.d. N (0, τ2

t) random vector plus a deviation term. Similarly bt is the sum of an i.i.d.
N (0, σ2

t) random vector and a deviation term.

Lemma 3.9. For t ≥ 0, the conditional distributions in Lemma 3.8 can be expressed as

ht+1|St+1,t

d
= h̃t+1 + ∆̃t+1, bt|St,t

d
= b̆t + ∆̆t, (3.110)

where

h̃t+1 := τ2
t

t∑
i=0

(
τ⊥i
τ2
i

)
Zi, ∆̃t+1 := τ2

t

t∑
i=0

(
1

τ2
i

)
∆i+1,i, (3.111)

b̆t := σ2
t

t∑
i=0

(
σ⊥i
σ2
i

)
Z ′i, ∆̆t := σ2

t

t∑
i=0

(
1

σ2
i

)
∆i,i. (3.112)

Here Zi ∈ RN , Z ′i ∈ Rn are the independent standard Gaussian vectors defined in Lemma 3.8.

Consequently, h̃t+1 d
= τtZ̃t, and b̆t

d
= σtZ̆t, where Z̃t ∈ RN and Z̆t ∈ Rn are standard Gaussian

random vectors such that for any j ∈ [N] and i ∈ [n], the vectors (Z̃0,j , . . . , Z̃t,j) and (Z̆0,i, . . . , Z̆t,i)
are each jointly Gaussian with

E[Z̃r,jZ̃s,j] =
τs
τr
, E[Z̆r,iZ̆s,i] =

σs
σr

for 0 ≤ r ≤ s ≤ t. (3.113)

52

Proof. We give the proof for the distributional representation of ht+1, with the proof for bt being
similar. The representation in (3.110) can be directly obtained by using Lemma 3.8 Eq. (3.105)
to recursively write ht in terms of (ht−1, Zt−1,∆t,t−1), then ht−1 in terms of (ht−2, Zt−2,∆t−1,t−2),
and so on.

Using (3.111), we write h̃t+1 = τtZ̃t, where Z̃t = τt
∑t

i=0

(
τ⊥i
τ2
i

)
Zi is n Gaussian random vector with

i.i.d. entries, with zero mean and variance equal to

τ2
t

t∑
i=0

(τ⊥i)2

τ4
i

=
τ2
t

τ2
0

+
t∑
i=1

(
τ2
t

τ2
i

)(
1− τ2

i

τ2
i−1

)
=
τ2
t

τ2
0

+
t∑
i=1

(
τ2
t

τ2
i

− τ2
t

τ2
i−1

)
= 1. (3.114)

For j ∈ [N] the covariance between the jth entries of Z̃r and Z̃s, for 0 ≤ r ≤ s ≤ t, is

E[Z̃r,jZ̃s,j] = τrτs

r∑
u=0

s∑
v=0

(
τ⊥u
τ2
u

)(
τ⊥v
τ2
v

)
E
{
ZujZvj

} (a)
= τrτs

r∑
u=0

(τ⊥u)2

τ4
u

(b)
=
τs
τr
, (3.115)

where (a) follows from the independence of Zuj and Zvj and (b) from the calculation in (3.114).

The next lemma shows that the deviation terms in Lemma 3.8 are small, in the sense that their
section-wise maximum absolute value and norm concentrate around 0. It also shows that the
mean-squared error ‖qt‖/n = ‖β − βt‖2/n concentrates around σ2

t for 0 ≤ t ≤ T .

Lemma 3.10. [97] With C,K, c, κ denoting generic positive universal constants, the following large
deviations inequalities hold for 0 ≤ t < T :

P

[1

L

L∑
`=1

max
j∈sec`

|[∆t+1,t]j |
]2

≥ ε

 ≤ P (1

L

L∑
`=1

max
j∈sec`

([∆t+1,t]j)
2 ≥ ε

)

≤ KC2t(t!)11 exp

{
− κLε

(c logM)2t(t!)17

}
, (3.116)

(3.117)

P

(
1

n
‖∆t,t‖2 ≥ ε

)
≤ KC2t(t!)11 exp

{
− κLε2

(c logM)2t−1(t!)17

}
, (3.118)

P

(∣∣∣∣‖qt+1‖2
n

− σ2
t+1

∣∣∣∣ ≥ ε) ≤ KC2t(t!)11 exp

{
− κLε2

(c logM)2t+1(t!)17

}
. (3.119)

The proof of Lemma 3.10 can be found in [97, Sec. 5]. The proof is inductive. To prove Theorem
3.3, we only need the concentration result for the squared error ‖qt‖2/n in (3.119). But the proof

53

of this result requires concentration results for various inner products and functions involving
{ht+1, qt, bt,mt}, which are proved inductively.

The dependence on t of the probability bounds in Lemma 3.10 is determined by the induction used
in the proof: the concentration results for step t depend on those corresponding to all the previous
steps. The t! terms in the constants arise due to quantities that can be expressed as a sum of t
terms with step indices 1, . . . , t, e.g., ∆t,t and ∆t+1,t in (3.108) and (3.109). The concentration
results for such quantities have 1/t and t multiplying the exponent and pre-factor, respectively, in
each step t, which results in the t! terms in the bound. Similarly, the C2t and c2t terms arise due
to quantities that are the product of two terms, for each of which we have a concentration result
available from the induction hypothesis.

Proof of Theorem 3.3. The event that the section error rate exceeds ε is {Esec(Sn) > ε} ={∑
` 1{β̂` 6= β0`} > Lε

}
. Recall that the largest entry within each section of βT is chosen to

produce β̂. Therefore, when a section ` is decoded in error, the correct non-zero entry has no more
than half the total mass of section ` at the termination step T . That is, βTsent(`) ≤ 1

2

√
nP` where

sent(`) is the index of the non-zero entry in section ` of the true message β0. Since β0sent(`) =
√
nP`,

we have

1{β̂` 6= β0`} ⇒ ‖βT` − β0`‖2 ≥
nP`
4
, ` ∈ [L]. (3.120)

Hence when {Esec(Sn) > ε}, we have

‖βT − β0‖2 =

L∑
`=1

‖βT` − β0`‖2
(a)

≥
L∑
`=1

1{β̂` 6= β0`}
nP`
4

(b)

≥ Lε
nPL

4

(c)

≥ n ε σ2 ln(1 + snr)

4
=
nεσ2C

2
,

(3.121)

where (a) follows from (3.120); (b) is obtained using the fact that P` > PL for ` ∈ [L − 1] for the
exponentially decaying power allocation in (3.2); (c) is obtained using the first-order Taylor series
lower bound LPL ≥ σ2 ln(1 + P

σ2). We therefore conclude that

{Esec(Sn) > ε} ⇒
{‖βT − β0‖2

n
≥ εσ2C

2

}
, (3.122)

where βT is the AMP estimate at the termination step T .

Now, from (3.119) of Lemma 3.10, we know that for any ε̃ ∈ (0, 1):

P

(‖βT − β0‖2
n

≥ σ2
T + ε̃

)
= P

(‖qT ‖2
n
≥ σ2

T + ε̃

)
≤ KT exp

{
− κTLε̃

2

(logM)2T−1

}
.

(3.123)

54

From the definition of T and (3.71), we have σ2
T = τ2

T − σ2 ≤ PfR(M). Hence, (3.123) implies

P

(‖βT − β0‖2
n

≥ PfR(M) + ε̃

)
≤ P

(‖βT − β0‖2
n

≥ σ2
T + ε̃

)
≤ KT exp

{
− κTLε̃

2

(logM)2T−1

}
. (3.124)

Now take ε̃ = εσ2C
2 − PfR(M), noting that this ε̃ is strictly positive whenever ε > 2snrfR(M)/C,

the condition specified in the theorem statement. Finally, combining (3.122) and (3.124) we obtain

P (Esec(Sn) > ε) ≤ KT exp

{
− κTL

(logM)2T−1

(
εσ2C

2
− PfR(M)

)2
}
.

55

56

Chapter 4

Finite Length Decoding Performance

In this chapter, we investigate the empirical error performance of SPARCs with AMP decoding at
finite block lengths. In Section 4.1, we describe how decoding complexity can be reduced by using
Hadamard-based design matrices, and how a key parameter of the AMP decoder can be estimated
online. In Section 4.2, we show that the choice of power allocation can have a significant impact
on decoding performance, and describe a simple algorithm to design a good allocation for a given
rate and snr. Section 4.3 discusses how the choice of the code parameters L,M influences finite
length error performance. Finally, in Section 4.5 we show how partial outer codes can be used in
conjunction with AMP decoding to obtain a steep waterfall in the error rate curves. We compare
the error rates of AMP-decoded sparse superposition codes with coded modulation using LDPC
codes from the WiMAX standard.

4.1 Reducing AMP decoding complexity

4.1.1 Hadamard-based design matrices

In the sparse regression codes described and analyzed thus far, the design matrix A is chosen to
have zero-mean i.i.d. entries, either Gaussian ∼ N (0, 1

n) or Bernoulli entries drawn uniformly from
± 1√

n
as in Sec. 2.3. As discussed in Sec. 3.5, with such matrices the computational complexity

of the AMP decoder in (3.59)–(3.61) is O(LMn) when the matrix-vector multiplications Aβ and
A∗zt are performed in the usual way. Additionally, storing A requires O(LMn) memory, which is
prohibitive for reasonable code lengths. For example, L = 1024, M = 512, n = 9216 (R = 1 bit)
requires 18 gigabytes of memory using a double-precision (4-byte) floating point representation, all
of which must be accessed twice per iteration.

To reduce decoding complexity, we replace the i.i.d. design matrix with a structured Hadamard-
based design matrix, which we denote in this section by AH. With AH, the key matrix-vector
multiplications can be performed via a fast Walsh-Hadamard Transform (FWHT)[101]. Moreover,
AH can be implicitly defined which greatly reduces the memory required.

57

We denote the Hadamard matrix of size 2k × 2k by Hk. We recall that Hk is a square matrix with
±1 entries and mutually orthogonal rows, recursively defined as follows. Starting with H0 = 1, for
k ≥ 1,

Hk =

(
Hk−1 Hk−1

Hk−1 −Hk−1

)
.

To construct the design matrix AH ∈ Rn×ML, one option is to take k = dlog2(LM)e and select
n rows uniformly at random from the Hadamard matrix Hk. In this case, the matrix-vector
multiplications are performed by embedding the vectors into RML, and then multiplying by Hk

using a FWHT. A more efficient way is to construct each n×M section of AH independently from
a smaller Hadamard matrix. This is done as follows.

Take k = dlog2(max(n+ 1,M + 1))e. Each section of AH is constructed independently by choosing
a permutation of n distinct rows from Hk uniformly at random.1 The multiplications AHβ

t and
A∗Hz

t are performed by computing AH`β
t
` and A∗H`z

t, for ` ∈ [L], where the n ×M matrix AH` is
the `th section of AH, and βt` ∈ RM is the `th section of βt. To compute AH`β

t
`, zero-prepend β`

to length 2k, perform the FWHT, then choose n entries corresponding to the rows in AH`. Sum
the n-length result from each section to obtain AHβ

t. Note that we prepend with 0 because the
first column of Hk must always be ignored as it is always all-ones. For A∗H`z

t, embed entries from
zt into a 2k long vector again corresponding to the rows in AH, with all other entries set to zero,
perform the FWHT, and return the last M entries. Concatenate the result from each section to
form A∗Hz

t.

The empirical error performance of the AMP decoder with AH constructed as above is indistin-
guishable from that of a full i.i.d. matrix. The computational complexity of the decoder is reduced
to O(Ln log n) (in the common case where n > M , otherwise it is O(LM logM)). The memory
requirements are reduced to O(LM), typically a few megabytes. In comparison, for i.i.d. design
matrices, the complexity and memory requirements scale as O(LMn). For reasonable code lengths,
this represents around a thousandfold improvement in both time and memory. Furthermore, the
easily parallelized structure would enable a hardware implementation to trade off between a slower
and smaller series implementation and a faster though larger parallel implementation, potentially
leading to significant practical speedups.

4.1.2 Online computation of τ 2
t and early termination

Recall that these coefficients (τ2
t)t≥1 are required for the AMP update steps (3.59) and (3.61).

In the standard implementation, these are recursively computed in advance via the SE equations
(3.25) and (3.26). The total number of iterations T is also determined in advance by computing the
number of iterations required the SE to converge to its fixed point (to within a specified tolerance).
This advance computation is slow as each of the L expectations in (3.26) needs to be computed
numerically via Monte-Carlo simulation, for each t.

1To obtain the desired statistical properties for A, we do not pick the first row of Hk as it is all-ones. The n+ 1
in the definition of k ensures that we still have enough rows left to pick n at random after removing the first, all-one,
row; the M + 1 ensures that we can always have one leading 0 when embedding β so that the first, all-one, column
is also never picked.

58

A simple way to estimate τ2
t online during the decoding process is as follows. In each step t, after

producing zt as in (3.55), we estimate

τ̂2
t =
‖zt‖2
n

=
1

n

n∑
i=1

z2
i . (4.1)

The justification for this estimate comes from the analysis of the AMP decoder in [97], which pro-
vides a concentration inequality that shows that for large n, τ̂2

t is close to τ2
t with high probability.

We note that such a similar online estimate has been used previously in various AMP and GAMP
algorithms [11, 13, 14, 91].

In addition to being fast, the online estimator permits an interpretation as a measure of SPARC
decoding progress and provides a flexible termination criterion for the decoder. Recall from the
previous chapter (cf. Section 3.2) that in each step we have

statt = βt +A∗zt ≈ β + τtZ,

where Z is a standard normal random vector independent of β. The online estimator τ̂2
t is found to

track Var(statt−β) = ‖statt−β‖2/n very accurately, even when this variance deviates significantly
from τ2

t . This indicates that we can use the final value τ̂2
T to accurately estimate the power of the

undecoded sections — and thus the number of sections decoded correctly — at runtime. Indeed,
(τ̂2
T − σ2) is an accurate estimate of the total power in the incorrectly decoded sections. This,

combined with the fact that the power allocation is non-increasing, allows the decoder to estimate
the number of incorrectly decoded sections.

Furthermore, we can use the change in τ̂2
t between iterations to terminate the decoder early. If

the value τ̂2
t has not changed between successive iterations, or the change is within some small

threshold, then the decoder has stalled and no further iterations are worthwhile. Empirically we
find that a stopping criterion with a small threshold (e.g., stop when

∣∣τ̂2
t − τ̂2

t−1

∣∣ < PL) leads to
no additional errors compared to running the decoder for the full iteration count, while giving a
significant speedup in most trials. Allowing a larger threshold for the stopping criterion gives even
better running time improvements.

All the simulation results reported in this chapter are obtained using Hadamard-based design

matrices, the online estimate τ̂2
t , and a corresponding early termination criterion.

4.2 Power allocation

Theorem 3.3 shows that for any fixed R < C and an exponentially decaying power allocation
P` ∝ e−2C`/L, ` ∈ [L], the probability of section error of the AMP decoder can be made arbitrarily
small for sufficiently large values of the code parameters (n,M,L). However, the error rate of the
exponentially decaying allocation is rather high at practical block lengths. This is illustrated in
Fig. 4.1. The black curve at the top shows the average section error rate with the exponentially
decaying allocation for various rates R with C = 2 bits. The blue curve in the middle shows the
average section error rate with two different power allocation schemes, with the code parameters
(n,M,L) at each rate.

59

Figure 4.1: Section error rate vs R/C at snr = 15, C = 2 bits. The SPARC parameters for all the curves
are M = 512, L = 1024. The top curve shows the average section error rate of the AMP over 1000 trials
with P` ∝ 2−2C`/L (with C in bits). The curve in the middle shows the section error rate using the power
allocation in (4.2) with the (a, f) values shown. The bottom curve shows the section error rate with the
iterative power allocation scheme described in Section 4.2.1.

It is evident that as we back off from capacity, the power allocation can crucially determine error
performance. The reason for the relative poor performance of the exponential allocation at lower
rates such as R = 0.6C and 0.7C is that that it allocates too much power to the initial sections,
leaving too little for the final sections to decode reliably. This motivates the following modified
exponential allocation characterized by two parameters a, f . For f ∈ [0, 1], let

P` =

{
κ · 2−2aC`/L, 1 ≤ ` ≤ fL
κ · 2−2aCf , fL+ 1 ≤ ` ≤ L

(4.2)

where the normalizing constant κ ensures that the total power across sections is P . For intuition,
first assume that f = 1. Then (4.2) implies that P` ∝ 2−a2C`/L for ` ∈ [L]. Setting a = 1 recovers
the original power allocation of (3.2), while a = 0 allocates P

L to each section. Increasing a increases
the power allocated to the initial sections which makes them more likely to decode correctly, which
in turn helps by decreasing the effective noise variance τ̄2

t in subsequent AMP iterations. However,
if a is too large, the final sections may have too little power to decode correctly.

Hence we want the parameter a to be large enough to ensure that the AMP gets started on the
right track, but not much larger. This intuition can be made precise in the large system limit using
Lemma 3.3: recall that for a section ` to be correctly decoded in step (t+ 1), the limit of LP` must
exceed a threshold proportional to Rτ̄2

t . For rates close to C, we need a to be close to 1 for the
initial sections to cross this threshold and get decoding started correctly. On the other hand, for
rates such as R = 0.6C, a = 1 allocates more power than necessary to the initial sections, leading
to poor error performance in the final sections.

In addition, we found that the section error rate can be further improved by flattening the power
allocation in the final sections. For a given a, (4.2) has an exponential power allocation until section

60

fL, and constant power for the remaining (1− f)L sections. The allocation in (4.2) is continuous,
i.e. each section in the flat part is allocated the same power as the final section in the exponential
part. Flattening boosts the power given to the final sections compared to an exponentially decaying
allocation. The two parameters (a, f) let us trade-off between the conflicting objectives of assigning
enough power to the initial sections and ensuring that the final sections have enough power to be
decoded correctly.

The middle curve (blue) in Figure 4.1 shows the error performance with this modified allocation.
While this allocation improves the section error rate by a few orders of magnitude, it requires
costly numerical optimization of a and f . A good starting point is to use a = f = R/C, but further
optimization is generally necessary. This motivates the need for a fast power allocation algorithm
with fewer tuning parameters.

4.2.1 Iterative power allocation

We now describe a simple iterative algorithm to design a power allocation. The starting point for
our power allocation design is the asymptotic expression for the state evolution parameter x(τ) in
Lemma 3.3 (see also the non-asymptotic lower bound in Lemma (3.7)). Here, assuming (L,M, n)
are sufficiently large, we use the following approximation:

x(τ) ≈
L∑
`=1

P`
P

1
{
LP` > 2Rτ2

}
. (4.3)

We note that R in (4.3) is measured in nats. If the effective noise variance after step t is τ2
t , then

(4.3) says that any section ` whose normalized power LP` is larger than the threshold 2Rτ2
t is

likely to be decodable in step (t + 1), i.e., in βt+1, the probability mass within the section will be
concentrated on the correct non-zero entry.

The L sections of the SPARC are divided into B blocks of L/B sections each. Each section within
a block is allocated the same power. For example, with L = 512 and B = 32, there are 32 blocks
with 16 sections per block. The algorithm sequentially allocates power to each of the B blocks as
follows. Allocate the minimum power to the first block of sections so that they can be decoded in
the first iteration when τ2

0 = σ2 +P . Using (4.3), we set the power in each section of the first block
to

P` =
2Rτ2

0

L
, 1 ≤ ` ≤ L

B
.

Using (4.3), we estimate x1 = x(τ0) = BP1, and hence τ2
1 = σ2 + (P − BP1). Using this value,

allocate the minimum required power for the second block of sections to decode, i.e., P` = 2Rτ2
1 /L

for L
B + 1 ≤ ` ≤ 2L

B . If we sequentially allocate power in this manner to each of the B blocks, then
the total power allocated by this scheme will be strictly less than P whenever R < C. We therefore
modify the scheme as follows.

For 1 ≤ b ≤ B, to allocate power to the bth block of sections assuming that the first (b− 1) blocks
have been allocated, we compare the two options and choose the one that allocates higher power
to the block: i) allocating the minimum required power (computed as above) for the bth block

61

Figure 4.2: Example illustrating the iterative power allocation algorithm with B = 5. In each step, the
height of the light gray region represents the allocation that distributes the remaining power equally over all
the remaining sections. The dashed red line indicates the minimum power required for decoding the current
block of sections. The dark gray bars represent the power that has been allocated at the beginning of the
current step.

of sections to decode; ii) allocating the remaining available power equally to sections in blocks
b, . . . , B, and terminating the algorithm. This gives a flattening in the final blocks similar to the
allocation in (4.2), but without requiring a specific parameter that determines where the flattening
begins. The iterative power allocation routine is described in Algorithm 1. Figure 4.2 shows a toy
example building up the power allocation for B = 5, where flattening is seen to occur in step 4.

Choosing B: By construction, the iterative power allocation scheme specifies the number of itera-
tions of the AMP decoder in the large system limit. This is given by the number of blocks with
distinct powers; in particular the number of iterations (in the large system limit) is of the order of
B. For finite code lengths, we find that it is better to use the termination criterion described in

4.1.2 based on the online estimates τ̂2
t . This termination criterion allows us to choose the number

of blocks B to be as large as L. We found that choosing B = L, together with the termination
criterion consistently gives a small improvement in error performance (compared to other choices
of B), with no additional time or memory cost.

Additionally, with B = L, it is possible to quickly determine a pair (a, f) for the modified expo-
nential allocation in (4.2) which gives a nearly identical allocation to the iterative algorithm. This
is done by first setting f to obtain the same flattening point found in the iterative allocation, and
then searching for an a which matches the first allocation coefficient P1 between the iterative and
the modified exponential allocations. Consequently, any simulation results obtained for the itera-
tive power allocation could also be obtained using a suitable (a, f) with the modified exponential
allocation, without having to first perform a costly numerical optimization over (a, f).

62

Algorithm 1 Iterative power allocation routine

Require: L, B, σ2, P , R such that B divides L.
Initialise k ← L

B
for b = 0 to B − 1 do
Premain ← P −∑bk

`=1 P`
τ2 ← σ2 + Premain

Pblock ← 2Rτ2/L
if Premain/(L− bk) > Pblock then
Pbk+1, . . . , PL ← Premain/(L− bk)
break

else
Pbk+1, . . . , P(b+1)k ← Pblock

end if
end for
return P1, . . . , PL

Figure 4.3 compares the error performance of the exponential and iterative power allocation schemes
discussed above for different values of R at snr = 7, 15, 31. Compared to the original exponential
power allocation, the iterative allocation has significantly improved error performance for rates away
from capacity. It also generally outperforms the modified exponential allocation results, as seen
Figure 4.1, where the bottom curve (green) shows the error performance of the iterative allocation.

For the experiments in Figure 4.3, the value for R used in constructing the iterative allocation
(denoted by RPA) was optimized numerically. Constructing an iterative allocation with R = RPA
yields good results, but due to finite length concentration effects, the RPA yielding the smallest
average error rate may be slightly different from the communication rate R. The effect of RPA on the
concentration of error rates is discussed in Section 4.3.2. We emphasize that this optimization over
RPA is simpler than numerically optimizing the pair (a, f) for the modified exponential allocation.
Furthermore, guidelines for choosing RPA as a function of R are given in Section 4.3.2.

4.3 Code parameter choices at finite code lengths

In this section, we discuss how the choice of SPARC design parameters can influence finite length
error performance with the AMP decoder. We will see that the parameters (L,M) and the power
allocation both inducee a trade-off between the ‘typical’ value of section error rate predicted by
state evolution, and concentration of actual error rates around the typical values.

If the termination step is T , then we expect the test statistic in the final iteration to be statT ≈
β + τTZ, where τT is determined from the SE equations. (For reliable decoding, we expect τ2

T

to be close to σ2.) This leads to the following SE-based prediction for the section error rate [51,
Proposition 1]:

Ēsec = 1− 1

L

L∑
`=1

EU
[
Φ

(√
nP`
σ

+ U

)]M−1

. (4.4)

63

Figure 4.3: AMP section error rate vs R (in bits) at snr = 7, 15, 31, corresponding to C = 1.5, 2, 2.5
bits (shown with dashed vertical lines). At each snr, the section error rate is reported for rates R/C =
0.70, 0.75, 0.80, 0.85, 0.90. The SPARC parameters are M = 512, L = 1024. The top black curve shows the
error rate with the exponential allocation P` ∝ 2−2C`/L (with C in bits). The lower green curve shows the
error rate with iterative power allocation, with B = L.

4.3.1 Effect of L and M on concentration

To understand the effect of increasing M , consider Figure 4.4 which shows the error performance
of a SPARC with R = 1.5, L = 1024, as we increase the value of M . Since n = L logM/R, the
code length n increases logarithmically with M for a fixed L. We observe that the section error
rate (averaged over 200 trials) decreases with M up to M = 29, and then starts increasing. This is
in sharp contrast to the SE prediction (4.4) (dashed line in Figure 4.4) which keeps decreasing as
M is increased.

This divergence between the actual section error rate and the SE prediction for large M is due
to large fluctuations in the number of section errors across trials. Theorem 3.3 shows how the
concentration of section error rates near the SE prediction depends on L and M . Since the prob-
ability bound in (3.72) depends on the ratio L/(logM)2T−1, for a given L the probability of large
deviations from the SE prediction increases with M .

This leads to the situation shown in Figure 4.4, which shows that the SE prediction ESE
sec continues

to decrease with M , but beyond a certain value of M , the observed average section error rate
becomes progressively worse due to loss of concentration. This is caused by a small number of
trials with a very large number of section errors, even as the majority of trials experience lower and
lower error rates as M is increased. This effect can be clearly seen in Figure 4.5, which compares
the histogram of section error rates over 200 trials for M = 64 and M = 4096. The distribution of

64

Figure 4.4: AMP error performance with increasing M , for L = 1024, R = 1.5 bits, and Eb
N0

= 5.7 dB (2
dB from Shannon limit).

errors is clearly different, but both cases have the same average section error rate due to the poorer
concentration for M = 4096.

Therefore, given R, snr, and L, there is an optimal M that minimizes the empirical section error
rate. Beyond this value of M , the benefit from any further increase is outweighed by the loss of
concentration. For a given R, values of M close to L are a good starting point for optimizing the
empirical section error rate, but obtaining closed-form estimates of the optimal M for a given L is
still an open question.

4.3.2 Effect of power allocation on concentration

The non-asymptotic result of Lemma 3.6 indicates that at finite lengths, the minimum power
required for a section ` to decode in an iteration may be slightly different than that indicated
by the asymptotic approximation in (4.3). Recall that the iterative power allocation algorithm
in Section 4.2.1 was designed based on (4.3). We can compensate for the difference between the
approximation and the actual value of x(τ) by running the iterative power allocation in Algorithm
1 using a modified rate RPA which may be slightly different from the communication rate R.

If we run the power allocation algorithm with RPA > R, from (4.3) we see that additional power
is allocated to the initial blocks, at the cost of less power for the final blocks (where the allocation
is flat). Conversely, choosing RPA < R allocates less power to the initial blocks, and increases
the power in the final sections which have a flat allocation. This increases the likelihood of the
initial section being decoded in error; in a trial when this happens, there will be a large number
of section errors. However, if the initial sections are decoded correctly, the additional power in
the final sections increases the probability of the trial being completely error-free. Thus choosing

65

Figure 4.5: Histogram of AMP section errors over 200 trials M = 64 (top) and M = 4096 (bottom), with
L = 1024, R = 1.5 bits, Eb

N0
= 5.7dB. The left panels highlight distribution of errors around low section error

counts, while the right panels show the distribution around high-error-count events. As shown in Figure 4.4,
both cases have an average section error rate of around 10−2.

RPA < R makes completely error-free trials more likely, but also increases the likelihood of having
trials with a large number of sections in error.

To summarize, the larger the RPA, the better the concentration of section error rates of individual
trials around the overall average. However, increasing RPA beyond a point just increases the average
section error rate because of too little power being allocated to the final sections.

Through numerical experiments, we found that the value of RPAR that minimizes the average section

error rate increases with R. In particular, the optimal RPA
R was 0 for R ≤ 1 bit; the optimal RPA

R

for R = 1.5 bits was close to 1, and for R = 2 bits, the optimal RPA
R was between 1.05 and 1.1.

Though this provides a useful design guideline, a deeper theoretical analysis of the role of RPA in
optimizing the finite length error performance is an open question.

4.4 Comparison with coded modulation

We compare the error performance of AMP-decoded SPARCs with coded modulation with LDPC
codes from the WiMax standard IEEE 802.16e. For the latter, we consider: 1) A 16-QAM con-
stellation with a rate 1

2 LDPC code for an overall rate R = 1 bit/channel use/real dimension,

66

Figure 4.6: Comparison with LDPC coded modulation at R = 1 bit

Figure 4.7: Comparison with LDPC coded modulation at R = 1.5 bits

67

and 2) A 64-QAM constellation with a rate 1
2 LDPC code for an overall rate R = 1.5 bits/channel

use/real dimension. (The spectral efficiency is 2R bits/s/Hz.) The coded modulation results, shown
in dashed lines in Figures 4.6 and 4.7, are obtained using the CML toolkit [2] with LDPC code
lengths n = 576 and n = 2304.

Throughout this section and the next, rate will be measured in bits.

Each figure compares the bit error rates (BER) of the coded modulation schemes with various
SPARCs of the same rate, including a SPARC with a matching code length of n = 2304. Using
P = EbR and σ2 = N0

2 , the signal-to-noise ratio of the SPARC can be expressed as P
σ2 = 2REb

N0
. The

SPARCs are implemented using Hadamard-based design matrices, power allocation designed using
the iterative algorithm in Sec. 4.2.1 with B = L, parameters τ̂2

t computed online, and the early
termination criterion described in 4.1.2. A Jupyter notebook detailing the SPARC implementation
in Python is available at [1].

4.5 AMP with partial outer codes

Figures 4.6 and 4.7 show that for block lengths of the order of a few thousands, AMP-decoded
SPARCs do not exhibit a steep waterfall in section error rate. Even at high Eb/N0 values, it is still
common to observe a small number of section errors. If these could be corrected, we could hope to
obtain a sharp waterfall behavior similar to the LDPC codes.

In the simulations of the AMP decoder described above, when M and RPA are chosen such that
the average error rates are well-concentrated around the state evolution prediction, the number
of section errors observed is similar across trials. Furthermore, we observe that the majority of
sections decoded incorrectly are those in the flat region of the power allocation, i.e., those with
the lowest allocated power. This suggests we could use a high-rate outer code to protect just
these sections, sacrificing some rate, but less than if we näıvely protected all sections. We call the
sections covered by the outer code protected sections, and conversely the earlier sections which are
not covered by the outer code are unprotected. In [16], it was shown that a Reed-Solomon outer
code (that covered all the sections) could be used to obtain a bound the probability of codeword
error from a bound on the probability of excess section error rate.

Encoding with an outer code (e.g., LDPC or Reed-Solomon code) is straightforward: just replace
the message bits corresponding to the protected sections with coded bits generated using the usual
encoder for the chosen outer code. To decode, we would like to obtain bit-wise posterior probabilities
for each codeword bit of the outer code, and use them as inputs to a soft-information decoder,
such as a sum-product or min-sum decoder for LDPC codes. The output of the AMP decoding
algorithm permits this: it yields βT , which contains weighted section-wise posterior probabilities;
we can directly transform these into bit-wise posterior probabilities. See Algorithm 2 for details.

Moreover, in addition to correcting AMP decoding errors in the protected sections, successfully
decoding the outer code also provides a way to correct remaining errors in the unprotected sections
of the SPARC codeword. Indeed, after decoding the outer code we can subtract the contribution
of the protected sections from the channel output sequence y, and re-run the AMP decoder on just

68

β : · · · · · · · · ·
T

L sections

Luser Lparity

Lunprotected Lprotected

LLDPC

Figure 4.8: Division of the L sections of β for an outer LDPC code

the unprotected sections. The key point is that subtracting the contribution of the later (protected)
sections eliminates the interference due to these sections; then running the AMP decoder on the
unprotected sections is akin to operating at a much lower rate.

Thus the decoding procedure has three stages: i) first round of AMP decoding, ii) decoding the
outer code using soft outputs from the AMP, and iii) subtracting the contribution of the sections
protected by the outer code, and running the AMP decoder again for the unprotected sections. We
find that the final stage, i.e., running the AMP decoder again after the outer code recovers errors in
the protected sections of the SPARC, provides a significant advantage over a standard application
of an outer code, i.e., decoding the final codeword after the second stage.

We describe this combination of SPARCs with outer codes below, using an LDPC outer code. The
resulting error rate curves exhibit sharp waterfalls in final error rates, even when the LDPC code
only covers a minority of the SPARC sections.

We use a binary LDPC outer code with rate RLDPC , block length nLDPC and code dimension
kLDPC , so that kLDPC/nLDPC = RLDPC . For clarity of exposition we assume that both nLDPC
and kLDPC are multiples of logM (and consequently that M is a power of two). As each section of
the SPARC corresponds to logM bits, if logM is an integer, then nLDPC and kLDPC bits represent
an integer number of SPARC sections, denoted by

LLDPC =
nLDPC
logM

and Lprotected =
kLDPC
logM

,

respectively. The assumption that kLDPC and nLDPC are multiples of logM is not necessary in
practice; the general case is discussed at the end of the next subsection.

We partition the L sections of the SPARC codeword as shown in Fig 4.8. There are Luser sections
corresponding to the user (information) bits; these sections are divided into unprotected and pro-
tected sections, with only the latter being covered by the outer LDPC code. The parity bits of
the LDPC codeword index the last Lparity sections of the SPARC. For convenience, the protected
sections and the parity sections together are referred to as the LDPC sections.

For a numerical example, consider the case where L = 1024, M = 256. There are logM = 8
bits per SPARC section. For a (5120, 4096) LDPC code (RLDPC = 4/5) we obtain the following

69

Algorithm 2 Weighted position posteriors β` to bit posteriors p0, . . . , plogM−1 for section ` ∈ [L]

Require: β` = [β`,1, . . . , β`,M], for M a power of 2
Initialise bit posteriors p0, . . . , plogM−1 ← 0

Initialise normalization constant c←∑M
i=1 β`,i

for log i = 0, 1, . . . , logM − 1 do
b← logM − log i− 1
k ← i
while k < M do

for j = k + 1, k + 2, . . . , k + i do
pb ← pb + β`,j/c

end for
k ← k + 2i

end while
end for
return p0, . . . , plogM−1

relationships between the number of the sections of each kind:

Lparity =
nLDPC − kLDPC

logM
=

(5120− 4096)

8
= 128,

Luser = L− Lparity = 1024− 128 = 896,

Lprotected =
kLDPC
logM

=
4096

8
= 512,

LLDPC = Lprotected + Lparity = 512 + 128 = 640,

Lunprotected = Luser − Lprotected = L− LLDPC = 384.

There are Luser logM = 7168 user bits, of which the final kLDPC = 4096 are encoded to a systematic
nLDPC = 5120-bit LDPC codeword. The resulting L logM = 8192 bits (including both the user
bits and the LDPC parity bits) are encoded to a SPARC codeword using the SPARC encoder and
power allocation described in previous sections.

We continue to use R to denote the overall user rate, and n to denote the SPARC code length so
that nR = Luser logM . The underlying SPARC rate (including the overhead due to the outer code)
is denoted by RSPARC . We note that nRSPARC = L logM , hence RSPARC > R. For example,
with R = 1 and L,M and the outer code parameters as chosen above, n = Luser(logM)/R = 7168,
so RSPARC = 1.143.

4.5.1 Decoding SPARCs with LDPC outer codes

At the receiver, we decode as follows:

1. Run the AMP decoder to obtain βT . Recall that entry j within section ` of βT is proportional
to the posterior probability of the column j being the transmitted one for section `. Thus
the AMP decoder gives section-wise posterior probabilities for each section ` ∈ [L].

70

2. Convert the section-wise posterior probabilities to bit-wise posterior probabilities using Algo-
rithm 2, for each of the LLDPC sections. This requires O(LLDPCM logM) time complexity,
of the same order as one iteration of AMP.

3. Run the LDPC decoder using the bit-wise posterior probabilities obtained in Step 2 as inputs.

4. If the LDPC decoder fails to produce a valid LDPC codeword, terminate decoding here,
using βT to produce β̂ by selecting the maximum value in each section (as per usual AMP
decoding).

5. If the LDPC decoder succeeds in finding a valid codeword, we use it to re-run AMP decoding
on the unprotected sections. For this, first convert the LDPC codeword bits to a partial
β̂LDPC as follows, using a method similar to the original SPARC encoding:

5.1 Set the first LunprotectedM entries of β̂LDPC to zero,

5.2 The remaining LLDPC sections (with M entries per section) of β̂LDPC will have exactly
one-non zero entry per section, with the LDPC codeword determining the location of
the non-zero in each section. Indeed, noting that nLDPC = LLDPC logM , we consider
the LDPC codeword as a concatenation of LLDPC blocks of logM bits each, so that
each block of bits indexes the location of the non-zero entry in one section of β̂LDPC .
The value of the non-zero in section ` is set to

√
nP`, as per the power allocation.

Now subtract the codeword corresponding to β̂LDPC from the original channel output y, to
obtain y′ = y −Aβ̂LDPC .

6. Run the AMP decoder again, with input y′, and operating only over the first Lunprotected
sections. As this operation is effectively at a much lower rate than the first decoder (since
the interference contribution from all the protected sections is removed), it is more likely that
the unprotected bits are decoded correctly than in the first AMP decoder.

We note that instead of generating y′, one could run the AMP decoder directly on y, but
enforcing that in each AMP iteration, each of the LLDPC sections has all its non-zero mass
on the entry determined by β̂LDPC , i.e., consistent with Step 5.b).

7. Finish decoding, using the output of the final AMP decoder to find the first LunprotectedM

elements of β̂, and using β̂LDPC for the remaining LLDPCM elements.

4.5.2 Simulation results

The combined AMP and outer LDPC setup described above was simulated using the (5120, 4096)
LDPC code (RLDPC = 4/5) specified in [24] with a min-sum decoder. Bit error rates were measured
only over the user bits, ignoring any bit errors in the LDPC parity bits.

Figure 4.9 plots results at overall rate R = 4
5 , where the underlying LDPC code (modulated with

BPSK) can be compared to the SPARC with LDPC outer code, and to a plain SPARC with rate
4
5 . In this case RPA = 0, giving a flat power allocation. Figure 4.10 plots results at overall rate
R = 1.5, where we can compare to the QAM-64 WiMAX LDPC code, and to the plain SPARC
with rate 1.5 of Figure 4.7.

71

Figure 4.9: Comparison to plain AMP and to BPSK-modulated LDPC at overall rate R = 0.8. The
SPARCs are both L = 768, M = 512. The underlying SPARC rate when the outer code is included is
RSPARC = 0.94. The BPSK-modulated LDPC is the same CCSDS LDPC code [24] used for the outer
code. For this configuration, Luser = 654.2, Lparity = 113.8, Lunprotected = 199.1, Lprotected = 455.1, and
LLDPC = 568.9.

The plots show that protecting a fraction of sections with an outer code does provide a steep
waterfall above a threshold value of Eb

N0
. Below this threshold, the combined SPARC + outer code

has worse error performance than the plain rate R SPARC without the outer code. This can be
explained as follows. The combined code has a higher SPARC rate RSPARC > R, which leads to a
larger section error rate for the first AMP decoder, and consequently, to worse bit-wise posteriors
at the input of the LDPC decoder. For Eb

N0
below the threshold, the noise level at the input of

the LDPC decoder is beyond than the error-correcting capability of the LDPC code, so the LDPC
code effectively does not correct any section errors. Therefore the overall error rate is worse with
the outer code.

Above the threshold, we observe that the second AMP decoder (after subtracting the contribution of
the LDPC-protected sections) is successful at decoding the unprotected sections that were initially
decoded incorrectly. This is especially apparent in the R = 4

5 case (Figure 4.9), where the section
errors are uniformly distributed over all sections due to the flat power allocation; errors are just as
likely in the unprotected sections as in the protected sections.

4.5.3 Outer code design choices

The error performance with an outer code is sensitive to what fraction of sections are protected
by the outer code. When more sections are protected by the outer code, the overhead of using
the outer code is also higher, driving RSPARC higher for the same overall user rate R. This leads

72

Figure 4.10: Comparison to plain AMP and to the QAM-64 WiMAX LDPC of Section 4.4 at overall rate
R = 1.5 The SPARCs are both L = 1024, M = 512. The underlying SPARC rate including the outer
code is RSPARC = 1.69. For this configuration, Luser = 910.2, Lparity = 113.8, Lunprotected = 455.1,
Lprotected = 455.1, and LLDPC = 455.1.

to worse error performance in the initial AMP decoder, which has to operate at the higher rate
RSPARC . As discussed above, if RSPARC is increased too much, the bit-wise posteriors input to
the LDPC decoder are degraded beyond its ability to successfully decode, giving poor overall error
rates.

Since the number of sections covered by the outer code depends on both logM and nLDPC , various
trade-offs are possible. For example, given nLDPC , choosing a larger value of logM corresponds to
fewer sections being covered by the outer code. This results in smaller rate overhead, but increasing
logM may also affect concentration of the error rates around the SE predictions, as discussed in
Section 4.3. We conclude with two remarks about the choice of parameters for the SPARC and the
outer code.

1. When using an outer code, it is highly beneficial to have good concentration of the section
error rates for the initial AMP decoder. This is because a small number of errors in a single
trial can usually be fully corrected by the outer code, while occasional trials with a very large
number of errors cannot.

2. Due to the second AMP decoder operation, it is not necessary for all sections with low power
to be protected by the outer code. For example, in Figure 4.9, all sections have equal power,
and around 30% are not protected by the outer code. Consequently, these sections are often
not decoded correctly by the first decoder. Only once the protected sections are removed is
the second decoder able to correctly decode these unprotected sections. In general the aim
should be to cover all or most of the sections in the flat region of the power allocation, but
experimentation is necessary to determine the best trade-off.

73

An interesting direction for future work would be to develop an EXIT chart analysis [107, 6, 93] to
jointly optimize the design of the SPARC and the outer LDPC code.

74

Chapter 5

Spatially Coupled SPARCs

The efficient capacity-achieving decoders discussed in Chapter 3 all relied on power allocation
across the sections. The design matrix was chosen with independent, identically distributed Gaus-
sian entries, while the values of the non-zero coefficients varied across sections of the codeword.
Equivalently, one can define the power allocation by changing the variance of the Gaussian entries
in each section of the design matrix, while the non-zero coefficients of the codeword all have the
same value. Spatial coupling is a generalization of the latter view of power allocation.

In a spatially coupled SPARC (SC-SPARC), the design matrix is divided into multiple blocks,
each with independent zero-mean Gaussian entries of a specified variance. The variance of the
entries may vary across blocks, while the values of the non-zero entries in the message vector are all
equal. Within this general framework, we will consider a simple construction with a band-diagonal
spatially coupled design matrix, and show that it can achieve the AWGN capacity with AMP
decoding without the need for power allocation. Furthermore, at finite code lengths, numerical
simulations indicate that SC-SPARCs have a much steeper decay of error rate than power allocated
SPARCs as we as we back off from the Shannon limit.

The idea of spatial coupling was introduced in the context of LDPC codes [43, 78, 75, 74, 82], and
later applied to compressed sensing in [73, 72, 35]. Subsequently, spatially coupled SPARCs were
studied by Barbier et al. in [14, 8, 9, 12, 10]. The discussion in this chapter is largely based on the
spatially coupled SPARC construction and analysis presented in [59, 96].

5.1 Spatially coupled SPARC construction

As in the standard construction, a spatially coupled (SC) SPARC is defined by a design matrix
A of dimension n ×ML, where n is the code length. The codeword is x = Aβ, where β has one
non-zero entry in each of the L sections.

In an SC-SPARC, the matrix A consists of independent zero-mean normally distributed entries
whose variances are specified by a base matrix W of dimension LR × LC . The design matrix A

75

Design matrix A

MR

n
=
M

R
L
R

MC

ML =MCLC

Base matrix W

LR

LC

Figure 5.1: A spatially coupled design matrix A is divided into blocks of size MR×MC . There are LR and
LC blocks in each column and row respectively. The independent matrix entries are normally distributed,
Aij ∼ N (0, 1

LWr(i)c(j)), where W is the base matrix. The base matrix shown here is an (ω,Λ) base matrix
with parameters ω = 3 and Λ = 7. The white parts of A and W correspond to zeros.

is obtained from the base matrix W by replacing each entry Wrc, for r ∈ [LR], c ∈ [LC], by
an MR ×MC block with i.i.d. entries ∼ N (0,Wrc/L). This is analogous to the “graph lifting”
procedure in constructing SC-LDPC codes from protographs [82]. See Fig. 5.1 for an example, and
note that n = LRMR and ML = LCMC .

From the construction, the design matrix has independent normal entries

Aij ∼ N
(

0,
1

L
Wr(i)c(j)

)
∀ i ∈ [n], j ∈ [ML]. (5.1)

The operators r(·) : [n] → [LR] and c(·) : [ML] → [LC] in (5.1) map a particular row or column
index to its corresponding row block or column block index. We require LC to divide L, resulting
in L

LC
sections per column block.

The non-zero coefficients of β are all set to 1. Then, to satisfy the power constraint 1
n‖x‖2 = P , it

can be shown that the entries of the base matrix W must satisfy

1

LRLC

LR∑
r=1

LC∑
c=1

Wrc = P. (5.2)

The trivial base matrix with LR = LC = 1 corresponds to a standard (non-SC) SPARC with
flat power allocation (discussed in Chapter 2), while a single-row base matrix LR = 1, LC = L
is equivalent to a standard SPARC with power allocation (Chapters 3 and 4). Without loss of
generality, we will assume that 1

LC

∑LC
c=1Wrc and 1

LR

∑LR
r=1Wrc are bounded above and below by

strictly positive constants.

76

Here, we will use the following base matrix inspired by the coupling structure of SC-LDPC codes
constructed from protographs [82].

Definition 5.1. An (ω,Λ) base matrix W for SC-SPARCs is described by two parameters: coupling
width ω ≥ 1 and coupling length Λ ≥ 2ω − 1. The matrix has LR = Λ + ω − 1 rows, LC = Λ
columns, with each column having ω identical non-zero entries. For an average power constraint
P , the (r, c)th entry of the base matrix, for r ∈ [LR], c ∈ [LC], is given by

Wrc =

{
P · Λ+ω−1

ω if c ≤ r ≤ c+ ω − 1,

0 otherwise.
(5.3)

For example, the base matrix in Fig. 5.1 has parameters ω = 3 and Λ = 7. This base matrix
construction was also used in [79] for SC-SPARCs. Other base matrix constructions can be found
in [72, 35, 8, 12].

Each non-zero entry in an (ω,Λ) base matrix W corresponds to an MR × (ML/LC) block in the
design matrix A. Each of these blocks can be viewed as a standard (non-SC) SPARC with L

LC

sections (with M columns in each section), code length MR, and rate Rinner = (L/LC) lnM
MR

nats.
Since nR = L lnM , the overall rate of the SC-SPARC is related to Rinner according to

R =
Λ

Λ + ω − 1
Rinner. (5.4)

The coupling width ω is usually an integer greater than 1, so R < Rinner. The difference (Rinner−R)
is often referred to as a rate loss. The rate loss depends on the ratio (ω − 1)/Λ, which becomes
negligible when Λ is large w.r.t. ω.

Remark 5.1. SC-SPARC constructions generally have a ‘seed’ to jumpstart decoding. In [8], a
small fraction of sections of β are fixed a priori — this pinning condition is used to analyze the
state evolution equations via the potential function method. Analogously, in the construction in
[12], additional rows are introduced in the design matrix for the blocks corresponding to the first
row of the base matrix. In an (ω,Λ) base matrix, the fact that the number of rows in the base matrix
exceeds the number of columns by (ω−1) helps decoding start from both ends. The asymptotic state
evolution equations in Sec. 5.3.1 show how AMP decoding progresses in an (ω,Λ) base matrix.

5.2 AMP decoder for spatially coupled SPARCs

The decoder wishes to recover the message vector β ∈ RML from the channel output sequence
y ∈ Rn, given by

y = Aβ + w, (5.5)

where the noise vector w ∼i.i.d. NN(0, σ2).

The procedure to derive an Approximate Message Passing (AMP) decoding algorithm for SC-
SPARCs is similar to that for standard SPARCs (Section 3.4, p. 39), with modifications to account

77

for the different variances for the blocks of A specified by the base matrix. The AMP decoder
intitializes β0 to the all-zero vector, and for t ≥ 0, iteratively computes

zt = y −Aβt + b̃
t � zt−1 (5.6)

βt+1 = ηt(βt + (S̃t �A)∗zt). (5.7)

Here � denotes the Hadamard (entry-wise) product. The denoising function ηt, and b̃
t ∈ Rn,

S̃t ∈ Rn×ML are defined below in terms of the state evolution parameters.

5.2.1 State evolution for SC-SPARCs

We recall from Section 3.2 that state evolution is a scalar recursion (see (3.25)–(3.26)) that captures
the decoding progression of the AMP decoder for standard SPARCs. The key difference in SC-
SPARCs is that the decoding progression depends on the row block index r ∈ [LR] and column block
index c ∈ [LC]. Consequently, the state evolution parameters for SC-SPARCs will also depend on
the row block index r ∈ [LR] and the column block index c ∈ [LC]. In detail, the state evolution
(SE) iteratively computes vectors φt ∈ RLR and ψt ∈ RLC as follows. Initialize ψ0

c = 1 for c ∈ [LC],
and for t = 0, 1, . . ., compute

φtr = σ2 +
1

LC

LC∑
c=1

Wrcψ
t
c, r ∈ [LR], (5.8)

ψt+1
c = 1− E(τ tc), c ∈ [LC], (5.9)

where

τ tc =
R

lnM

[
1

LR

∑
r

Wrc

φtr

]−1

, (5.10)

and E(τ tc) is defined as

E(τ tc) = E

 eU1/
√
τ tc

eU1/
√
τ tc + e

− 1

τtc
∑M

j=2 e
Uj/
√
τ tc

 , (5.11)

with U1, . . . , UM
i.i.d.∼ N (0, 1).

We define the entries of the vector bt ∈ RLR and the matrix St ∈ RLR×LC as

btr =
(φtr − σ2)

φt−1
r

, Strc =
τ tc
φtr
, for r ∈ [LR], c ∈ [LC]. (5.12)

The vector b̃
t ∈ Rn in (5.6) is obtained by repeating MR times each entry of bt. Similarly, S̃t ∈

Rn×ML in (5.7) is obtained by repeating each entry of St in an MR ×MC matrix.

The denoising function ηt = (ηt1, . . . , η
t
ML) : RML → RML in (5.7) is defined as follows. For

j ∈ [ML] such that j ∈ sec(`) and the section ` is in the cth column block,

ηtj(s) =
esj/τ

t
c∑

j′∈sec(`) e
sj′/τ

t
c
. (5.13)

78

As in the case of standard SPARCs, ηtj(s) depends on all the components of s in the section
containing j.

5.2.2 Interpretation of the AMP decoder

The input to ηt(·) in (5.13) can be viewed as a noisy version of β. In particular, the cth block of
st = s is approximately distributed as βc +

√
τ tcZc, where Zc ∈ RMR is a standard normal random

vector independent of β. (Here βc ∈ RMC is the part of the message vector corresponding to column
block c of the design matrix.) Under the above distributional assumption, the denoising function
ηj in (5.13) is the minimum mean squared error (MMSE) estimator for βj , i.e.,

ηtj(s) = E
[
βj |s = βc +

√
τ tc Zc

]
, for j ∈ [ML],

where the expectation is calculated over β and Z, with the location of the non-zero entry in each
section of β being uniformly distributed within the section.

The entries of the modified residual zt in (5.6) are approximately Gaussian and independent, with
the variance determined by the block index. For r ∈ [LR], the SE parameter φtr approximates the

variance of the rth block of the residual ztr ∈ RMR . The ‘Onsager’ term b̃
t�zt−1 in (5.6) reflects the

block-wise structure of zt. Finally, the parameter ψtc approximates the normalized mean-squared
error in the estimate of βc. This is discussed in the next section.

To summarize, the key difference from the state evolution parameters for standard SPARCs is that
the variances of the effective observation and the residual now depend on the column- and row-block
indices, respectively. These variances are captured by {τ tc}c∈[LC] and {φtr}r∈[LR].

5.3 Measuring the performance of the AMP decoder

The performance of a SPARC decoder is measured by the section error rate, defined as

Esec :=
1

L

L∑
`=1

1{β̂sec(`) 6= βsec(`)}. (5.14)

The section error rate can be shown to be bounded by the normalized mean squared error (NMSE)
as follows.

Esec ≤
4

L
‖βT − β‖2 = 4

[
1

LC

LC∑
c=1

‖βTc − βc‖22
L/LC

]
, (5.15)

where in the last expression, we have written the total NMSE as an average over the NMSEs of
the LC blocks of the message vector.

Figure 5.2 shows that ψt closely tracks the NMSE of each block of the message vector, i.e.,

ψtc ≈
‖βtc−βc‖22
L/LC

for c ∈ [LC]. We additionally observe from the figure that as AMP iterates, the
NMSE reduction propagates from the ends towards the center blocks. This decoding propagation
phenomenon can be explained using an asymptotic characterization of the state evolution equations.

79

0 5 10 15 20 25 30
Column block index c

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
M

ea
n

Sq
ua

re
d

Er
ro

r t=0
t=5
t=10
t=15
t=20
t=25
t=30
t=35

Figure 5.2: NMSE
‖βtc−βc‖

2
2

L/LC
vs. column block index c ∈ [LC] for several iteration numbers. The SC-SPARC

with an (ω,Λ) base matrix uses parameters: R = 1.5 bits, C = 2 bits, ω = 6, Λ = 32, M = 512, L = 2048
and n = 12284. The solid lines are the SE predictions from (5.9), and the dotted lines are the average NMSE
over 100 instances of AMP decoding.

5.3.1 Asymptotic State Evolution analysis

Note that E(τ tc) in (5.11) takes a value in [0, 1]. If E(τ tc) = 1, then ψt+1
c = 0, which means that the

sections in column block c are expected to decode correctly. If we terminate the AMP decoder at
iteration T , we want ψTc = 0, for c ∈ [LC], so that the entire message vector is expected to decode
correctly. The condition under which E(τ tc) equals 1 in the large system limit is specified by the
following lemma.

Lemma 5.2. In the limit as the section size M →∞, the expectation E(τ tc) in (5.11) converges to
either 1 or 0 as follows.

lim
M→∞

E(τ tc) =

{
1 if 1

LR

∑LR
r=1

Wrc
φtr

> 2R

0 if 1
LR

∑LR
r=1

Wrc
φtr

< 2R.
(5.16)

This results in the following asymptotic state evolution recursion. Initialise ψ̄0
c = 1, for c ∈ [LC],

and for t = 0, 1, 2, . . .,

φ̄tr = σ2 +
1

LC

LC∑
c=1

Wrcψ̄
t
c, r ∈ [LR], (5.17)

ψ̄t+1
c = 1− 1

{
1

LR

LR∑
r=1

Wrc

φ̄tr
> 2R

}
, c ∈ [LC], (5.18)

where φ̄, ψ̄ indicate asymptotic values.

Proof. Recalling the definition of τ tc from (5.10), we write 1
τ tc

= νtc lnM , where

νtc =
1

RLR

LR∑
r=1

Wrc

φtr
(5.19)

80

is an order 1 quantity because 1
LR

∑LR
r=1Wrc is bounded above and below by positive constants.

Therefore,

E(τ tc) = E

 e
√
νtc lnMU1

e
√
νtc lnMU1 +M−νtc

∑M
j=2 e

√
νtc lnMUj

 , (5.20)

which is in the same form as the expectation in (3.80). Therefore, following the steps in Section
3.6.1, we conclude that

lim
M→∞

E(τ tc) =

{
1 if νtc > 2

0 if νtc < 2.
(5.21)

The proof is completed by substituting the value of νtc from (5.19) in (5.21).

Remark 5.2. Using the definition of τ tc from (5.10), we can also write (5.16) as

lim
M→∞

E(τ tc) =

{
1 if τ tc lnM < 1

2

0 if τ tc lnM > 1
2 .

(5.22)

Remark 5.3. Lemma 5.2 is a generalization of Lemma 3.3, the asymptotic SE result for standard
SPARCs The term 1

LR

∑
r
Wrc
φtr

in (5.16) represents the average signal to effective noise ratio at
iteration t for the column index c. If this quantity exceeds the prescribed threshold of 2R, then the
cth block of the message vector, βc, will be decoded at the next iteration in the large system limit,
i.e., ψt+1

c = 0.

The asymptotic SE recursion (5.17)-(5.18) is given for a general base matrix W . We now apply it
to the (ω,Λ) base matrix introduced in Definition 5.1.

Lemma 5.3. The asymptotic SE recursion (5.17)-(5.18) for an (ω,Λ) base matrix W is as follows.
Initialise ψ̄0

c = 1 ∀ c ∈ [Λ], and for t = 0, 1, 2, . . .,

φ̄tr = σ2

1 +
κ · snr

ω

cr∑
c=cr

ψ̄tc

 , r ∈ [Λ + ω − 1], (5.23)

ψ̄t+1
c = 1− 1

{
P

ω

c+ω−1∑
r=c

1

φ̄tr
> 2R

}
, c ∈ [Λ], (5.24)

where κ = Λ+ω−1
Λ , snr = P

σ2 , and

(cr, cr) =


(1, r) if 1 ≤ r ≤ ω
(r − ω + 1, r) if ω ≤ r ≤ Λ

(r − ω + 1, Λ) if Λ ≤ r ≤ Λ + ω − 1.

(5.25)

Proof. Substitute the value of Wrc from (5.3), and LC = Λ, LR = Λ + ω − 1 in (5.17)-(5.18).

Observe that the φ̄tr’s and ψ̄tc’s are symmetric about the middle indices, i.e. φ̄tr = φ̄tLR−r+1 for

r ≤ bLR2 c and ψ̄tc = ψ̄tLC−c+1 for c ≤ bLC2 c.

81

Lemma 5.3 gives insight into the decoding progression for a large SC-SPARC defined using an
(ω,Λ) base matrix. On initialization (t = 0), the value of φ̄0

r for each r depends on the number of
non-zero entries in row r of W , which is equal to cr−cr+1, with cr, cr given by (5.25). Therefore, φ̄0

r

increases from r = 1 until r = ω, is constant for ω ≤ r ≤ Λ, and then starts decreasing again after
r = Λ. As a result, ψ̄1

c is smallest for c at either end of the base matrix (c ∈ {1,Λ}) and increases
as c moves towards the middle, since the

∑c+ω−1
r=c (φ̄0

r)
−1 term in (5.24) is largest for c ∈ {1,Λ},

followed by c ∈ {2,Λ − 1}, and so on. Therefore, we expect the blocks of the message vector
corresponding to column index c ∈ {1,Λ} to be decoded most easily, followed by c ∈ {2,Λ − 1},
and so on. Fig. 5.2 shows that this is indeed the case.

The decoding progression for subsequent iterations shown in Fig. 5.2 can be explained using
Lemma 5.3 by tracking the evolution of the φ̄tr’s and ψ̄tc’s. In particular, one finds that if column
c∗ decodes in iteration t, i.e. ψ̄tc∗ = 0, then columns within a coupling width away (i.e., columns
c ∈ {c∗ − (ω − 1), . . . , c∗ + (ω − 1)}) will become easier to decode in iteration (t+ 1).

In the following, with a slight abuse of terminology, we will use the phrase “column c is decoded in
iteration t” to mean ψ̄tc = 0.

Proposition 5.4. [59] Consider an SC-SPARC constructed using an (ω,Λ) base matrix with rate
R < 1

2κ ln(1 + κ · snr), where κ = Λ+ω−1
Λ . (Note that 1

2κ ln(1 + κ · snr) ∈ [C/κ, C].) Then, according
to the asymptotic state evolution equations in Lemma 5.3, the following statements hold in the large
system limit:

1. The AMP decoder will be able to start decoding if

ω >

(
1

e2Rκ − 1
− 1

κ · snr

)−1

. (5.26)

2. If (5.26) is satisfied, then the sections in the first and last c∗ blocks of the message vector will
be decoded in the first iteration (i.e. ψ̄1

c = 0 for c ∈ {1, 2, . . . , c∗}∪{Λ−c∗+1,Λ−c∗+2, . . . ,Λ}),
where c∗ is bounded from below as

c∗ ≥min

{
(ω − 1),

⌊
ω · 1 + κ · snr

(κ · snr)2
· [ln (1 + κ · snr)− 2Rκ]

⌋}
. (5.27)

3. At least 2c∗ additional columns will decode in each subsequent iteration until the message is
fully decoded. Therefore, the AMP decoder will fully decode in at most

⌈
Λ

2c∗

⌉
iterations.

Remark 5.4. The proposition implies that for any rate R < C, AMP decoding is successful in
the large system limit, i.e., ψ̄Tc = 0 for all c ∈ [Λ]. Indeed, consider a rate R = C/κ0, for any
constant κ0 > 1. Then choose ω to satisfy (5.26) (with κ replaced by κ0), and Λ large enough
that κ = Λ+ω−1

Λ ≤ κ0. With this choice of (ω,Λ) and rate R, the conditions of the proposition are
satisfied, and hence, all the columns decode in the large system limit.

Remark 5.5. The proof of the proposition shows that if R < snr
2(1+κ·snr) , then ψ̄1

c = 0, for all c ∈ [Λ],
i.e., the entire codeword decodes in the first iteration.

82

Remark 5.6. The state evolution recursion was analyzed for a certain class of spatially coupled
SPARCs by Barbier et al. [8] using the potential method introduced in [120, 76, 35]. It is shown
in [8] that the fixed points of the state evolution recursion (5.8)–(5.9) coincide with the stationary
points of a suitably defined potential function. This is then used to show ‘threshold saturation’ for
spatially coupled SPARCs with AMP decoding, i.e., for all rates R < C, state evolution predicts
vanishing probability of decoding error in the limit of large section size. In contrast, Proposition
5.4 establishes threshold saturation by directly characterizing the decoding progression in the large
system limit.

Remark 5.7. A non-asymptotic version of Proposition 5.4, which describes the decoding progres-
sion for large but finite M , can be found in [96, Sec. IV].

Remark 5.8. For a fixed rate R < C, one can establish a bound similar to Theorem 3.3 on the
probability of excess section error rate of an AMP decoded spatially coupled SPARC. This requires
two technical ingredients in addition to Proposition 5.4. The first is a conditional distribution
lemma similar to Lemma 3.8, but tailored to the spatially coupled design matrix. In particular,
the conditional distributions of the vectors ht+1 and bt now depend on the column block and row
block indices, respectively. These conditional distributions are then used to establish a concentration
result similar to Lemma 3.10 which shows that the NMSE in each iteration 1

L‖β − βt‖2 is tracked
with high probability by the state evolution quantity 1

LC

∑
c ψ

t
c. Proposition 5.4 guarantees that this

quantity is small after
⌈

Λ
2c∗

⌉
iterations. The rigorous performance analysis of AMP for spatially

coupled SPARCs using the above ingredients will be detailed in a forthcoming paper.

Proof of Proposition 5.4. Since the φ̄tr’s and ψ̄tc’s in (5.23) and (5.24) are symmetric about the
middle indices, we will only consider decoding the first half of the columns, c ∈ {1, . . . , bΛ+1

2 c}, and
the same arguments will apply to the second half by symmetry.

For column c to decode in iteration 1, i.e., for ψ̄1
c = 0, we require the argument of the indicator

function in (5.24) to be satisfied for t = 0, which corresponds to

Fc :=
κ · snr

ω

c+ω−1∑
r=c

1

1 + κ·snr
ω · (cr − cr + 1)

> 2Rκ. (5.28)

1) Since the Fc is largest for column c = 1, (5.28) must be satisfied with c = 1 for any column to
start decoding. Moreover, using (5.25), we find

F1 =
κ · snr

ω

ω∑
r=1

1

1 + κ·snr
ω · r

(i)
>

∫ κ·snr
ω

(ω+1)

κ·snr
ω

1

1 + x
dx

= ln

(
1 +

κ · snr

1 + κ · snr · 1
ω

)
, (5.29)

where the inequality (i) is obtained by using left Riemann sums on the decreasing function 1
1+x .

Using (5.29) in (5.28), we conclude that if ln
(

1 + κ·snr
1+κ·snr/ω

)
> 2Rκ, then column c = 1 will decode

in the first iteration. Rearranging this inequality yields (5.26).

83

2) Given an (ω,Λ) pair that satisfies (5.26), we can find a lower bound on the total number of
columns that decode in the first iteration. In order to decode column c (and column Λ − c + 1
by symmetry) in the first iteration, we require (5.28) to be satisfied. For c < ω, this condition
corresponds to

Fc =
κ · snr

ω

[(
ω−1∑
r=c

1

1 + κ·snr
ω · r

)
+

c

1 + κ · snr

]
> 2Rκ, (5.30)

and for columns c ∈ {ω, . . . ,Λ− ω + 1}, the condition in (5.28) becomes

snr

1 + κ · snr
> 2R, (5.31)

where (5.25) was used to find the values of cr and cr . Since Fc defined in (5.28) is smallest for
columns c ∈ {ω, . . . ,Λ− ω + 1}, all columns decode in the first iteration if (5.31) is satisfied.

For columns c < ω, we can obtain a lower bound for Fc:

Fc =
κ · snr

ω

[(
ω−1∑
r=c

1

1 + κ·snr
ω · r

)
+

c

1 + κ · snr

]
(i)
>

∫ κ·snr
ω

ω

κ·snr
ω

c

1

1 + x
dx+

c

ω

κ · snr

(1 + κ · snr)

= ln (1 + κ · snr)− ln
(

1 + κ · snr · c
ω

)
+
c

ω

κ · snr

(1 + κ · snr)

(ii)
> ln (1 + κ · snr)− κ · snr · c

ω
+
c

ω

κ · snr

(1 + κ · snr)

= ln (1 + κ · snr)− c

ω

(κ · snr)2

(1 + κ · snr)
, (5.32)

where (i) is obtained by using left Riemann sums on the decreasing function 1
1+x , and (ii) from

ln(x) ≤ x − 1. Therefore, if the RHS of (5.32) is greater than 2Rκ then (5.30) is satisfied, and
column c will decode in the first iteration. This inequality corresponds to

c < ω · 1 + κ · snr

(κ · snr)2
· [ln (1 + κ · snr)− 2Rκ] . (5.33)

In other words, all columns c < ω that also satisfy (5.33) will decode in the first iteration. Therefore,
the number of columns (in the first half) that decode in the first iteration, denoted c∗, can be
bounded from below by (5.27).

3) We want to prove that if the first (and last) c∗ columns decode in the first iteration, then at
least the first (and last) tc∗ columns will decode by iteration t, for t ≥ 1. We look at the c∗ < ω
case because all columns would have been decoded in the first iteration if c∗ ≥ ω. We again only
consider the first half of the columns (and rows) due to symmetry.

We prove by induction. The t = 1 case holds by the previous statement that the first c∗ columns
decode in the first iteration. From (5.30), this corresponds to the following inequality being satisfied:

snr

ω

[(
ω−1∑
r=c∗

1

1 + κ·snr
ω · r

)
+

c∗

1 + κ · snr

]
> 2R. (5.34)

84

Assume that the statement holds for some t ≥ 1, i.e. ψ̄tc = 0 for c ∈ [tc∗]. We assume that
tc∗ < bΛ+1

2 c, otherwise all the columns will have already been decoded. Then, from (5.23), we
obtain

φ̄tr ≤


σ2, 1 ≤ r ≤ tc∗,
σ2
(
1 + κ·snr

ω (r − tc∗)
)
, tc∗ < r < tc∗ + ω,

σ2 (1 + κ · snr) , tc∗ + ω ≤ r ≤ bΛ+ω−1
2 c+ 1.

(5.35)

(We have a ≤ sign in (5.35) rather than an equality because indices r near Λ+ω−1
2 may have smaller

values in the final iterations, due to columns from the other half and within ω indices away having
already been decoded.)

We now show that the statement holds for (t + 1), i.e., ψt+1
c = 0 for columns c ∈ [(t + 1)c∗]. In

order for columns c ∈ {tc∗ + 1, . . . , (t + 1)c∗} to decode in iteration (t + 1), the inequality in the
indicator function in (5.24) must be satisfied when c = (t+1)c∗ (the LHS of the inequality is larger
for c ∈ {tc∗ + 1, . . . , (t+ 1)c∗ − 1}). This corresponds to

snr

ω

 tc∗+ω−1∑
r=(t+1)c∗

1

1 + κ·snr
ω (r − tc∗)

+
c∗

1 + κ · snr

 > 2R, (5.36)

which is equivalent to (5.34), noting that (t+ 1)c∗ < tc∗ + ω since c∗ < ω. Therefore, (5.36) holds
by the condition, and the statement holds for (t + 1). Due to symmetry, the same arguments can
be applied to the last tc∗ and (t+ 1)c∗ columns. Therefore, at least c∗ columns from each half will
decode in every iteration.

5.4 Simulation results

We evaluate the empirical performance of SC-SPARCs constructed from (ω,Λ) base matrices. As
in Chapter 4, we use a Hadamard based design matrix (instead of a Gaussian one), which gives
significant reductions in running time and required memory, with very similar error performance
to Gaussian design matrices.

Figure 5.3 compares the average section error rate (SER) and the codeword error rate of spatially
coupled SPARCs with standard (non-SC) SPARCs, both with and without power allocation (PA).
The code length is the same for all the codes, and the power allocation was designed using the
iterative algorithm described in Section 4.2.1. AMP decoding is used for all the codes. Comparing
standard SPARCs without PA and SC-SPARCs, we see that spatial coupling significantly improves
the error performance: the rate threshold below which the SER drops steeply to a negligible value
is higher for SC-SPARCs. We also observe that at rates close to the channel capacity, standard
SPARCs with PA have lower SER than SC-SPARCs. However, as the rate decreases, the drop in
SER for standard SPARCs with PA is not as steep as that for SC-SPARCs.

With respect to codeword error rate, we observe that SC-SPARCs significantly outperform non-SC
SPARCs with power allocation. This is because power allocated SPARCs tend to have a much

85

Figure 5.3: Average section error rate (top) and codeword error rate (bottom) vs. rate at snr = 15, C = 2
bits. The SPARC parameters are M = 512, L = 1024, n ∈ [5100, 7700]. The graph at the top shows plots
for non-SC SPARCs with and without power allocation, and SC-SPARCs with an (ω,Λ) base matrix with
ω = 6,Λ = 32. The code length is the same for the three cases. The dotted vertical lines indicate that no
section errors were observed over at least 104 trials at smaller rates.

larger number of trials with at least one section error; the number of section errors in such trials
is typically small, the errors occur mostly in the sections with low power. In contrast, it was
observed that the SC-SPARC had many fewer trials with codeword errors, but when a codeword
error occurred, it often resulted a large number of sections were in error.

Next, we examine the effect of changing the coupling width ω. Fig. 5.4 compares the average SER
of SC-SPARCs with (ω,Λ) base matrices with Λ = 32 and varying ω. For a fixed Λ, we observe
from (5.4) that a larger ω requires a larger inner SPARC rate Rinner for the same overall SC-SPARC
rate R. A larger value of Rinner makes decoding harder; on the other hand increasing the coupling
width ω helps decoding. Thus for a given rate R, there is a trade-off: as illustrated by Fig. 5.4,
increasing ω improves the SER up to a point, but the performance degrades for larger ω. In general,
ω should be large enough so that coupling can benefit decoding, but not so large that Rinner is very
close to the channel capacity. For example, for R = 1.6 bits and Λ = 32, the inner SPARC rate
Rinner = 1.65, 1.75, 1.85, 1.95 bits for ω = 2, 4, 6, 8, respectively. With the capacity being C = 2

86

Figure 5.4: Average section error rate vs. rate at snr = 15, C = 2 bits, M = 512, L = 1024, n ∈ [5100, 6200].
Plots are shown for SC-SPARCs with an (ω,Λ) base matrix with Λ = 32 and ω ∈ {2, 4, 6, 8}. For a given
rate, the code length is the same for different ω values. The dotted vertical line indicates that for ω = 6 and
8, no section errors were observed over 104 trials at R = 1.5 bits.

bits, the figure shows that ω = 6 is the best choice for R = 1.6 bits, with ω = 8 being noticeably
worse. This also indicates that smaller values ω would be favored as the rate R gets closer to C.

87

88

Part II

Lossy Compression with SPARCs

89

Chapter 6

Optimal Encoding

In the second part of this monograph, we turn our focus to SPARCs for lossy compression. Develop-
ing practical codes for lossy compression at rates approaching Shannon’s rate-distortion bound has
been a long-standing goal in information theory. A practical compression code requires a codebook
with low storage complexity as well as encoding and decoding algorithms with low computational
complexity. The storage complexity of a SPARC is proportional to the size of the size of the design
matrix, which is polynomial is the code length n.

In this chapter, we analyze the compression performance of SPARCs with optimal encoding. The
performance is measured via the squared error distortion criterion. Though the complexity of the
optimal encoder grows exponentially in the code length, its performance sets a benchmark for
efficient SPARC encoders (like the one discussed in the next chapter).

SPARCs were first considered for lossy compression by Kontoyiannis et al. in [68], where some
some preliminary results on their compression performance were presented. Here we will discuss the
analysis in [112] and [115] which shows that for i.i.d. Gaussian sources, SPARCs with minimum-
distance encoding attain the optimal rate-distortion function and the optimal excess-distortion
exponent.

6.1 Problem set-up

The source sequence is denoted by s = (s1, . . . , sn), and the reconstruction sequence by ŝ =
(s1, . . . , sn). The distortion is measured by the normalized squared error 1

n‖s − ŝ‖2. Throughout
this chapter, for any vector x ∈ Rn, we will use the notation |x| to denote the normalized norm
‖x‖/√n.

Codebook construction The sparse regression codebook is as described in Section 1.1. Each code-
word is of the form Aβ, where the design matrix A has entries ∼i.i.d. N (0, 1

n). The codeword is
determined by the vector β ∈ BM,L, which has one non-zero in each section.

91

The main difference from the channel coding construction is that the values of the non-zeros in β
do not have to satisfy a power constraint — they can be chosen in any way to help the compression
encoder. In this chapter, we set all the non-zero values to be equal:

c1 = . . . = cL =

√
nc2

L
, (6.1)

where the value of c is specified later in (6.16)

As there are ML codewords, to obtain a compression rate of R nats/sample we need

ML = enR. (6.2)

In this chapter, we choose M = Lb for some b > 1 so that (6.2) implies

L logL =
nR

b
. (6.3)

Thus L is Θ (n/ log n), and the number of columns ML in the dictionary A is Θ
(

(n/ log n)b+1
)

, a

polynomial in n.

Minimum-distance encoder The optimal encoder for squared-error distortion is the minimum-
distance encoder. For the SPARC, it is defined by a mapping g : Rn → BM,L, which produces
the β that produces the codeword closest to the source sequence in Euclidean distance, i.e.,

β̂ = g(s) = argmin
β∈BM,L

‖s−Aβ‖.

Decoder This is a mapping h : BM,L → Rn. On receiving β̂ ∈ BM,L from the encoder, the decoder

produces the reconstruction h(β̂) = Aβ̂.

Performance measures For a rate-distortion code Cn with code length n and encoder and decoder
mappings g, h, the probability of excess distortion at distortion level D is

Pe(Cn, D) = P
(
|s− h(g(s))|2 > D

)
. (6.4)

For a SPARC, the probability measure in (6.4) is with respect to the random source sequence s
and the random design matrix A.

Definition 6.1. A rate R is achievable at distortion level D if there exists a sequence of rate R
codes {Cn}n=1,2,... such that limn→∞ Pe(Cn, D) = 0. The infimum of all rates achievable at distortion
level D by any sequence of codes is the Shannon rate-distortion function, denoted by R∗(D).

A rate R is achievable by SPARCs if there exists a sequence of rate R SPARCs {Cn}n=1,2,..., with
Cn defined by an n × LnMn design matrix whose parameter Ln satisfies (6.3) with a fixed b and
Mn = Lbn.

92

For an i.i.d. Gaussian source where s1, s2, . . . are ∼i.i.d. N (0, σ2), the Shannon rate-distortion
function is [32]

R∗(D) =

{
1
2 log σ2

D D < σ2,

0 D ≥ σ2.
(6.5)

The excess-distortion exponent at distortion-level D of a sequence of rate R codes {Cn}n=1,2,... is
given by

r(D,R) = − lim sup
n→∞

1

n
logPe(Cn, D), (6.6)

where Pe(Cn, D) is defined in (6.4). The optimal excess-distortion exponent for a rate-distortion
pair (R,D) is the supremum of the excess-distortion exponents over all sequences of codes with
rate R at distortion-level D.

The optimal excess-distortion exponent for discrete memoryless sources was obtained by Marton
[81], and for memoryless Gaussian sources by Ihara and Kubo [60].

Theorem 6.1. [60] For an i.i.d. Gaussian source distributed as N (0, σ2) and squared-error dis-
tortion criterion, the optimal excess-distortion exponent at rate R and distortion-level D is

r∗(D,R) =

{
1
2

(
a2

σ2 − 1− log a2

σ2

)
R > R∗(D)

0 R ≤ R∗(D)
(6.7)

where a2 = De2R.

For R > R∗(D), the exponent in (6.7) is the Kullback-Leibler divergence between two zero-mean
Gaussians, distributed as N (0, a2) and N (0, σ2), respectively.

6.2 Performance of the optimal decoder

The key result in this chapter (Theorem 6.2) is a large deviations bound on the excess distortion
probability of a SPARC. This result is then used to show that SPARCs attain the optimal rate-
distortion function and excess-distortion exponent for i.i.d. Gaussian sources.

For x > 1, let

bmin(x) =
28Rx4(

1 + 1
x

)2 (
1− 1

x

) [
−1 +

(
1 + 2

√
x

(x−1)

(
R− 1

2(1− 1
x)
))1/2

]2 (6.8)

Theorem 6.2. [115] Let the source sequence s = (s1, . . . , sn) be drawn from an ergodic source with

mean zero and variance σ2. Let D ∈ (0, σ2), R > 1
2 log σ2

D , and γ2 ∈ (σ2, De2R). Let

b > max
{

2, bmin

(
γ2/D

)}
, (6.9)

93

where bmin(.) is defined in (6.8). Let Cn be SPARC of rate R defined via an n × LnMn design
matrix with Mn = Lbn and Ln determined by (6.3). Then the probability of excess distortion for Cn
at distortion level D satisfies

Pe(Cn, D) ≤ P
(‖s‖2

n
≥ γ2

)
+ exp

(
−κn1+c

)
, (6.10)

where κ, c are strictly positive universal constants.

The proof of the theorem is given in Section 6.3.

The first term on the RHS of (6.10) is the probability that the empirical second moment of the
source exceeds γ2. This probability does not depend on the codebook. The second term is a bound
on the conditional probability of not finding a SPARC codeword within distortion D given that
‖s‖2
n < γ2. Since the second term decays faster than exponentially in n, for large n the excess

distortion probability in (6.10) is dominated by the first term.

Let us compare the bound in (6.10) with the excess distortion probability of a Shannon-style random
i.i.d. codebook with optimal encoding. The first term remains unchanged as it does not depend
on the codebook. The second term, which is the probability of not finding a codeword within

distortion D for a source sequence with ‖s‖2
n < γ2, decays double exponentially in n [60] for the

random i.i.d. codebook. Though the second term decays much faster for an i.i.d. codebook than
for SPARCs, for large n the excess distortion probability is still dominated by the first term. We
therefore expect the excess-distortion exponent of a SPARC to be the same as that of a random
i.i.d. codebook. We also know that a sequence of random i.i.d. codebooks attains the optimal
exponent in (6.7); hence, based on the previous claim a sequence of SPARCs would also attain the
optimal exponent. This is made precise in the following corollary.

Corollary 6.2. Let s be drawn from an i.i.d. Gaussian source with mean zero and variance σ2.
Fix rate R > 1

2 log σ2

D , and let a2 = De2R. Fix any ε ∈ (0, a2 − σ2), and

b > max

{
2, bmin

(
a2 − ε
D

)}
. (6.11)

There exists a sequence of rate R SPARCs with parameter b that achieves the excess-distortion
exponent

1

2

(
a2 − ε
σ2

− 1− log
a2 − ε
σ2

)
.

Consequently:

1. SPARCs attain the Shannon rate-distortion function of an i.i.d. Gaussian source.

2. The supremum of excess-distortion exponents achievable by SPARCs for i.i.d. Gaussian
sources sources is equal to the optimal one, given by (6.7).

94

Proof. From Theorem 6.2, we know that for any ε ∈ (0, a2 − σ2), there exists a sequence of rate R
SPARCs {Cn} for which

Pe(Cn, D) ≤ P (|s|2 ≥ a2 − ε)
(

1 +
exp(−κn1+c)

P (|s|2 ≥ a2 − ε)

)
(6.12)

for sufficiently large n, as long as the parameter b satisfies (6.11). For s that is i.i.d. N (0, σ2),
Cramér’s large deviation theorem [34] yields

lim
n→∞

− 1

n
logP (|s|2 ≥ a2 − ε) =

1

2

(
a2 − ε
σ2

− 1− log
a2 − ε
σ2

)
(6.13)

for (a2 − ε) > σ2. Thus P (|s|2 ≥ a2 − ε) decays exponentially with n; in comparison exp(−κn1+c)
decays faster than exponentially with n. Therefore, from (6.12), the excess-distortion exponent
satisfies

lim inf
n→∞

−1

n
logPe(Cn, D)

≥ lim inf
n→∞

−1

n

[
logP (|s|2 ≥ a2 − ε) + log

(
1 +

exp(−κn1+c)

P (|s|2 ≥ a2 − ε)

)]
=

1

2

(
a2 − ε
σ2

− 1− log
a2 − ε
σ2

)
.

(6.14)

Since ε > 0 can be chosen arbitrarily small, the supremum of all achievable excess-distortion

exponents is 1
2

(
a2

σ2 − 1− log a2

σ2

)
, which is optimal from Fact 6.1.

Theorem 6.2 and Corollary 6.2 together show that sparse regression codes are essentially as good as
random i.i.d Gaussian codebooks in terms of rate-distortion function, excess-distortion exponent,
and robustness. By robustness, we mean that a SPARC designed to compress an i.i.d Gaussian
source with variance σ2 to distortion D can compress any ergodic source with variance at most σ2

to distortion D. This property is also satisfied by random i.i.d Gaussian codebooks [77, 99, 100].
Moreover, Lapidoth [77] also showed that for any ergodic source, with an i.i.d. Gaussian random
codebook one cannot attain a mean-squared distortion smaller than the distortion-rate function of
an i.i.d Gaussian source with the same variance.

To sum up, the sparse regression ensemble has good covering properties, with the advantage of much
smaller codebook storage complexity than the i.i.d random ensemble (polynomial vs. exponential
in block-length).

The remainder of this chapter is devoted to proving Theorem 6.2. The proof involves using the
second moment method and Suen’s inequality [63] to show that if |s|2 ≤ γ2, then with high prob-
ability there exists at least one codeword within distortion D of the source sequence. Proving the
result turns out to be significantly easier in the regime where R > R0(D) where

R0(D) := max

{
1

2
log

σ2

D
,

(
1− D

σ2

)}
. (6.15)

The rate R0(D) in (6.15) is equal to R∗(D) when D
σ2 ≤ x∗, but is strictly larger than R∗(D) when

D
σ2 > x∗, where x∗ ≈ 0.203; see Fig. 6.1.

95

D/σ
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a

te
 (

b
it
s
)

0

0.5

1

1.5

2

2.5

3

3.5

0.5 log σ
2
/D

1-D/σ
2

Figure 6.1: The solid line shows the previous achievable rate R0(D), given in (6.15). The rate-distortion
function R∗(D) is shown in dashed lines. It coincides with R0(D) for D/σ2 ≤ x∗, where x∗ ≈ 0.203.

The reason for the result being harder to prove for R ∈ (R∗(D), R0(D)] is discussed on p.101 after
introducing the key elements of the proof. Roughly speaking, at these low rates the probability of
the SPARC codebook having an atypically large number of codewords within distortion D of the
source sequence is high, and so a standard application of second moment method fails.

6.3 Proof of Theorem 6.2

Fix a rate R > R∗(D), and b greater than the minimum value specified by the theorem. Note that

De2R > σ2 since R > 1
2 log σ2

D . Let γ2 be any number such that σ2 < γ2 < De2R.

Code Construction: Fix block length n and section parameter b. Then pick L as specified by (6.3)
and M = Lb. Construct an n ×ML design matrix A with entries drawn i.i.d. N (0, 1/n). The
codebook consists of all vectors Aβ such that β ∈ BM,L. The non-zero entries of β are all set equal
to a value specified below.

Encoding and Decoding : If the source sequence s is such that |s|2 ≥ γ2, then the encoder declares
an error. If |s|2 ≤ D, then s can be trivially compressed to within distortion D using the all-zero
codeword. The addition of this extra codeword to the codebook affects the rate in a negligible way.

If |s|2 ∈ (D, γ2), then s is compressed in two steps. First, quantize |s|2 with an n-level uniform
scalar quantizer Q(.) with support in the interval (D, γ2]. Conveying the scalar quantization index
to the decoder (with an additional log n nats) allows us to adjust the codebook variance according
to the norm of the observed source sequence.1 The non-zero entries of β are each set to

√
nc2/L,

1The scalar quantization step is only included to simplify the analysis. In fact, we could use the same codebook
variance (γ2−D) for all s that satisfy |s|2 ≤ (γ2−D), but this would make the forthcoming large deviations analysis
quite cumbersome.

96

where

c2 = Q(|s|2)−D. (6.16)

so that each SPARC codeword has variance c2 = (Q(|s|2)−D). Define a ‘quantized-norm’ version
of s as

s̃ :=

√
Q(|s|2)

|s|2
s. (6.17)

Note that |s̃|2 = Q(|s|2). We use the SPARC to compress s̃. The encoder finds

β̂ := argmin
β∈BM,L

‖s̃−Aβ‖2.

The decoder receives β̂ and reconstructs ŝ = Aβ̂. Note that for block length n, the total number
of bits transmitted by encoder is log n+L logM , yielding an overall rate of R+ logn

n nats/sample.

Let E(s̃) be the event that the minimum of |s̃−Aβ|2 over β ∈ BM,L is greater than D. The encoder
declares an error if E(s̃) occurs. If E(s̃) does not occur, it can be verified that the overall distortion
can be bounded as ∣∣∣s−Aβ̂∣∣∣2 ≤ D +

κ

n
, (6.18)

for some positive constant κ. The overall rate (including that of the scalar quantizer) is R+ logn
n .

Denoting the probability of excess distortion for this code by Pe,n, we have

Pe,n ≤ P (|s|2 ≥ γ2) + max
ρ2∈(D,γ2)

P (E(s̃) | |s̃|2 = ρ2). (6.19)

To bound the second term in (6.19), without loss of generality we can assume that the source
sequence is s̃ = (ρ, . . . , ρ). This is because the codebook distribution is rotationally invariant, due
to the i.i.d. N (0, 1) design matrix A. For any β, the entries of Aβ(i) i.i.d. N (0, ρ2 − D). We
enumerate the codewords as Aβ(i), where β(i) ∈ BM,L for i = 1, . . . , enR.

Define the indicator random variables

Ui(s̃) =

{
1 if |Aβ(i)− s̃|2 ≤ D,
0 otherwise.

(6.20)

We can then write

P (E(s̃)) = P

enR∑
i=1

Ui(s̃) = 0

 . (6.21)

For a fixed s̃, the Ui(s̃)’s are dependent. Indeed, if β(i) and β(j) overlap in r of their non-zero
positions, then the column sums forming codewords ŝ(i) and ŝ(j) will share r common terms, and
consequently Ui(s̃) and Uj(s̃) will be dependent.

For brevity, we henceforth denote Ui(s̃) by just Ui. We also write X :=
∑enR

i=1 Ui. We refer to βi as
a solution if Ui = 1. Hence X is the number of solutions.

97

To highlight the main ideas in the proof, before obtaining a non-asymptotic bound for the proba-
bility in (6.21), we will first prove the following asymptotic result.

P (X > 0) = P

enR∑
i=1

Ui > 0

→ 1 as n→∞. (6.22)

We will first apply the second moment method (second MoM) to prove (6.22), and then use Suen’s
correlation inequality to prove the non-asymptotic result in the statement of the theorem.

For any non-negative random variable X, the second MoM bounds the probability of the event
X > 0 from below as

P (X > 0) ≥ (EX)2

E[X2]
. (6.23)

The inequality (6.23) follows from the Cauchy-Schwarz inequality

(E[XY])2 ≤ EX2 EY 2

by substituting Y = 1{X>0}. To apply it to our setting, we first observe that

E[X2] = E

[
X

enR∑
i=1

Ui

]
=

enR∑
i=1

E[XUi] =
enR∑
i=1

P (Ui = 1)E[X|Ui = 1]

= EX · E[X|U1 = 1]. (6.24)

Using (6.24) in (6.23), we obtain

P (X > 0) ≥ EX
E[X|U1 = 1]

. (6.25)

6.3.1 Second moment method computations

To compute EX, we derive a general lemma specifying the probability that a randomly chosen i.i.d
N (0, y) codeword is within distortion z of a source sequence s with |s|2 = x. This lemma will be
used in other parts of the proof as well.

Lemma 6.3. Let s be a vector with |s|2 = x. Let ŝ be an i.i.d. N (0, y) random vector that is
independent of s. Then for x, y, z > 0 and sufficiently large n, we have

κ√
n
e−nf(x,y,z) ≤ P

(
|ŝ− s|2 ≤ z

)
≤ e−nf(x,y,z), (6.26)

where κ is a universal positive constant and for x, y, z > 0, the large-deviation rate function f is

f(x, y, z) =

{ x+z
2y − xz

Ay − A
4y − 1

2 ln A
2x if z ≤ x+ y,

0 otherwise,
(6.27)

and
A =

√
y2 + 4xz − y. (6.28)

98

Proof. We have

P
(
|ŝ− s|2 ≤ z

)
= P

(
1

n

n∑
k=1

(ŝk − sk)2 ≤ z
)

= P

(
1

n

n∑
k=1

(ŝk −
√
x)2 ≤ z

)
, (6.29)

where the last equality is due to the rotational invariance of the distribution of ŝ, i.e., ŝ has the
same joint distribution as Oŝ for any orthogonal (rotation) matrix O. In particular, we choose O
to be the matrix that rotates s to the vector (

√
x, . . . ,

√
x), and note that |ŝ− s|2 = |Oŝ−Os|2.

Then, using the strong version of Cramér’s large deviation theorem due to Bahadur and Rao [34, 7],
we have

κ√
n
e−nI(x,y,z) ≤ P

(
1

n

n∑
k=1

(ŝk − x)2 ≤ z
)
≤ e−nI(x,y,z), (6.30)

where the large-deviation rate function I is given by

I(x, y, z) = sup
λ≥0

{
λz − logEeλ(Ŝ−

√
x)2
}
. (6.31)

The expectation on the RHS of (6.31) is computed with Ŝ ∼ N (0, y). Using standard calculations,
we obtain

logEeλ(Ŝ−
√
x)2

=
λx

1− 2yλ
− 1

2
log(1− 2yλ), λ < 2y. (6.32)

Substituting the expression in (6.32) in (6.31) and maximizing over λ ∈ [0, 2y) yields I(x, y, z) =
f(x, y, z), where f is given by (6.27).

The expected number of solutions is given by

EX = enRP (U1 = 1) = enRP
(
|Aβ(1)− s̃|2 ≤ D

)
. (6.33)

Since s̃ = (ρ, ρ, . . . , ρ), and Aβ(1) is i.i.d. N (0, ρ2−D), applying Lemma 6.3 we obtain the bounds

κ√
n
enRe−nf(ρ2,ρ2−D,D) ≤ EX ≤ enRe−nf(ρ2,ρ2−D,D), (6.34)

Note that

f(ρ2, ρ2 −D,D) =
1

2
log

ρ2

D
. (6.35)

Next consider E[X|U1 = 1]. If β(i) and β(j) overlap in r of their non-zero positions, the column
sums forming codewords ŝ(i) and ŝ(j) will share r common terms. Therefore,

E[X|U1 = 1] =
enR∑
i=1

P (Ui = 1|U1 = 1) =
enR∑
i=1

P (Ui = 1, U1 = 1)

P (U1 = 1)

(a)
=

L∑
r=0

(
L

r

)
(M − 1)L−r

P (U2 = U1 = 1| F12(r))

P (U1 = 1)
(6.36)

99

where F12(r) is the event that the codewords corresponding to U1 and U2 share r common terms.
In (6.36), (a) holds because for each codeword ŝ(i), there are a total of

(
L
r

)
(M − 1)L−r codewords

which share exactly r common terms with ŝ(i), for 0 ≤ r ≤ L.

From (6.36) and (6.33), the key ratio in (6.24) is

E[X|U1 = 1]

EX
=

L∑
r=0

(
L

r

)
(M − 1)L−r

P (U2 = U1 = 1| F12(r))

enR (P (U1 = 1))2

(a)∼ 1 +
∑

α= 1
L
,...,L

L

(
L

Lα

)
P (U2 = U1 = 1| F12(α))

MLα (P (U1 = 1))2

(b)
= 1 +

∑
α= 1

L
,...,L

L

en∆α

(6.37)

where (a) is obtained by substituting α = r
L and enR = ML. The notation xL ∼ yL means that

xL/yL → 1 as L→∞. The equality (b) is from [112, Appendix A], where it is shown that

∆α ≤
κ

L
+
R

b
min{α, ᾱ, log 2

logL} − h(α) (6.38)

where κ > 0 is a universal constant, and

h(α) := αR− 1

2
log

(
1 + α

1− α(1− 2D
ρ2)

)
. (6.39)

The term en∆α in (6.37) may be interpreted as follows. Conditioned on U1 = 1, i.e. β(1) is a
solution, the expected number of solutions that share αL common terms with β(1) is ∼ en∆αEX.
Recall that we require the left side of (6.37) to tend to 1 as n → ∞. Therefore, we need ∆α < 0
for α = 1

L , . . . ,
L
L . From (6.38), we need h(α) to be positive in order to guarantee that ∆α < 0.

It can be shown [112, Appendix A] that for R > (1 − D/ρ2), the function h(α) = αR − g(ρ2) is
strictly positive in the interval [1

L ,
L−1
L]. Further, for all sufficiently large L its minimum in the

interval is attained at α = 1/L where it equals

h(1/L) =
1

L

(
R− (1−D/ρ2)

)
+

κ

L2
, κ > 0. (6.40)

Using this bound for h(α) in (6.38), we find that if R > (1−D/ρ2), and

b >
2.5R+ κ

logL

R− (1−D/ρ2) + κ
L

, (6.41)

then the exponent ∆α in (6.37) is strictly negative for 1
L ≤ α ≤

(L−1)
L . Consequently, the key ratio

E[X|U1=1]
EX → 1 as n→∞.

However, when 1
2 log ρ2

D < R < (1− D
ρ2), it can be verified that h(α) < 0 for α ∈ (0, α∗) where α∗ ∈

(0, 1) is the solution to h(α) = 0. Thus ∆α is positive for α ∈ (0, α∗) when 1
2 log ρ2

D < R ≤ (1− D
ρ2).

100

Consequently, (6.37) implies that

E[X|U1 = 1]

EX
∼
∑
α

en∆α →∞ as n→∞, (6.42)

so the second MoM fails.

The reason for the failure of the second MoM in the regime R < (1− D
ρ2) is due to the size-biasing

induced by conditioning on U1 = 1. Indeed, for any s, there are atypical realizations of the design
matrix that yield a very large number of solutions. The total probability of these matrices is small
enough that EX in not significantly affected by these realizations. However, conditioning on β
being a solution increases the probability that the realized design matrix is one that yields an
unusually large number of solutions. At low rates, the conditional probability of the design matrix
being atypical is large enough to make E[X|U1 = 1]� EX, causing the second MoM to fail.

The key to rectifying the second MoM failure is to show that X(β) ≈ EX with high probability
although E[X|U1 = 1] � EX. We then apply the second MoM to count just the ‘good’ solutions,
i.e., solutions β(i) for which X|Ui=1≈ EX. This approach was first used in the work of Coja-Oghlan
and Zdeborová [28] on finding sharp thresholds for two-coloring of random hypergraphs.

6.3.2 Refining the second moment method

Given that β ∈ BM,L is a solution, for α = 0, 1
L , . . . ,

L
L define Xα(β) to be the number of solutions

that share αL non-zero terms with β. The total number of solutions given that β is a solution is

X(β) =
∑

α=0, 1
L
,...,L

L

Xα(β) (6.43)

Using this notation, we have

E[X|U1 = 1]

EX
(a)
=

E[X(β)]

EX

=
∑

α=0, 1
L
,...,L

L

E[Xα(β)]

EX
(b)∼ 1 +

∑
α= 1

L
,...,L

L

en∆α ,
(6.44)

where (a) holds because the symmetry of the code construction allows us to condition on a generic
β ∈ BM,L being a solution; (b) follows from (6.37).

The key ingredient in the proof is the following lemma, which shows that Xα(β) is much smaller
than EX w.h.p ∀α ∈ { 1

L , . . . ,
L
L}. In particular, Xα(β)� EX even for α for which

E[Xα(β)]

EX
∼ en∆α →∞ as n→∞.

Lemma 6.4. [115, Lemma 4] Let R > 1
2 log ρ2

D . If β ∈ BM,L is a solution, then for sufficiently
large L

P
(
Xα(β) ≤ L−5/2 EX, for 1

L ≤ α ≤ L−1
L

)
≥ 1− η (6.45)

101

where

η = L
−3.5

(
b

bmin(ρ2/D)
−1

)
. (6.46)

The function bmin(.) is defined in (6.8).

We refer the reader to [115] for the proof. The probability measure in Lemma 6.4 is the conditional
distribution on the space of design matrices A given that β is a solution.

Definition 6.5. For ε > 0, call a solution β “ε-good” if∑
α= 1

L
,...,L

L

Xα(β) < εEX. (6.47)

Since we have fixed s̃ = (ρ, . . . , ρ), whether a solution β is ε-good or not is determined by the design
matrix. Lemma 6.4 guarantees that w.h.p. any solution β will be ε-good, i.e., if β is a solution,
w.h.p. the design matrix is such that the number of solutions sharing any common terms with β is
less εE[X].

The key to proving the asymptotic result in (6.22) is to apply the second MoM only to ε-good
solutions. Fix ε = L−1.5. For i = 1, . . . , enR, define the indicator random variables

Vi =

{
1 if |Aβ(i)− s̃|2 ≤ D and β(i) is ε-good,
0 otherwise.

(6.48)

The number of ε-good solutions, denoted by Xg, is given by

Xg = V1 + V2 + . . .+ VenR . (6.49)

We will apply the second MoM to Xg to show that P (Xg > 0)→ 1 as n→∞. We have

P (Xg > 0) ≥ (EXg)
2

E[X2
g]

=
EXg

E[Xg|V1 = 1]
(6.50)

where the second equality is obtained by writing E[X2
g] = (EXg)E[Xg|V1 = 1], similar to (6.24).

Lemma 6.6. a) EXg ≥ (1− η)EX, where η is defined in (6.46).

b) E[Xg|V1 = 1] ≤ (1 + L−0.5)EX.

Proof. Due to the symmetry of the code construction, we have

EXg = enRP (V1 = 1)
(a)
= enRP (U1 = 1)P (V1 = 1|U1 = 1)

= EX · P (β(1) is ε-good | β(1) is a solution).
(6.51)

In (6.51), (a) follows from the definitions of Vi in (6.48) and Ui in (6.20). Given that β(1) is a
solution, Lemma 6.4 shows that ∑

α= 1
L
,...,L

L

Xα(β(1)) < (EX)L−1.5. (6.52)

102

with probability at least 1− η. As ε = L−1.5, β(1) is ε-good according to Definition 6.5 if (6.52) is
satisfied. Thus EXg in (6.51) can be lower bounded as

EXg ≥ (1− η)EX. (6.53)

For part (b), first observe that the total number of solutions X is an upper bound for the number
of ε-good solutions Xg. Therefore

E[Xg|V1 = 1] ≤ E[X|V1 = 1]. (6.54)

Given that β(1) is an ε-good solution, the expected number of solutions can be expressed as

E[X|V1 = 1]

= E[X0(β(1)) | V1 = 1] + E[
∑

α= 1
L
,...,L

L

Xα(β(1)) | V1 = 1]. (6.55)

There are (M − 1)L codewords that share no common terms with β(1), and are thus independent
of the event V1 = 1.

E[X0(β(1)) | V1 = 1] = E[X0(β(1))] = (M − 1)L P (|s̃−Aβ|2 ≤ D)

≤ML P (|s̃−Aβ|2 ≤ D) = EX.
(6.56)

Next, note that conditioned on β(1) being an ε-good solution (i.e., V1 = 1),∑
α= 1

L
,...,L

L

Xα(β(1)) < εEX (6.57)

with certainty. This follows from the definition of ε-good in (6.47). Using (6.56) and (6.57) in
(6.55), we conclude that

E[X|V1 = 1] < (1 + ε)EX. (6.58)

Combining (6.58) with (6.54) completes the proof of Lemma 6.6.

Using Lemma 6.6 in (6.50), we obtain

P (Xg > 0) ≥ EXg

E[Xg|V1 = 1]
≥ (1− η)

1 + ε
=

1− L−3.5(b
bmin(ρ2/D)

−1)

1 + L−3/2
, (6.59)

where the last equality is obtained by using the definition of η in (6.46) and ε = L−0.5. Hence the
probability of the existence of at least one good solution tends to 1 as L→∞. Therefore P (X > 0)
in (6.22) also tends to one.

6.3.3 A non-asymptotic bound for P (X = 0)

We now prove the result (6.10) by obtaining a non-asymptotic bound for P (Xg = 0). In contrast
to (6.59) which proves that P (Xg = 0) decays polynomially in L, we will use Suen’s inequality to
show that this probability decays super-exponentially in L.

We begin with some definitions.

103

Definition 6.7 (Dependency Graphs [63]). Let {Vi}i∈I be a family of random variables (defined on
a common probability space). A dependency graph for {Vi} is any graph Γ with vertex set V (Γ) = I
whose set of edges satisfies the following property: if A and B are two disjoint subsets of I such
that there are no edges with one vertex in A and the other in B, then the families {Vi}i∈A and
{Vi}i∈B are independent.

Remark 6.1. [63, Example 1.5, p.11] Suppose {Yα}α∈A is a family of independent random vari-
ables, and each Vi, i ∈ I is a function of the variables {Yα}α∈Ai for some subset Ai ⊆ A. Then the
graph with vertex set I and edge set {ij : Ai ∩Aj 6= ∅} is a dependency graph for {Ui}i∈I .

In our setting, we fix ε = L−3/2, let Vi be the indicator the random variable defined in (6.48). Note
that Vi is one if and only if β(i) is an ε-good solution. The set of codewords that share at least
one common term with β(i) are the ones that play a role in determining whether β(i) is an ε-good
solution or not. Hence, the graph Γ with vertex set V (Γ) = {1, . . . , enR} and edge set e(Γ) given
by

{ij : i 6= j and the codewords β(i), β(j)

share at least one common term}

is a dependency graph for the family {Vi}enRi=1 .

For a given codeword β(i), there are
(
L
r

)
(M − 1)L−r other codewords that have exactly r terms in

common with β(i), for 0 ≤ r ≤ (L − 1). Therefore each vertex in the dependency graph for the

family {Vi}enRi=1 is connected to

L−1∑
r=1

(
L

r

)
(M − 1)L−r = ML − 1− (M − 1)L

other vertices.

Proposition 6.8 (Suen’s Inequality [63]). Let Vi ∼ Bern(pi), i ∈ I, be a finite family of Bernoulli
random variables having a dependency graph Γ. Write i ∼ j if ij is an edge in Γ. Define

λ =
∑
i∈I

EVi, ∆ =
1

2

∑
i∈I

∑
j∼i

E(ViVj), δ = max
i∈I

∑
k∼i

EVk.

Then

P

(∑
i∈I

Vi = 0

)
≤ exp

(
−min

{
λ

2
,
λ

6δ
,
λ2

8∆

})
. (6.60)

We apply Suen’s inequality with the dependency graph specified above for {Vi}enRi=1 to compute

an upper bound for P (Xg = 0), where Xg =
∑enR

i=1 Vi is the total number of ε-good solutions for
ε = L−3/2.

First Term λ
2 : We have

λ =

enR∑
i=1

EVi = EXg ≥ EX (1− η). (6.61)

104

where the last inequality follows from Lemma 6.4, with η defined in (6.46). Using the expression
from (6.33) for the expected number of solutions EX, we have

λ ≥ (1− η)
κ√
n
en(R− 1

2
log ρ2

D
), (6.62)

where κ > 0 is a universal constant. For b > bmin(ρ2/D), (6.46) implies that η approaches 1 with
growing L.

Second term λ/(6δ): Due to the symmetry of the code construction, we have

δ = max
i∈{1,...,enR}

∑
k∼i

P (Vk = 1) =
∑
k∼i

P (Vk = 1) ∀i ∈ {1, . . . , enR}

=
(
ML − 1− (M − 1)L

)
P (V1 = 1) . (6.63)

Combining this together with the fact that λ = ML P (V1 = 1), we obtain

λ

δ
=

ML

ML − 1− (M − 1)L
=

1

1− L−bL − (1− L−b)L , (6.64)

where the second equality is obtained by substituting M = Lb. Using a Taylor series bound for the
denominator of (6.64) (see [112, Sec. V] for details) yields the following lower bound for sufficiently
large L:

λ

δ
≥ Lb−1

2
. (6.65)

Third Term λ2/(8∆): We have

∆ =
1

2

ML∑
i=1

∑
j∼i

E [ViVj] =
1

2

ML∑
i=1

P (Vi = 1)
∑
j∼i

P (Vj = 1 | Vi = 1)

(a)
=

1

2
EXg

∑
j∼1

P (Vj = 1 | V1 = 1)

=
1

2
EXg E

[∑
j∼1

1{Vj = 1} | V1 = 1
]

(b)

≤ 1

2
EXg E

[∑
α= 1

L
,...,L−1

L

Xα(β(1)) | V1 = 1

]
.

(6.66)

In (6.66), (a) holds because of the symmetry of the code construction. The inequality (b) is obtained
as follows. The number of ε-good solutions that share common terms with β(1) is bounded above
by the total number of solutions sharing common terms with β(1). The latter quantity can be
expressed as the sum of the number of solutions sharing exactly αL common terms with β(1), for
α ∈ { 1

L , . . . ,
L−1
L }.

105

Conditioned on V1 = 1, i.e., the event that β(1) is a ε-good solution, the total number of solutions
that share common terms with β(1) is bounded by εEX. Therefore, from (6.66) we have

∆ ≤ 1

2
EXg E

[∑
α= 1

L
,...,L−1

L

Xα(β(1)) | V1 = 1

]

≤ 1

2
(EXg) (L−3/2 EX) ≤ L−3/2

2
(EX)2,

(6.67)

where we have used ε = L−3/2, and the fact that Xg ≤ X. Combining (6.67) and (6.61), we obtain

λ2

8∆
≥ (1− η)2(EX)2

4L−3/2(EX)2
≥ κL3/2, (6.68)

where κ is a strictly positive constant.

Applying Suen’s inequality: Using the lower bounds obtained in (6.62), (6.65), and (6.68) in
(6.60), we obtain

P

enR∑
i=1

Vi

 ≤ exp

(
−κ min

{
en(R− 1

2
log ρ2

D
− logn

2n
), Lb−1, L3/2

})
, (6.69)

where κ is a positive constant. Recalling from (6.3) that L = Θ(n
logn) and R > 1

2 ln ρ2

D , we see that
for b > 2,

P

enR∑
i=1

Vi

 ≤ exp
(
−κn1+c

)
, (6.70)

Note that the condition b > bmin(ρ2/D) is also required for η in Lemma 6.4 to go to 0 with growing
L.

Using (6.70) in (6.19), we conclude that for any γ2 ∈ (σ2, De2R) the probability of excess distortion
can be bounded as

Pe,n ≤ P (|s|2 ≥ γ2) + max
ρ2∈(D,γ2)

P (E(s̃) | |s̃|2 = ρ2)

≤ P (|s|2 ≥ γ2) + exp(−κn1+c),
(6.71)

provided the parameter b satisfies

b > max
ρ2∈(D,γ2)

max
{

2, bmin
(
ρ2/D

)}
. (6.72)

It can be verified from the definition in (6.8) that bmin(x) is strictly increasing in x ∈ (1, e2R).
Therefore, the maximum on the RHS of (6.72) is bounded by max

{
2, bmin

(
γ2/D

)}
. Choosing

b to be larger than this value will guarantee that (6.71) holds. This completes the proof of the
theorem.

106

Chapter 7

Computationally Efficient Encoding

In this chapter, we discuss an efficient SPARC encoder for lossy compression with squared-error
distortion. The encoding algorithm is based on successive cancellation: in each iteration, one
column from a section of A is chosen to be part of the codeword. The column is chosen based on
a test statistic that measures the correlation of each column in the section with a residual vector.

For any ergodic source with variance σ2, it is shown that the encoding algorithm attains the optimal
Gaussian distortion-rate function D∗(R) = σ2e−2R, for any rate R > 0. Furthermore, for any fixed
distortion level above D∗(R), the probability of excess distortion decays exponentially in the block
length n. We note that for finite alphabet memoryless sources, several coding techniques have
been proposed to approach the rate-distortion bound with computationally feasible encoding and
decoding [66, 54, 67, 62, 53, 116, 69, 4].

We first give a heuristic derivation of the encoding algorithm and then state the main result
(Theorem 7.1), a large deviations bound on the excess distortion probability. We also present
numerical results to illustrate the empirical compression performance of the algorithm.

Notation: As in the previous chapter, for any vector x we write |x| to denote ‖x‖/√n. We also
write 〈x, y〉 for the Euclidean inner product between vectors x, y ∈ Rn.

7.1 Computationally efficient encoding algorithm

Consider a source sequence s ∈ Rn generated by an ergodic source with zero mean and variance σ2.
The SPARC is defined via an n ×ML design matrix A with entries drawn i.i.d. N (0, 1/n). The
codebook consists of all vectors Aβ such that β ∈ BM,L. The non-entry of β in section ` is set to

c` =

√
2(lnM)σ2

(
1− 2R

L

)`−1

, ` ∈ [L]. (7.1)

The encoding algorithm is intialized with r0 = s, and consists of L steps, defined as follows.

107

Step `, ` = 1, . . . , L: Pick

m` = argmax
j: (`−1)M< j ≤`M

〈√
nAj ,

r`−1

‖r`−1‖

〉
. (7.2)

Set

r` = r`−1 − c`Am` , (7.3)

where c` is given by (7.1).

The codeword β̂ has non-zero values in positions m`, 1 ≤ ` ≤ L. The value of the non-zero in
section ` given by c`.

The algorithm chooses the non-zero locations {m`} in a greedy manner (section by section) to
minimize the norm of the residual r`. In the next section, we give a heuristic derivation of the
algorithm, which also explains the choice of coefficients in (7.1).

Computational complexity There are L stages in the algorithm, where each stage involves comput-
ing M inner products followed by finding the maximum among them. The complexity therefore
scales as O(nML); the number of operations per source sample is O(ML). If we choose M = Lb

for some b > 0, then L = Θ
(

n
logn

)
, and the per-sample complexity is O (n/ log n)b+1.

When we have several source sequences to be encoded in succession, the encoder can have a pipelined
architecture with L modules. The first module computes the inner product of the source sequence
with each column in the first section of A and determines the maximum; the second module
computes the inner product of the first-step residual with each column in the second section of A,
and so on. Each module has M parallel units, with each unit consisting of a multiplier and an
accumulator to compute an inner product in a pipelined fashion. After an initial delay of L source
sequences, all the modules work simultaneously. This encoder architecture requires computational
space (memory) of the order nLM and has constant computation time per source symbol.

7.2 Heuristic derivation of the algorithm

We now present a non-rigorous analysis of the encoding algorithm based on the following observa-
tions.

1. For 1 ≤ j ≤ ML, by standard concentration of measure arguments, |Aj |2 is close to 1 for
large n.

2. Similarly, for an ergodic source |s|2 is close to σ2 for large n.

3. For random variables X1, X2 . . . , XM ∼i.i.d. N (0, 1), the maximum max{X1, . . . , XM} con-
centrates on

√
2 lnM for large M [33].

108

The deviations of these quantities from their typical values above are precisely characterized in the
proof of the main result (Section 7.5).

We begin with the following lemma about projections of standard normal vectors.

Lemma 7.1. Let A1, . . . , AN ∈ Rn be N mutually independent random vectors with i.i.d. N (0, 1/n)
entries. Then, for any unit norm random vector r ∈ Rn which is independent of the collection
{Aj}Nj=1, the inner products

Tj :=
〈√

nAj , r
〉
, j = 1, . . . , N

are i.i.d. N (0, 1) random variables that are independent of r.

The lemma is a straightforward consequence of the rotational invariance of the distribution of a
standard normal vector. A proof can be found in [113, Appendix I].

Step 1: Consider the statistic

T
(1)
j ,

〈√
nAj ,

r0

‖r0‖

〉
, 1 ≤ j ≤M. (7.4)

Since r0 = s is independent of each Aj , by Lemma 7.1, the random variables T
(1)
j , 1 ≤ j ≤ M are

i.i.d. N(0, 1). Hence

max
1≤j≤M

T
(1)
j =

〈√
nAm1 ,

r0

‖r0‖

〉
≈
√

2 logM. (7.5)

The normalized norm of the residual r1 = r0 − c1Am1 is

|r1|2 = |r0|2 +
c2

1

n
|Am1 |2 −

2c1‖r0‖
n

〈
Am1 ,

r0

‖r0‖

〉
(a)
≈ |r0|2 +

c2
1

n
− 2c1

n

‖r0‖√
n

√
2 logM

(b)
≈ σ2 +

c2
1

n
− 2c1σ

n

√
2 logM

(c)
= σ2

(
1− 2R

L

)
.

(7.6)

Here (a) and (b) follow from (7.5) and the observations listed at the beginning of this section, while
(c) follows by substituting for c1 from (7.1) and using n = L logM/R.

Step `, ` = 2, . . . , L: We show that if |r`−1|2 ≈ σ2
(
1− 2R

L

)`−1
, then

|r`|2 ≈ σ2

(
1− 2R

L

)`
. (7.7)

We already showed that (7.7) is true for ` = 1.

For each j ∈ {(`− 1)M + 1, . . . , `M}, consider the statistic

T
(`)
j ,

〈√
nAj ,

r`−1

‖r`−1‖

〉
. (7.8)

109

Note that r`−1 is independent of Aj because r`−1 is a function of the source sequence s and the
columns {Aj}, 1 ≤ j ≤ (`− 1)M , which are all independent of Aj for j ∈ {(`− 1)M + 1, . . . , `M}.
Therefore, by Lemma 7.1, the T

(`)
j ’s are i.i.d. N (0, 1) random variables for j ∈ {(` − 1)M +

1, . . . , `M}. Hence, we have

max
(`−1)M+1≤j≤`M

T
(`)
j =

〈√
nAm` ,

r`−1

‖r`−1‖

〉
≈
√

2 logM. (7.9)

From the expression for r` in (7.3), we have

|r`|2 = |r`−1|2 +
c2
`

n
|Am` |2 −

2c`
n

‖r`−1‖√
n

〈√
nAm` ,

r`−1

‖r`−1‖

〉
(a)
≈ |r`−1|2 +

c2
`

n
− 2c` |r`−1|

n

√
2 logM

(b)
≈ σ2

(
1− 2R

L

)`−1

+
c2
`

n
− 2c`σ

n

(
1− 2R

L

)(`−1)/2√
2 logM

(c)
= σ2

(
1− 2R

L

)`
.

(7.10)

For (a) and (b) we have used (7.9) and the induction assumption on |r`−1|. The equality (c) is
obtained by substituting for c` from (7.1) and for n from (1.2). It can be verified that the chosen
value of c` minimizes the third line in (7.10).

Therefore, when the algorithm terminates the final residual satisfies

|rL|2 =
∣∣∣s−Aβ̂∣∣∣2 ≈ σ2

(
1− 2R

L

)L
≤ σ2e−2R (7.11)

where we have used the inequality (1 + x) ≤ ex for x ∈ R.

Thus the encoding algorithm picks a codeword β̂ that yields squared-error distortion approximately
equal to σ2e−2R, the Gaussian distortion-rate function at rate R. The heuristic analysis above is
made rigorous (in the proof of Theorem 7.1) by bounding the deviation of the residual distortion
each stage from its typical value.

7.3 Main result

Theorem 7.1. Consider a length n source sequence s generated by an ergodic source with mean 0
and variance σ2. Let δ0, δ1, δ2 be any positive constants such that

∆ , δ0 + 5R(δ1 + δ2) <
1

2
. (7.12)

Let A be an n ×ML design matrix with i.i.d. N (0, 1/n) entries and M,L satisfying (1.2). With
the SPARC defined by A, the proposed encoding algorithm produces a codeword Aβ̂ that satisfies
the following for sufficiently large M,L.

P

(∣∣∣s−Aβ̂∣∣∣2 > σ2e−2R(1 + eR∆)2

)
< p0 + p1 + p2 (7.13)

110

where

p0 = P

(∣∣∣∣ |s|σ − 1

∣∣∣∣ > δ0

)
, p1 = 2ML exp

(
−nδ2

1/8
)
,

p2 =

(
8 logM

M2δ2

)L
.

(7.14)

Remark 7.1. For a given rate R, Theorem 7.1 guarantees that with high probability, the proposed
encoder achieves distortion close to D∗(R) = σ2e−2R for any ergodic sources with variance σ2.
This complements the result in Theorem 6.2 for minimum-distance encoding.

Corollary 7.2. Let {Sn}n≥1 be a sequence of rate R SPARCs, indexed by block length n, with
M = Lb, for b > 0. Then, for an i.i.d. N (0, σ2) source, the sequence {Sn}n≥1 attains the optimal
distortion-rate functionD∗(R) = σ2e−2R with the proposed encoder. Furthermore, for any fixed
distortion-level above D∗(R), the probability of excess distortion decays exponentially with the block
length n for sufficiently large n.

Proof. For a fixed distortion-level σ2e−2R+γ with γ > 0, we can find ∆ > 0 such that σ2e−2R+γ =
σ2e−2R(1 + eR∆)2. Equivalently, ∆ > 0 satisfies

γ = σ2∆2 + 2∆eRσ2. (7.15)

Without loss of generality, we may assume that γ is small enough that ∆ satisfying (7.15) lies in
the interval (0, 1

2). For positive constants δ0, δ1, δ2 chosen to satisfy (7.12), Theorem 7.1 implies
that

P

(∣∣∣s−Aβ̂∣∣∣2 > σ2e−2R + γ

)
< p0 + p1 + p2. (7.16)

We now obtain upper bounds for p0, p1, p2.

For an i.i.d. N (0, σ2) source, ‖S‖2/σ2 is a χ2
n random variable. A standard Chernoff bound yields

p0 < 2 exp(−3nδ2
0/4). (7.17)

Since ML = Lb+1 grows polynomially in n, the term p1 in (7.14) can be expressed as

p1 = exp
(
−n
(
δ2
1
8 −O(logn

n)
))

. (7.18)

Finally using M = Lb = Θ((n/ log n)b), we have

p2 = exp
(
−n
(

2δ2R−O
(

log logn
logn

)))
. (7.19)

Using (7.17), (7.18) and (7.19) in (7.16), we conclude that for any fixed distortion-level D∗(R) + γ,
the probability of excess distortion decays exponentially in n when n is sufficiently large.

111

7.3.1 Gap from D∗(R)

For a fixed R, to achieve distortions close to the optimal distortion-rate function D∗(R) = σ2e−2R,
we need p0, p1, p2 to all go to 0. Ergodicity of the source ensures that that p0 → 0 as n → ∞ (at
a rate depending only on the source distribution). For p2 to tend to 0 with growing L, from (7.14)
we require that M2δ2 > 8 logM . Or,

δ2 >
log logM

2 logM
+

log 8

2 logM
. (7.20)

To approach D∗(R), we need n,L,M to all go to ∞ while satisfying (1.2): n,L need to be large
for the probability of error in (7.14) to be small, while M needs to be large in order to allow δ2 to
be small according to (7.20).

When M = Lb, both L,M grow polynomially in n, and (7.20) implies that the gap from the optimal

distortion D∗(R) is Θ
(

log logn
logn

)
. On the other hand, if we choose M = κ log n for κ > 0, we have

L = nR
log(κ logn) . In this case, the gap δ2 from (7.20) is approximately log log logn

log logn , i.e., the convergence

to D∗(R) with n is much slower. However, the per-sample computational complexity is Θ
(
n logn

log logn

)
,

lower than the previous case, where the per-sample complexity was Θ
(
(n/log n)b+1

)
.

At the other extreme, L = 1,M = enR reduces to the Shannon-style random codebook with.
In this case, the SPARC consists of only one section and the proposed algorithm is essentially
minimum-distance encoding. The computational complexity is O(enR), while the gap δ2 from
(7.20) is approximately logn

n . The gap ∆ from D∗(R) is now dominated by δ0 and δ1 which are
Θ(1/

√
n), consistent with the results in [98, 61, 71].1

An interesting direction for future work is to design encoding algorithms with faster convergence
to D∗(R) while still having complexity that is polynomial in n.

7.3.2 Successive refinement interpretation

The encoding algorithm may be interpreted in terms of successive refinement source coding [38, 94].
We can think of each section of the design matrix A as a lossy codebook of rate R/L. For each
section `, i = 1, . . . , L, the residual r`−1 acts as the ‘source’ sequence, and the algorithm attempts
to find the column within the section that minimizes the distortion. The distortion after section `
is the variance of the residual r`; this residual acts as the source sequence for section `− 1. Recall
that the minimum mean-squared distortion achievable with a Gaussian codebook at rate R/L is
[77]

D∗` = |r`−1|2 exp(−2R/L) ≈ |r`−1|2
(

1− 2R

L

)
, for R/L� 1. (7.21)

1 For L = 1, the factor ML that multiplies the exponential term in p2 can be eliminated via a sharper analysis.

112

This minimum distortion can be attained with a codebook with elements chosen∼i.i.d. N (0, |r`−1|2−
D∗`). From (7.1), recall that the codeword variance in section i of the codebook is

c2
` =

2Rσ2

L

(
1− 2R

L

)`−1

≈ |r`−1|2 −D∗` , (7.22)

where the approximate equality follows from (7.21) and (7.7). Therefore, the typical value of the
distortion in Section i is close to D∗` since the algorithm is equivalent to minimum-distance encoding
within each section. However, since the rate R/L is infinitesimal, the deviations from D∗` in each
section can be significant. Despite this, when the number of sections L is large, Theorem 7.1
guarantees that the final distortion

∣∣r2
L

∣∣ is close to the typical value σ2e−2R.

A similar successive refinement approach was used in [85] to construct a lossy compression scheme
that shares some similarities with the successive cancellation encoder.

7.4 Simulation results

In this section, we examine the empirical rate-distortion performance of the encoder via numerical
simulations. The top graph in Fig. 7.1 shows the performance on a unit variance i.i.d Gaussian
source. The dictionary dimension is n×ML with M = Lb. The curves show the average distortion
at various rates for b = 2 and b = 3. The average was obtained from 70 random trials at each rate.
Following convention, rates are plotted in bits rather than nats. The value of L was increased with
rate in order to keep the total computational complexity (∝ nLb+1) similar across different rates.
Recall from (1.2) that the block length is determined by

n =
bL logL

R
.

For example, for the rates 1.082, 2.092, 3.102 and 4.112 bits/sample, L was chosen to be 46, 66, 81
and 97, respectively. The corresponding values for the block length are n = 705, 573, 497, 468 for
b = 3, and n = 470, 382, 331, 312 for b = 2. The graph shows the reduction in distortion obtained
by increasing b from 2 to 3. This reduction comes at the expense of an increase in computational
complexity by a factor of L. Simulations were also performed for a unit variance Laplacian source.
The resulting distortion-rate curve was virtually identical to Fig. 7.1, which is consistent with
Theorem 7.1.

For the simulations, a slightly modified version of the algorithm in Section 7.1 was used: the
column selected in each iteration was based on minimum distance from the residual, rather than
on maximum correlation as in (7.2). That is,

m` = argmin
j: (`−1)M< j ≤`M

‖r`−1 − c`Aj‖2. (7.23)

Though the two rules are similar for large n (since ‖Aj‖ ≈ 1 for all j), we found the distance-based
rule to give slightly better empirical performance.

Gish and Pierce [49] showed that uniform quantizers with entropy coding are nearly optimal at
high rates and that their distortion for a unit variance source is well-approximated by πe

6 e
−2R. (R

113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (bits/sample)

D
is

to
rt

io
n

b = 2

b = 3

D*(R)

2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Rate (bits/sample)

D
is

to
rt

io
n

D*(R)

b = 3

SQ with entropy coding

b = 2

Figure 7.1: Top: Average distortion of the proposed encoder for i.i.d N (0, 1) source. The design matrix
has dimension n ×ML with M = Lb. The distortion-rate performance is shown for b = 2 and b = 3 along
with D∗(R) = e−2R. Bottom: Focusing on the higher rates. The dashed line is the high-rate approximation
for the distortion-rate function of an optimal entropy-coded scalar quantizer.

114

is the entropy of the quantizer in nats.) The bottom graph of Fig. 7.1 zooms in on the higher rates
and shows the above high-rate approximation for the distortion of an optimal entropy-coded scalar
quantizer (EC-SQ). Recall from (7.20) that the distortion gap from D∗(R) is of the order of 2

δ2 ≈
log logM

2 logM
=

log b+ log logL

2b logL
,

which is comparable to the optimal D∗(R) = e−2R in the high-rate region. (In fact, δ2 is larger
than D∗(R) at rates greater than 3 bits for the values of L and b we have used.) This explains the
large ratio of the empirical distortion to D∗(R) at higher rates.

In summary, the proposed encoder has good empirical performance, especially at low to moderate
rates even with modest values of L and b. At high rates, there are a few other compression schemes
including EC-SQs and the shape-gain quantizer of [57] whose empirical rate-distortion performance
is close to optimal (see [57, Table III]).

7.5 Proof of Theorem 7.1

The proof involves analyzing the deviation from the typical values of the residual distortion at
each step of the encoding algorithm. In particular, we have to deal with atypicality concerning the
source sequence, the design matrix, and the maximum computed in each step of the algorithm.

We introduce some notation to capture the deviations from the typical values. Define ∆0 via

|s|2 = |r0|2 = σ2(1 + ∆0)2. (7.24)

The deviation of the norm of the residual at stage i = 1, . . . , L from its typical value is captured
by ∆i, defined via

|ri|2 = σ2

(
1− 2R

L

)i
(1 + ∆i)

2. (7.25)

The deviation in the norm of Ami (the column chosen in step i) is captured by γi, defiend as

|Ami |2 = 1 + γi, i = 1, . . . , L. (7.26)

Recall that the statistics T
(i)
j defined in (7.8) are i.i.d N (0, 1) for j ∈ {(i− 1)M + 1, . . . , iM}. We

write

max
(i−1)M+1≤ j≤iM

T
(i)
j =

〈
Ami ,

ri−1

‖ri−1‖

〉
=
√

2 logM(1 + εi), i = 1, . . . , L.

(7.27)

The εi measure the deviations of the maximum from
√

2 logM in each step.

2The constants in Theorem 7.1 are not optimized, so the theorem does not give a very precise estimate of the
excess distortion in the high-rate, low-distortion regime.

115

With this notation, using the expression for ri from (7.3) we have

|ri|2 = σ2

(
1− 2R

L

)i
(1 + ∆i)

2

= |ri−1|2 + c2
i |Ami |2 −

2ci‖ri−1‖
n

〈
Ami ,

ri−1

‖ri−1‖

〉
= σ2

(
1− 2R

L

)i−1

(1 + ∆i−1)2 + c2
i (1 + γi)

− 2ciσ

(
1− 2R

L

) i−1
2

(1 + ∆i−1)

√
2 logM

n
(1 + εi)

= σ2

(
1− 2R

L

)i(
(1 + ∆i−1)2 +

2R
L

1− 2R
L

(∆2
i−1 + γi − 2εi(1 + ∆i−1))

)
.

(7.28)

From (7.28), we obtain

(1 + ∆i)
2 = (1 + ∆i−1)2 +

2R
L

1− 2R
L

(∆2
i−1 + γi − 2εi(1 + ∆i−1)), i ∈ [L]. (7.29)

The goal is to bound the final distortion given by

|rL|2 = σ2

(
1− 2R

L

)L
(1 + ∆L)2. (7.30)

We would like to find an upper bound for (1 + ∆L)2 that holds under an event whose probability
is close to 1. Accordingly, define A as the event where all of the following hold:

1. |∆0| < δ0,

2.
∑L

i=1
|γi|
L < δ1,

3.
∑L

i=1
|εi|
L < δ2,

for δ0, δ1, δ2 that satisfy (7.12). We upper bound the probability of the event Ac using the following
large deviations bounds.

Lemma 7.3. For δ ∈ (0, 1], P
(

1
L

∑L
i=1 |γi| > δ

)
< 2ML exp

(
−nδ2/8

)
.

Lemma 7.4. For δ > 0, P
(

1
L

∑L
i=1 |εi| > δ

)
<
(

M2δ

8 logM

)−L
.

The proofs of these lemmas can be found in Appendix II and III of [113], respectively.

Using these lemmas, we have
P (Ac) < p0 + p1 + p2 (7.31)

where p0, p1, p2 are given by (7.14). The remainder of the proof consists of obtaining a bound for
(1 + ∆L)2 under the condition that A holds.

116

Lemma 7.5. For all sufficiently large L, when A holds we have

∆i ≥ ∆0 −
4R

1− 2R/L

 i∑
j=1

|γj |+ |εj |
L

 , i = 1, . . . , L. (7.32)

In particular, ∆i > −1
2 , i = 1, . . . , L

Proof. We first show that ∆i > −1
2 follows from (7.32). Indeed, (7.32) implies that

∆i ≥ ∆0 −
4R

1− 2R/L

 i∑
j=1

|γj |+ |εj |
L

 (a)
> −δ0 − 5R (δ1 + δ2)

(b)
> −1

2
(7.33)

where (a) is obtained from the conditions of A while (b) holds due to (7.12).

The statement (7.32) trivially holds for i = 0. Towards induction, assume (7.32) holds for i− 1 for
some i ∈ {1, . . . , L}. From (7.29), we obtain

(1 + ∆i)
2 = (1 + ∆i−1)2 +

2R/L

1− 2R/L
(∆2

i−1 + γi − 2εi(1 + ∆i−1))

≥ (1 + ∆i−1)2 − 2R/L

1− 2R/L
(|γi|+ 2 |εi| (1 + ∆i−1)). (7.34)

For L large enough, the right side above is positive and we therefore have

(1 + ∆i) ≥ (1 + ∆i−1)

[
1− 2R/L

1− 2R/L

[|γi|
(1 + ∆i−1)2

+
2 |εi|

1 + ∆i−1

)] 1
2

≥ 1 + ∆i−1 −
2R/L

1− 2R/L

(|γi|
(1 + ∆i−1)

+ 2 |εi|
)
, (7.35)

where the second inequality is obtained using
√

1− x ≥ 1− x for x ∈ (0, 1). We therefore have

∆i ≥ ∆i−1 −
2R/L

1− 2R/L

(|γi|
(1 + ∆i−1)

+ 2 |εi|
)

(a)

≥ ∆i−1 −
2R/L

1− 2R/L
(2|γi|+ 2 |εi|)

(b)

≥ ∆0 −
4R

1− 2R/L

 i−1∑
j=1

|γj |+ |εj |
L

− 4R/L

1− 2R/L
(|γi|+ |εi|).

(7.36)

In the chain above, (a) holds because ∆i−1 > 1
2 , a consequence of the induction hypothesis as

shown in (7.33). (b) is obtained by using the induction hypothesis for ∆i−1.

Lemma 7.6. When A is true and L is large enough that Lemma 7.5 holds,

|∆i| ≤ |∆0|wi +
4R/L

1− 2R/L

i∑
j=1

wi−j(|γj |+ |εj |) (7.37)

for i = 1, . . . , L, where w =
(

1 + R/L
1−2R/L

)
.

117

Proof. We prove the lemma by induction. For i = 1, we have from (7.29)

(1 + ∆1)2 = (1 + ∆0)2 +
2R
L

1− 2R
L

(∆2
0 + γ1 − 2ε1(1 + ∆0))

= (1 + |∆0|)2

[
1 +

2R
L

1− 2R
L

(
∆2

0

(1 + |∆0|)2
+

|γ1|
(1 + |∆0|)2

+
2 |ε1|

(1 + |∆0|)

)]
.

(7.38)

Therefore,

1 + ∆1 ≤ (1 + |∆0|)
[

1 +
2R
L

1− 2R
L

(
∆2

0

(1 + |∆0|)2
+

|γ1|
(1 + |∆0|)2

+
2 |ε1|

(1 + |∆0|)

)] 1
2

≤ (1 + |∆0|)
[

1 +
R
L

1− 2R
L

(
∆2

0

(1 + |∆0|)2
+

|γ1|
(1 + |∆0|)2

+
2 |ε1|

(1 + |∆0|)

)] (7.39)

where we have used the inequality
√

1 + x ≤ 1 + x
2 for x > 0. We therefore have

∆1 ≤ |∆0|+
R/L

1− 2R/L

(
∆2

0

(1 + |∆0|)
+

|γ1|
(1 + |∆0|)

+ 2 |ε1|
)

(a)

≤ |∆0|+
R/L

1− 2R/L
(|∆0|+ |γ1|+ 2 |ε1|)

≤ |∆0|
(

1 +
R/L

1− 2R/L

)
+

2R/L

1− 2R/L
(|γ1|+ |ε1|), (7.40)

where (a) is obtained using |∆0| /(1 + |∆0|) < 1. From Lemma 7.5, we have

∆1 ≥ ∆0 −
4R/L

1− 2R/L
(|γ1|+ |ε1|)

≥ − |∆0| −
4R/L

1− 2R/L
(|γ1|+ |ε1|) .

(7.41)

Combining (7.40) and (7.41), we obtain

|∆1| ≤ |∆0|
(

1 +
R/L

1− 2R/L

)
+

4R/L

1− 2R/L
(|γ1|+ |ε1|). (7.42)

This completes the proof for i = 1.

Towards induction, assume that the lemma holds for i− 1. From (7.29), we obtain

(1 + ∆i)
2 ≤ 1 + ∆2

i−1 + 2 |∆i−1|

+
2R/L

1− 2R/L
(∆2

i−1 + |γi|+ 2 |εi| (1 + |∆i−1|)).
(7.43)

Using arguments identical to those in (7.38)–(7.40), we get

∆i ≤ |∆i−1|
(

1 +
R/L

1− 2R/L

)
+

2R/L

1− 2R/L
(|γi|+ |εi|). (7.44)

118

From the proof of Lemma 7.5 (see (7.36)), we have

∆i ≥ ∆i−1 −
4R/L

1− 2R/L
(|γi|+ |εi|)

≥ − |∆i−1| −
4R/L

1− 2R/L
(|γi|+ |εi|) .

(7.45)

Combining (7.44) and (7.45), we obtain

|∆i| ≤ |∆i−1|
(

1 +
R/L

1− 2R/L

)
+

4R/L

1− 2R/L
(|γi|+ |εi|). (7.46)

Using the induction hypothesis to bound |∆i−1| in (7.46), we obtain

|∆i| ≤

|∆0|wi−1 +
4R/L

1− 2R/L

i−1∑
j=1

wi−1−j(|γj |+ |εj |)


·
(

1 +
R/L

1− 2R/L

)
+

4R/L

1− 2R/L
(|γi|+ |εi|)

= |∆0|wi +
4R/L

1− 2R/L

i∑
j=1

wi−j(|γj |+ |εj |),

as required.

Lemma 7.6 implies that when A holds and L is sufficiently large,

|∆L| ≤ |∆0|wL +
4R/L

1− 2R/L

L∑
j=1

wL−j(|γj |+ |εj |)

≤ wL
|∆0|+

4R

(1− 2R/L)w

 L∑
j=1

|γj |
L

+
L∑
j=1

|εj |
L


(a)

≤ wL
[
δ0 +

4R

(1−R/L)
(δ1 + δ2)

]
(b)

≤ exp

(
R

1− 2R/L

)[
δ0 +

4R

(1−R/L)
(δ1 + δ2)

]
≤ eR (δ0 + 5R(δ1 + δ2)) for large enough L.

(7.47)

In the above chain, (a) is true because A holds, and (b) is obtained by applying the inequality

1 + x ≤ ex with x = R/L
1−2R/L .

Hence when A holds and L is sufficiently large, the distortion can be bounded as

|RL|2 = σ2e−2R(1 + ∆L)2 ≤ σ2e−2R(1 + |∆L|)2

(c)

≤ σ2e−2R(1 + eR∆)2
(7.48)

where (c) follows from (7.47) by defining ∆ = δ0 + 5R(δ1 + δ2). Combining (7.48) with (7.31)
completes the proof of the theorem.

119

120

Part III

Multiuser Communication and Compression
with SPARCs

121

Chapter 8

Broadcast and Multiple-access Channels

In the final part of the monograph, we discuss the use of SPARCs for multiuser channel and source
coding models. It is well known [37] that the optimal rate regions for several multiuser channel
and source coding problems can be achieved using the following ingredients: i) rate-optimal point-
to-point source and channel codes, and ii) combining or splitting these point-to-point codes via
superposition or random binning. In this chapter, we show how superposition coding can be
implemented using SPARCs for Gaussian broadcast and multiple-access channels. In the next
chapter, we describe how random binning can be implemented using SPARCs.

All rates within the capacity region of the Gaussian broadcast and multiple access channels can be
achieved by combining codes designed for point-to-point Gaussian channels [32, 37]. Therefore the
SPARC construction for point-to-point channels, where codewords are defined as the superposition
of columns of a matrix, can be easily extended to these multiuser channels.

8.1 The Gaussian broadcast channel

The K-user AWGN broadcast channel has a single transmitter and K output sequences, one for
each user. The input sequence x = (x1, . . . , xn) transmitted over the broadcast channel has to
satisfy an average power constraint: 1

n

∑
j x

2
j ≤ P . The channel output sequence of user i ∈ [K] is

denoted by y(i) = (y
(i)
1 , . . . , y

(i)
n), where the jth output symbol is produced as y

(i)
j = xj + w

(i)
j , for

j ∈ [n]. The noise variables (w
(i)
j)j∈[n] are i.i.d. ∼ N (0, σ2

i), where σ2
i is the noise variance of the

ith receiver.

We will focus on the two-user broadcast channel for simplicity, although the coding schemes can
be extended to K > 2 users in a straightforward way. Throughout, we will assume σ2

1 < σ2
2, i.e.,

the noise at the first receiver has a lower variance than the noise at the second.

If we denote the rates of the two users by R1 and R2, then the capacity region [37, Chapter 5] is

123

A = A2 A1

LM columns

L2M columns L1M columns

Figure 8.1: Division of the SPARC design matrix A for two users in the Gaussian broadcast channel.
The second user is allocated the first L2 sections, and the first user is allocated the remaining L1

section.

the union of all rate pairs (R1, R2) over α ∈ [0, 1] which satisfy

R1 ≤
1

2
log

(
1 +

αP

σ2
1

)
, (8.1)

R2 ≤
1

2
log

(
1 +

(1− α)P

αP + σ2
2

)
. (8.2)

It is well known that any rate pair within the capacity region can be achieved using superposition
coding [31]. In superposition coding, the transmitted codeword x is generated as the sum of two
independent codewords x(1), x(2), with powers αP, (1 − α)P , drawn from codebooks of size 2nR1

and 2nR2 , respectively.

Receiver 2 has to decode x(2) from its output sequence y(2) = x(2) + x(1) + w(2). Treating x(1)

as interference (with average power αP), receiver 2 has an effective point-to-point channel with

signal to noise ratio (1−α)P
αP+σ2

2
. If receiver 2 can reliably decode x(2), receiver 1 will be also able to

first decode x(2) (with high probability) from y(1) = x(2) + x(1) + w(1). This is because σ2
1 ≤ σ2

2.
After subtracting the decoded x(2) from y(1), receiver 1 has an effective point-to-point channel with
snr = αP

σ2 to decoder x(1).

We now implement this superposition coding scheme with SPARCs.

8.2 SPARCs for the Gaussian broadcast channel

Fix rates R1, R2 that lie within the capacity region (8.1)–(8.2). The two users’ codebooks are defined
via SPARC design matrices A1 and A2 with parameters (n,M,L1) and (n,M,L2), respectively. The
parameters are chosen such that

nR1 = L1 logM, nR2 = L2 logM. (8.3)

The entries of A1, A2 are chosen ∼i.i.d N (0, 1/n).

124

By concatenating the two design matrices, we obtain a SPARC defined by A = [A2 A1] with
L = L1 + L2 sections. This combined SPARC, shown in Figure 8.1, has rate R1 + R2, and from
(8.3) we see that its parameters satisfy

n(R1 +R2) = L logM.

Power allocation The non-zero coefficients in the sections of users 1 and 2 are set to {√nP1`}`∈[L1]

and {√nP2`}`∈[L2], respectively. For optimal (ML) decoding, we use a flat power allocation, i.e.,

P1` =
√

(1−α)P
L1

and P2` =
√

αP
L2

, respectively. For AMP decoding, the two power allocations

{P1,`}`∈[L1] and {P2,`}`∈[L2] are chosen in the same way as for point-to-point SPARCs. For example,
one could use the power allocation determined by the iterative algorithm in Chapter 4 using the
parameters (Li, Ri, Pi) for user i ∈ {1, 2}.

Encoding The message of each user i ∈ {1, 2} mapped to a message vector β(i) ∈ BM,Li . The
concatenated message vector is denoted by β ∈ BM,L. The transmitted codeword is

x = Aβ = [A1 A2]

[
β(1)

β(2)

]
= A1β

(1) +A2β
(2).

Optimal decoding Receiver 2 (with the higher noise variance) decodes

β̂
(2)
opt = arg min

β̂(2)∈BM,L2

‖y(2) −A2β̂
(2)‖2. (8.4)

Receiver 1 first decodes the concatenated message vector β as

β̂opt = arg min
β̂∈BM,L

‖y(1) −Aβ̂‖2, (8.5)

and then reconstructs β
(1)
opt by taking the last L1 sections.

AMP decoding Receiver 2 decodes β̂(2) by running a standard SPARC AMP decoding routine (as
described in Section 3.4), using the design matrix A2, i.e., the first L2 columns in A.

Receiver 1 decodes β̂ via AMP decoding on the concatenated design matrix A, with the combined
power allocation {P`}`∈[L] given by

P` =

{
P2,` ` ≤ L2

P1,`−L2 L2 < ` ≤ L = L1 + L2.

The last L1 sections of β̂ represent β̂(1).

125

8.3 Bounds on error performance

8.3.1 Optimal decoding

As seen from (8.4) and (8.5), each receiver uses a point-to-point SPARC decoder, using design
matrix A2 for receiver 2 and A for receiver 1. Therefore, Theorem 2.1 can be directly applied to
obtain bounds on the probability of excess section error rate at each receiver with optimal decoding.

Theorem 8.1. Let M = La, with a such that a ≥ max{a∗L(snr), a∗L2
(snr)}, where a∗L(snr) is defined

in (2.2). Let (R1, R2) be a rate pair within the capacity region given by (8.1)–(8.2). Let

∆ =
1

2
log

(
1 +

P

σ2
1

)
− (R1 +R2), ∆2 =

1

2
log

(
1 +

(1− α)P

αP + σ2
2

)
−R2 (8.6)

be strictly positive distances (of (R1 + R2) and R2, respectively) from a point on the boundary
parametrized by some α ∈ [0, 1]. Then with optimal decoding, for any ε1, ε2 > 0 the section error
rates E1

sec and E2
sec at the two receivers satisfy

P
(
E1
sec ≥ ε1

)
= e−nE1(ε1,∆), P

(
E2
sec ≥ ε2

)
= e−nE2(ε2,∆2) (8.7)

where

E1(ε1,∆) ≥ h(ε1,∆)− log 2L

n
, E2(ε2,∆2) ≥ h(ε2,∆2)− log 2L2

n
,

where h(·, ·) is defined in (2.20).

Proof. The result follows by applying Theorem 2.1 to decoder 2 which performs point-to-point
decoding on a rate R2 SPARC defined by A2, and to decoder 1 which decodes a rate R1 + R2

SPARC of defined by A = [A1 A2].

As in Proposition 2.2, one can bound the probabilities of message error, i.e., P (β̂(1) 6= β(1)) and
P (β̂(2) 6= β(2)), by using an outer Reed-Solomon code. For any ε > 0 and rate pair (R1, R2) inside
the capacity region, by using an outer RS code of rate (1− 2ε) for each of the component SPARCs,
one obtains a code with rates (R1(1− 2ε), R2(1− 2ε)) with message error probabilities of the two
users bounded by e−nE1(ε,∆) and e−nE2(ε,∆2), respectively.

8.3.2 AMP decoding

For AMP decoding, we can apply Theorem 3.3 to obtain a bound on the probability of excess
section error rate with an exponentially decaying allocation for each user. That is, with P1 = αP
and P2 = (1− α)P , the power allocation for design matrix A1 is

P1` = κ1

(
1 +

αP

σ2
1

)−`/L1

, ` ∈ [L1]. (8.8)

126

The power allocation for A2 is

P2,` = κ2

(
1 +

(1− α)P

αP + σ2
2

)−`/L2

, ` ∈ [L2]. (8.9)

Here κ1, κ2 are normalizing constants chosen to satisfy the two power constraints.

Theorem 8.2. Fix any rate pair (R1, R2) within the capacity region (8.1)–(8.2). Consider a
broadcast SPARC defined by design matrix A = [A1A2] with parameters n,M,L1, L2, that satisfy
(8.3), and a power allocation given by (8.8) and (8.9).

Fix ε > 0. Then for sufficiently large L1, L2,M , the section error rate of the AMP decoder satisfies

P
(
E1
sec > ε

)
≤ KT exp

{
−κTL

(logM)2T−1

(
εσ2

1C
2
− PfR(M)

)2
}
,

P
(
E2
sec > ε

)
≤ KT exp

{
−κTL2

(logM)2T−1

(
εσ2

2C2

2
− PfR(M)

)2
}
,

(8.10)

where C = 1
2 log(1 + P

σ2
1
), C2 = 1

2 log(1 + (1−α)P
αP+σ2

2
), T is the maximum number of iterations of the two

AMP decoders, and κT ,KT are defined in Theorem 3.3. Furthermore, T is inversely proportional
to the minimum of ∆,∆2, which are defined in (8.6).

Proof. It can be verified (using Lemma 3.3) that the state evolution recursion (3.25) predicts reliable
decoding in the large system limit for any rate pair within the capacity region and the specified
power allocation. The result then follows using arguments very similar to those used to prove
Theorem 3.3.

8.4 Simulation results

We now discuss the empirical performance of SPARCs for the Gaussian broadcast channel with
AMP decoding, considering a setup with P = 63, σ2

1 = 1, and σ2
2 = 2. Each operating point is

set as follows: fix α ∈ [0, 1], which specifies the balance of power between the two receivers. The
point on the boundary of the capacity region corresponding to this α is C1 = 1

2 log(1 + αP
σ2

1
) and

C2 = 1
2 log(1 + 1−α

αP+σ2
2
). Fix γ ∈ [0, 1] and set R1 = γC1 and R2 = γC2. The parameter γ determines

the back-off from the boundary point (C1, C2) of the capacity region.

For the SPARC design matrix, we first fix M = 512 and n = 4095. The parameters L1, L2 are
then determined by the rate pair as L1 = nR1/ logM , and L2 = nR2/ logM . With P1 = αP and
P2 = (1− α)P , the value of the non-zero coefficient in each section is set using the iterative power
allocation algorithm as discussed on p. 125.

The encoding and decoding operations are then performed as described in Section 8.2. Figure 8.2
shows the bit-error rate performance in three charts. The two charts on the top show the bit error
rate performance achieved when only considering the first and second receiver, while the third chart

127

Figure 8.2: Bit error rates for the broadcast channel with AMP decoding, with contour indicating
the boundary of the regions where the error rate is below 10−3. Each displayed point is the average
of approximately 3000 trials. P = 63, σ2

1 = 1.0, σ2
2 = 2.0, M = 512, n = 4095.

128

shows the worst case of those two. Additionally, a contour is plotted showing the boundaries of
regions where the bit error rate is found to be below 10−3.

When considering each receiver independently, we observe that the bit error rates are reasonably
low when that receiver’s rate is above 0.5, which is in accordance with the results from point-
to-point channels. However, because each receiver suffers badly once its rate goes below 0.5, the
worst-case error is only better than 10−3 in a small number of cases, relatively far from the capacity
boundary and only near equal power balance where α = 0.5.

Degradation of decoding performance at low rates is already observed in the simpler point-to-point
case, but in the broadcast setup there is an additional factor contributing to the performance.
For the experimental setup as described, M is fixed to the same value for both users. As we
saw in Chapter 4, for a particular channel set-up, there is an optimal M , above and below which
performance can rapidly decrease. Therefore, when the rates for the two receivers in the BC setup
differ substantially, so too will the optimal M . The gap between each receiver’s optimum M and
the chosen value will lead to performance degradation, as observed. It is conceptually possible to
run the AMP decoder with differing values for M in different sections, which would allow each
receiver to operate on an optimal M , but this has not been explored.

8.5 The Gaussian multiple-access channel

The K-user Gaussian multiple-access channel (MAC) has K transmitters and a single receiver.

The codeword transmitted by user i ∈ [K], denoted by x(i) = (x
(i)
1 , . . . , x

(i)
n), has to satisfy an

average power constraint Pi. The channel output sequence is y =
∑K

i=1 x
(i) + w, where w ∈ Rn is

∼i.i.d. N (0, σ2).

We will focus on the two-user MAC for simplicity, although the coding schemes can be extended
to K > 2 users in a straightforward manner. Denoting the rates of the two users by R1 and R2,
the capacity region is the set of all rate pairs (R1, R2) which satisfy [37, Chapter 4]

R1 ≤
1

2
log

(
1 +

P1

σ2

)
, (8.11)

R2 ≤
1

2
log

(
1 +

P2

σ2

)
, (8.12)

R1 +R2 ≤
1

2
log

(
1 +

P1 + P2

σ2

)
. (8.13)

Any rate pair (R1, R2) within the capacity region can be achieved using Shannon-style random
coding, with independent codebooks for each of the two users. Here the entries of the two codebooks
are generated ∼i.i.d. N (0, P1) and ∼i.i.d. N (0, P2), respectively. Each user transmits a codeword
from their own codebook, and the receiver attempts to recover the two codewords from y = x(1) +
x(2) + w via joint maximum-likelihood decoding.

We now show how an efficient SPARC coding scheme can be used to communicate reliably at any
pair of rates within the capacity region.

129

8.6 SPARCs for the Gaussian multiple-access channel

Consider a rate pair (R1, R2) within the MAC capacity region (8.11)–(8.13). The SPARC con-
struction is similar to that of the broadcast channel. The two user’s codebooks are defined via
SPARC design matrices A1 and A2 with parameters (n,M,L1) and (n,M,L2), respectively. The
parameters are chosen such that

nR1 = L1 logM, nR2 = L2 logM. (8.14)

Power allocation The non-zero coefficient in section ` ∈ [L1] of A1 is
√
nP1`, while that in section

` ∈ [L2] of A2 is
√
nP2`. With optimal (ML) decoding, each transmitter can use a flat power

allocation across sections, i.e., P1` = P1/L and P2` = P2/L for ` ∈ [L].

For AMP decoding, we design a power allocation for the combined SPARC defined by the design
matrix A = [A1A2], and then partition the allocation between the two transmitters. Designing a
combined allocation facilitates effective joint decoding of both the messages by the receiver. The
details of designing such an allocation are given in the next section.

Encoding Each transmitter i ∈ {1, 2} first maps its message to a message vector β(i) ∈ BM,Li , and
then generates its codeword x(i) = Aiβ

(i). The channel output sequence at the receiver is

y = A1x
(1) + A2x

(2) + w = [A1 A2]

[
β(1)

β(2)

]
+ w. (8.15)

Optimal decoding The receiver jointly decodes the two message vectors as

[β̂
(1)
opt, β̂

(2)
opt] = arg min

β̂(1)∈BM,L1
, β̂(2)∈BM,L2

‖y(2) −A1β̂
(1) −A2β̂

(2)‖2. (8.16)

Writing L = L1 + L2, A = [A1A2], and β =

[
β(1)

β(2)

]
, an equivalent representation of the optimal

decoder is

β̂opt = arg min
β̂∈BM,L

‖y −Aβ̂‖2. (8.17)

The first L1 sections of β̂opt form β̂
(1)
opt, while the remaining sections form β̂

(2)
opt.

AMP decoding The receiver runs a standard SPARC AMP decoding routine (as described in
Section 3.4) on the concatenated design matrix A = [A1A2]. The first L1 sections of the decoded
message vector constitute β̂(1), and the next L2 constitute β̂(2).

130

8.7 Power allocation for AMP decoding

As there is a single combined decoder, we first construct an overall power allocation with total
power P = P1 +P2 for the concatenated SPARC A = [A1A2], which has L = L1 +L2 sections and
rate R = R1 +R2.

This overall power allocation {P`}`∈[L] is constructed using the iterative technique described in
Chapter 4 for point-to-point channels. Now, this power allocation must now partitioned between
the two transmitters. We will use the fact that {P`}`∈[L] in non-increasing in `.

Transmitter i ∈ {1, 2} must be allocated precisely Li sections, whose total power must be no
more than Pi. Additionally, we would like for any section errors to be fairly distributed between
transmitters, so that each transmitter experiences approximately the same error rate. We know
from Chapter 4 that the majority of errors occur in sections towards the end of the power allocation,
where the power per section is lower and many sections share the same power (the flat region).
Therefore we would like each user to have the same proportion of their allocation be flat. To
summarize, the requirements for the power allocation are:

1. Of the L = L1 + L2 sections, we must allocate any L1 sections to user 1, and the remaining
L2 to user 2.

2. The sections allocated to user 1 must sum to no more than P1, and those for user 2 to no
more than P2.

3. Once the conditions above are met, choose the solution which divides any equal power sections
more equally between the two users.

The strategy for partitioning the power allocation is as follows. We locate a bracket of size either
L1 or L2 sections inside {P`}`∈[L] such that its sum is as close as possible to, without exceeding, P1

or P2 respectively, and allocate the coefficients within the bracket to transmitter 1 or transmitter
2 as appropriate. The remaining sections on either side of the bracket are allocated to the other
transmitter. The choice of bracket size (and thus of which transmitter is allocated the bracketed
coefficients) is determined by which option gives the closest to optimal division of the coefficients
from the flat section. This strategy is illustrated graphically in Figure 8.3.

Remark 8.1. The partitioning method above can be applied to any overall power allocation {P`}`∈[L],

including the exponentially decaying one where P` ∝ e−2C`/L for ` ∈ [L]. (Here C is the sum capacity
1
2 log(1 + P/σ2), where P = P1 + P2.) The decoding analysis is identical to that of a point-to-point
AWGN channel with power constraint P operating at rate R = R1 + R2. Therefore the AMP de-
coding result of Theorem 3.3 can be directly applied, and (3.72) bounds the probability of the sum
of the section error rates of the two users exceeding some ε > 0. This establishes that all rate pairs
within the capacity region are achievable with an efficient AMP decoder.

131

Le Lf

Lf/Le = f= 0. 4

(a) The overall power allocation to partition.The ratio of exponential to flat sections is denoted
f , here with f = 0.4.

L1

∑
P` <P1

L1

f= 0. 22

∑
P` =P1

(b) We first consider a bracket of size L1, shown in blue. Our first attempt (on the left) contains
too little power, so we move it leftwards until the contained power reaches P1, shown on the

right. At this position, f = 0.22.

L2

∑
P` >P2

L2

f= 0. 73

∑
P` =P2

(c) Next we consider a bracket of size L2, shown in green. The first attempt contains too much
power, so we move it rightwards until the contained power is P2. In this position f = 0.73. Since

the L1 bracket has an f closer to that of the original allocation, we use that bracket for
partitioning.

Figure 8.3: Example of the power allocation partitioning strategy. Sections highlighted in blue are
considered for user 1, and those in green for user 2.

132

Figure 8.4: Bit error rates for multiple access channel simulations. Each displayed point is the
average of approximately 30000 trials. P1 = 15, P2 = 15, σ2 = 1, M = 512, n = 4095.

133

8.8 Simulation results

We now discuss the empirical performance of SPARCs with AMP decoding for the Gaussian
MAC, considering a symmetric setup with P1 = P2 = 15, and σ2 = 1. The sum-capacity is
C = 1

2 log
(
1 + P1+P2

σ2

)
Each operating point is set as follows. We fix γ ∈ [0, 1] and then set

R1 + R2 = R = γC. The parameter γ represents the backoff from the sum rate limit. Next fix
α ∈ [0, 1] which sets the share of this sum rate for each transmitter as R1 = αR and R2 = (1−α)R.

For the SPARC design matrix, first fix M = 512 and n = 4095. The parameters L1, L2 are then
determined by the rate pair: L1 = nR1/ logM , and L2 = nR2/ logM . A power allocation is then
designed using the sum rate R and L = L1+L2, and partitioned according to the strategy described
in the previous section.

Figure 8.4 shows the bit error rates with AMP decoding for different values of (R1, R2). The
boundary of the capacity region is also shown. After performing AMP decoding on the combined
SPARC A, the number of sections decoded in error is counted separately for the first L1 and then
the last L2 sections, and used to report section error rates for each transmitter. We also report the
worst case section error rate between the two users.

As the experimental set-up is equivalent to a single point-to-point channel with the same sum
power and sum rate and power allocation, we expect to obtain similar bit error performance to
that scenario. The results support this, with good bit error rates even reasonably close to capacity
at all points in the rate region. The worst case bit error rate is also close to each individual user’s
bit error rate, showing that the power allocation partition is generally successful at ensuring equal
error rates between users.

134

Chapter 9

Communication and Compression with Side
Information

Random binning is a key ingredient of optimal coding schemes for several models in multiuser
information theory. In a scheme with binning, a large codebook is partitioned into equal-sized
codebooks of smaller rate. In this chapter, we demonstrate how random binning can be efficiently
implemented using SPARCs for two canonical multiuser models: lossy compression with side in-
formation at the decoder (the Wyner-Ziv model [117]), and channel coding with state information
at the encoder (the Gelfand-Pinsker model [47, 29]). We will consider the Gaussian versions of
these models, and aim to construct SPARC-based coding schemes that achieve rates close to the
information-theoretic optimum. The proposed binning construction can be extended to other mul-
tiuser models such as lossy distributed source coding where the best known achievable rates use a
random binning strategy.

In the Wyner-Ziv compression problem (Figure 9.1a), given a rate R > 0, the goal is to design
a coding scheme that optimally uses the decoder side information Y to reconstruct the source
with minimal distortion. This model has been used in distributed video coding [48, 90]. In the
Gelfand-Pinsker channel coding problem (Figure 9.1b), the encoder knows the channel state S non-
causally (at the beginning of communication), while the decoder only receives the channel output
Y . The goal is to design a scheme that optimally uses the channel state information available at the
encoder to achieve the maximal rate. The Gelfand-Pinsker problem is the channel coding dual of
the Wyner-Ziv problem [88, 18], and has been used in multi-antenna communication [103], digital
watermarking [84, 25] and steganography [86].

We will consider the Gaussian versions of the Wyner-Ziv and the Gelfand-Pinsker models, where the
side information and the additive noise are independent Gaussian random variables. An interesting
feature of the Gaussian Wyner-Ziv and Gelfand-Pinsker problems is that the optimal rate in each
case is the same as the setting where the side/state information is available to both the encoder
and the decoder [117, 29].

135

Encoder DecoderX

Y

X̂
Rate R

(a) Compressing X with decoder side-information Y .

Encoder P (Y |X,S) DecoderW

S

X Y Ŵ

(b) Communicating a message W over channel P (Y |XS) with state S known at the encoder.

Previous code constructions Several practical coding schemes have been proposed for the Wyner-Ziv
problem, e.g., [89, 92, 119]. Recent constructions based on polar codes are the first computationally
efficient schemes that are provably rate-optimal [69, 70]. However, the polar coding constructions
are only applicable to problems where the source and side-information distributions are discrete and
symmetric. For the Wyner-Ziv problem with continuous source and side-information distributions,
elegant coding schemes such as those based on lattices [122, 39] have been proposed. But these
generally have exponential encoding and decoding complexity. Constructions using nested lattice
codes have also been used for the Gaussian Gelfand-Pinsker model (dubbed ‘writing on dirty paper’)
[122, 40, 25]. Computationally efficient code designs for this problem have been proposed in several
works, e.g., [104, 41].

9.1 Binning with SPARCs

We now describe the SPARC binning construction, which is applied to the Wyner-Ziv and Gelfand-
Pinsker problems in the next two sections. For any pair of rates R1, R with R1 > R, we would
like to divide a rate R1 SPARC with block length n into enR bins. Each bin corresponds to a rate
(R1 −R) SPARC with the same block length n. This is done as follows.

Fix the parameters M,L, n of the design matrix A such that

L logM = nR1. (9.1)

As shown in Figure 9.2, divide each section of A into sub-sections consisting of M ′ columns each.
Each bin is a smaller SPARC defined via a sub-matrix of A formed by picking one sub-section from
each section. For example, the collection of shaded sub-sections in the figure together forms one
bin. If M ′ is chosen such that

n(R1 −R) = L logM ′, (9.2)

136

A:

β:
T

0, c1, cL, 0, , 00,

M columns

Section L

M columns

Section 1

M columns

, c2, 0,

M ′

Figure 9.2: Codebook binning using SPARCs

then each sub-matrix defines a bin that is a rate (R1 − R) SPARC with parameters (n,L,M ′).
Since we have (M/M ′) sub-section choices in each of the L sections, the total number of bins that
can be chosen is (M/M ′)L. Combining (9.1) and (9.2), we have

L log
M

M ′
= nR, or

(
M

M ′

)L
= enR (9.3)

Therefore, the number of bins is enR, as required. The binning structure mimics that of the SPARC
codebook, where two codewords may share up to (L − 1) columns. Similarly, two bins may share
as many as (L− 1) sub-sections of A.

9.2 Wyner-Ziv coding with SPARCs

Consider the model in Figure 9.1a, with X ∼ N (0, σ2) being an i.i.d. Gaussian source to be
compressed with mean-squared distortion D. The decoder side-information Y is noisy version of
X and is related to X by Y = X + Z, where Z ∼ N (0, N) is independent of X. Let the target
distortion be D < Var(X|Y). (Distortions greater than this value can be achieved with zero rate,
by simply estimating X from Y .)

Let x, y ∈ Rn be the source and side information sequences drawn i.i.d. according to the distri-
butions of X and Y , respectively. The sequence y is available at the decoder non-causally. If y
were available at the encoder as well, then an optimal strategy is to compress (y − x) with a rate
high enough to ensure reconstruction of x within distortion D. The minimum rate required for this
strategy is 1

2 log Var(X|Y)
D nats/sample. The result of Wyner and Ziv [117] shows that this rate is

achievable even when y is available only at the decoder.

We first review the main ideas in the Wyner-Ziv random coding scheme. Define an auxiliary random
variable U jointly distributed with X according to

U = X + V, (9.4)

137

where V ∼ N (0, Q) is independent of X. We choose

Q =

(
1

D
− 1

Var(X|Y)

)−1

. (9.5)

One can invert this test channel to write

X =
σ2

σ2 +Q
U + V ′ = U ′ + V ′, (9.6)

where V ′ ∼ N (0, σ2Q
σ2+Q

) is independent of U ′ ∼ N (0, σ4

σ2+Q
).

In the Wyner-Ziv scheme [117], x is first quantized to a codeword u′ within distortion σ2Q
σ2+Q

, using a

rate-distortion codebook of rate R1. The sequences in this codebook, say {u′(1), . . . , u′(enR1)}, are

drawn ∼i.i.d. N (0, σ4

σ2+Q
). Shannon’s rate-distortion theorem guarantees that with high probability

a codeword will be found within the required distortion if

R1 > I(X;U ′) = I(X;U) =
1

2
log

(
1 +

σ2

Q

)
, (9.7)

where the mutual information has been calculated using the test channel in (9.6). The index
corresponding to the chosen codeword u′ is not sent to the decoder directly. Instead, the size enR1

rate-distortion codebook is divided into enR equal-sized bins, with a uniformly random assignment
of sequences to bins. The encoder only sends the index of the bin containing u′, which requires a
rate of R nats/sample .

The decoder’s task is to recover u′ using the bin index and the side information y. This is equivalent
to a channel decoding problem, where the effective channel is

Y = X + Z = U ′ + V ′ + Z. (9.8)

The snr of the effective channel is

Var(U ′)

Var(V ′) + Var(Z)
=

σ4

σ2Q+ (σ2 +Q)N
. (9.9)

The decoder will succeed with high probability if the number of sequences within the bin, en(R1−R),
is less than enI(U

′;Y). We therefore need

R1 −R < I(U ′;Y) =
1

2
log

(
1 +

σ4

σ2Q+ (σ2 +Q)N

)
. (9.10)

Combining the conditions (9.7) and (9.10), we conclude that both the encoding and the decoding
steps are successful with high probability if

R > I(X;U ′)− I(Y ;U ′) =
1

2
log

Var(X|Y)

D
, (9.11)

where the last equality follows by substituting the value for Q from (9.5). For any R satisfying
(9.11), R1 > R can be chosen to satisfy both (9.7) and (9.10).

138

The final step at the decoder is produce the reconstructed sequence x̂ as the MMSE estimate of x
given u′ and y:

x̂ =

(
1

Q
+

1

σ2
+

1

N

)−1(u′
Q

+
y

N

)
. (9.12)

Since the sequence triple (x, y, u′) is jointly typical according to the joint distribution of the ran-
dom variables (X,Y, U ′), the expected distortion E |x− x̂|2 can be made arbitrarily close to D for
sufficiently large n.

We now implement the coding scheme using a SPARC with optimal (least-squares) encoding and

decoding. For a given target distortion D, choose R > 1
2 log Var(X|Y)

D , and choose R1 such that

1

2
log

(
1 +

σ2

Q

)
< R1 < R+

1

2
log

(
1 +

σ4

σ2Q+ (σ2 +Q)N

)
, (9.13)

so that both (9.7) and (9.10) are satisfied.

Fix block length n, and consider a SPARC defined via an n×ML design matrix A with M = Lb

and bL logL = nR1, where b is greater than the minimum value specified by Theorem 6.2. The

entries of A are ∼i.i.d. N (0, 1
n), and the non-zero entries each β ∈ BM,L are all set to

√
n
L

σ4

(σ2+Q)
.

With M ′ be determined by M ′L = en(R1−R), partition each section of A into sub-sections of M ′

columns each, as shown in Figure 9.2.

Encoding : The encoder determines the SPARC codeword that is closest in Euclidean distance to
the source sequence x. Let

β∗ = arg min
β∈BM,L

‖x−Aβ‖2. (9.14)

The encoder sends the decoder a message W ≡ (p1, . . . , pL), where pi ∈ {1, . . . , MM ′ } indicates the
subsection in the ith section of A where β∗ contains a non-zero element.

Decoding : Let Abin(W) be the n ×M ′L sub-matrix corresponding to the subsections of A corre-
sponding to the bin index W . Recalling from Section 9.1 that Abin(W) defines an n×M ′L SPARC
design matrix, the decoder determines

β̂ = arg min
β∈BM′,L

‖y −Abin(W)β‖2. (9.15)

Letting û = Abin(W)β̂, the source sequence is reconstructed as

x̂ =

(
1

Q
+

1

σ2
+

1

N

)−1(û
Q

+
y

N

)
. (9.16)

Analysis: The SPARC rate-distortion result in Theorem 6.2 guarantees that the encoding will
succeed with high probability. That is, for R1 exceeding the lower bound in (9.13), the probability
of the event {

1

n
‖x−Aβ∗‖2 > σ2Q

σ2 +Q

}
139

is exponentially small in n. On the decoder side, the effective channel is given by (9.8), with the
task being to recover the codeword u′ with v′ + z treated as a noise sequence. If we assume that
v′+z is distributed as ∼i.i.d. N (0,Var(V ′)+σ2), then the SPARC channel coding result Theorem 2.1
guarantees reliable decoding with exponentially small error probability. However, this assumption
is not true at finite code lengths. Indeed, recall that v = (x − u′) is the distortion (quantization
noise) incurred at the encoder. Therefore, v′ may be dependent on the codeword u′; moreover, its
distribution will not be exactly Gaussian.

Though we expect that the distribution of (v′ + z) will be asymptotically independent of u′ and
converge to Gaussian, a careful analysis is needed to rigorously prove that SPARCs achieve the
Gaussian Wyner-Ziv rate-distortion bound. This remains an open question for future work.

9.3 Gelfand-Pinsker coding with SPARCs

Consider the model in Figure 9.1b, with the channel law P (Y |X,S) given by

Y = X + S + Z. (9.17)

The state variable S ∼ N (0, σ2
s) is independent of the additive noise Z ∼ N (0, N). There is

an average power constraint P on the input sequence x ∈ Rn. The state sequence s ∈ Rn is
∼i.i.d. N (0, σ2

s), and is known non-causally at the encoder.

Due to the power constraint, the encoder cannot simply cancel out the effect of the state sequence
s using the codeword. In Costa’s capacity-achieving scheme [29], one part of the state sequence s
is used by the encoder to produce the input sequence x, and the remaining part is treated as noise.
This is done as follows.

Define an auxiliary random variable U as

U = X + αS, (9.18)

where X ∼ N (0, P) is independent of S ∼ N (0, σ2
s), and

α =
P

P +N
. (9.19)

Inverting the test channel U , we write

S =
ασ2

s

P + α2σ2
s

U +X ′ = U ′ +X ′ (9.20)

where U ′ ∼ N (0, α2σ4
s

P+α2σ2
s
) and X ′ ∼ N (0, Pσ2

s
P+α2σ2

s
) are independent.

In Costa’s scheme [29], we first construct a random codebook of rate R1, with sequences {u′(1), . . .

, u′(enR1)} drawn ∼i.i.d. N (0, α2σ4
s

P+α2σ2
s
). The codebook is partitioned into enR bins, with each bin

containing en(R1−R) codewords.

140

To transmit message W ∈ {1, . . . , enR}, the encoder finds a codeword u′ inside bin W of the

codebook that is within distortion Pσ2
s

P+α2σ2
s

of the state sequence s. From Shannon’s rate-distortion

theorem, such a codeword will be found with high probability if

R1 −R > I(S;U ′) =
1

2
log

(
1 +

α2σ2
s

P

)
. (9.21)

The transmitted sequence x is then determined as

x =

(
P + α2σ2

s

ασ2
s

)
u′ − αs. (9.22)

Since the empirical joint distribution of (u′, s) is close to that specified by the test channel (9.20),
it can be verified that the second moment of x will be close to P with high probability.

Using the test channel in (9.20), the channel input-output relationship can be expressed as

Y = X + S + Z

=

(
P + α2σ2

s

ασ2
s

)
U ′ + (1− α)S + Z

=

(
P + α2σ2

s

ασ2
s

+ 1− α
)
U ′ + (1− α)X ′ + Z,

(9.23)

where U ′, X ′, Z ′ are mutually independent.

The decoder’s task is to determine the codeword u′ from the output sequence y. The index of
the bin containing the decoded codeword gives the reconstructed message Ŵ . Assuming that the
encoding has been successful, the empirical joint distribution of (u′, y) will be close to that of the
effective channel in (9.23). The effective signal to noise ratio of this channel is

snreff =

(P+ασ2
s)2

α2σ4
s

Var(U ′)

(1− α)2Var(X ′) + Var(Z)
=

(P + ασ2
s)

2

(1− α)2Pσ2
s +N(P + α2σ2

s)
. (9.24)

The decoding step will be successful with high probability if

R1 < I(U ′;Y) =
1

2
log(1 + snreff)

=
1

2
log

(
(P + α2σ2

s)(σ
2
s + P +N)

(1− α)2Pσ2
s +N(P + α2σ2

s)

)
.

(9.25)

Combining (9.21) and (9.25), we conclude that both the encoding and the decoding steps are
successful with high probability if

R < I(S;U ′)− I(U ′;Y) =
1

2
log

(
1 +

P

N

)
, (9.26)

where the last equality follows by substituting α = P
P+N and simplifying. For any R satisfying

(9.26), R1 should be chosen large enough to satisfy (9.25).

141

We now implement the above coding scheme using a SPARC with optimal (minimum distance)
encoding and decoding. Fix block length n, and consider a SPARC defined via an n×ML design
matrix A with M = Lb and bL logL = nR1, where b is greater than the minimum value specified
by Theorem 6.2. The entries of A are ∼i.i.d. N (0, 1

n), and the non-zero entries each β ∈ BM,L are

all set to
√

n
L

α2σ4
s

(P+α2σ2
s)

.

With M ′ be determined by M ′L = en(R1−R), partition each section of A into sub-sections of M ′

columns each, as shown in Figure 9.2. This defines enR bins, one for each message.

Encoding : To transmit message W ∈ [enR], the encoder determines the SPARC codeword within bin
W that is closest to the state sequence s. Denoting by Abin(W) the sub-matrix of A corresponding
to bin W , the encoder computes

β∗ = arg min
β∈BM′,L

‖s−Abin(W)β‖2.

Following (9.22), the transmitted sequence is

x =

(
P + α2σ2

s

ασ2
s

)
Abin(W)β

∗ − αs.

Decoding : The decoder determines the codeword in the big rate R1 SPARC closest to the output
sequence y. It computes

β̂ = arg min
β∈BM,L

‖y −Aβ‖2. (9.27)

The index of the bin containing β̂ is the decoded message Ŵ .

Analysis: The SPARC rate-distortion result in Theorem 6.2 guarantees that encoding will succeed
with high probability provided R1 − R satisfies (9.21). However the analysis of the decoder is
challenging, for reasons similar to those for Wyner-Ziv SPARCs. In the effective channel (9.23),
we cannot assume that the noise (1 − α)x′ + z is exactly i.i.d. Gaussian and independent of the
codeword u′. This is because x′ = s − u′, the quantization noise incurred at the encoder, cannot
be assumed to be independent of u′ and Gaussian.

In summary, a rigorous analysis of the SPARC coding schemes for the Gaussian Gelfand-Pinsker and
Wyner-Ziv models remains open. Another important open problem is to construct feasible SPARC
coding schemes that achieve the Shannon limits for these models. The challenges in designing such
schemes, and some ideas to address them, are discussed in the final chapter.

142

Chapter 10

Open Problems and Further Directions

In the first nine chapters, we described how sparse regression codes can be used for channel coding,
lossy source coding, and multi-terminal versions of these problems. We conclude the monograph
with a discussion of open questions and directions for further work.

10.1 Channel coding with SPARCs

Gap from capacity For fixed value of decoding error probability, how fast can the gap from capacity
(C−R) shrink with growing block length n? With optimal decoding, the result in Chapter 2 implies
that the gap from capacity for SPARCs is of O(1√

n
), which is order-optimal (from the results in

[87]). In contrast, the feasible decoders in Chapter 3 all have much larger gap from capacity: even
with optimized power allocations, the gap to capacity is no smaller than O(log logn

logn).

A key open question is: can one achieve polynomial gap to capacity using SPARCs with feasible
decoding? For polar codes over binary input symmetric channels, This question was recently
answered in the affirmative [55]. Achieving a polynomial gap from capacity for SPARCs may
require new constructions such as spatially coupled SPARCs with power allocation as well as new
decoding algorithms.

Analysis of sub-Gaussian and Hadamard-based SPARCs In Chapter 2, we analyzed the optimal
decoder for SPARCs defined via i.i.d. Gaussian and Bernoulli dictionaries. An interesting direction
is to generalize these results to dictionaries with arbitrary i.i.d. sub-Gaussian random variables. The
key part of the analysis in the Gaussian case involves controlling the moment generating function
of the difference between the squares of two Gaussian random variables. Extending the analysis to
sub-Gaussian dictionaries would involve reworking the proof of Proposition 2.1 to replace the steps
using Gaussian-specific results with the appropriate results for sub-Gaussians.

A more difficult open question is to analyze SPARC dictionaries defined via partial Hadamard or
Fourier matrices. As described in Chapter 4, these structured matrices significantly reduce decoding

143

and storage complexity, and are therefore important for practical implementation of SPARCs.

The analysis of feasible SPARC decoders with non-Gaussian dictionaries is more challenging than
that of optimal decoding, and remains open even for Bernoulli dictionaries.

Coded modulation using SPARCs The empirical results in Section 4.5 show that concatenating an
outer LPDC code with an inner SPARC can produce a steep drop in error rates, when the snr
exceeds a threshold. This waterfall behaviour was obtained using an off-the-shelf LDPC code. It
appears likely that one can further improve the error performance (i.e., obtain a smaller threshold)
by jointly optimizing the design of the outer LDPC code and inner SPARC using an EXIT chart
analysis, similar to [108].

SPARCs for general channel models The recent work of Barbier et al. [9, 10] extends the spatially
coupled SPARC construction to general memoryless channels. The idea is to apply a symbol-by-
symbol mapping to each Gaussian SC-SPARC codeword Aβ to produce a codebook whose input
alphabet and distribution are tailored to the channel. The message vector β is recovered from the
channel output sequence using generalized AMP (GAMP) [91] decoding. The fixed points of the
state evolution recursion are analyzed using the potential function method in [10]. This analysis
predicts that the GAMP decoder is asymptotically capacity achieving for a general memoryless
channel.

The results in [10] suggest two directions for further work. One is to extend the analysis of spa-
tially coupled SPARCs to general memoryless channels with GAMP decoding, and rigorously prove
that the coding scheme is capacity achieving. It would also be interesting to study the empirical
performance of the SPARC coding scheme over commonly studied memoryless channels such as
the binary symmetric channel, and compare the performance with that of capacity achieving codes
such as LDPC and polar codes.

Another interesting direction is to generalize SPARC coding schemes originally designed for AWGN
channels to Gaussian fading channels and MIMO channels, which are important in wireless com-
munication [111, 50].

10.2 Lossy compression with SPARCs

Gap from optimal rate-distortion function With optimal encoding, the results in Chapter 6 imply
that for a given distortion level D, the SPARC rate R should be O(1√

n
) higher than R∗(D) (the

optimal Gaussian rate-distortion function) in order to ensure a fixed probability of excess distortion.
In contrast, the successive cancellation encoder described in Chapter 7 can only achieve rates that
are O(log logn

logn) above R∗(D) (see Sec. 7.3.1).

A key open problem is to design a feasible SPARC encoder with a gap from R∗(D) that is of
smaller order. One idea is to investigate algorithms that process multiple sections at a time and
use soft-decision updating, instead of encoding one section at a time. Another idea to improve the

144

gap from R∗(D) is to use spatially coupled SPARCs for lossy compression. Doing so would also
yield coding schemes with spatially coupled SPARCs for multiuser models that require random
binning.

Sub-Gaussian and structured dictionaries The compression performance of sub-Gaussian or Hadamard-
based SPARC design matrices is empirically very similar to that of i.i.d. Gaussian design matrices.
As in the channel coding case, Hadamard-based designs significantly reduce both the encoding com-
plexity and the memory required. However, there are no theoretical results for compression with
non-Gaussian dictionaries. It would of interest to establish performance guarantees for compression
with such dictionaries, both with optimal encoding and with successive cancellation encoding.

Lossy compression of general sources We expect that the results for SPARC compression of i.i.d.
Gaussian sources in Chapters 6 and 7 can be extended to Gaussian sources with memory (e.g.,
Gauss-Markov sources), using the spectral representation of the source distribution. More broadly,
can one use SPARC-like constructions to compare finite alphabet sources, e.g., binary sources with
Hamming distortion?

10.3 Multi-terminal coding schemes with SPARCs

Performance guarantees with optimal encoding A key open problem is to provide a rigorous proof
that the SPARC coding schemes in Chapter 9 for the Wyner-Ziv and Gelfand-Pinsker problems
achieve the Shannon limits. As discussed in Sections 9.2 and 9.3, the main challenge in the analysis
of both schemes is that part of the effective noise at the decoder is quantization noise, which cannot
be assumed to be Gaussian and independent of the codeword.

Performance guarantees with feasible encoding The coding schemes for the Wyner-Ziv and Gelfand-
Pinsker problems each involve a quantization operation at the encoder and a channel decoding
operation at the decoder. Both operations are to be performed using the same overall SPARC. The
key challenge in constructing a rate-optimal feasible coding scheme based on power allocation is
that the optimal allocations for the quantization and the channel decoding parts are different (as the
rates for the two parts are different). Since the overall SPARC must have a single power allocation,
we cannot simultaneously ensure that the power allocation is optimal for both the quantization
and channel decoding operations. One idea to construct rate-optimal feasible coding schemes is to
use spatially coupled SPARCs, which circumvent the need for power allocation. This will require
first designing a lossy compression scheme using SC-SPARCs.

Coding schemes for general Gaussian multiuser models The best-known rates for many canonical
models in multiuser information theory are achieved by coding schemes that use superposition
coding and/or random binning. Since we have shown how to implement both these operations
using SPARCs, one can design SPARC-based schemes for a variety of Gaussian multi-terminal

145

problems such as the interference channel, distributed lossy compression, and multiple descriptions
coding. In addition to the theoretical question of establishing rigorous performance guarantees for
such schemes, an interesting direction for empirical work is to provide design guidelines to optimize
the error performance at finite block lengths.

SPARC-based coding schemes have recently been used for unsourced random access communication
over the AWGN channel [44]. Since SPARCs are built on the principle of superposition coding,
we expect that they will be promising candidates for new variants of multiple-access or broadcast
communication involving a large number of nodes.

146

Acknowledgements

This monograph grew out of work done in collaboration with several people, to whom we are very
grateful. In particular, we thank Sanghee Cho, Adam Greig, Kuan Hsieh, Antony Joseph, Cynthia
Rush, and Tuhin Sarkar. Special thanks to Cynthia Rush and Kuan Hsieh for proof-reading parts
of this manuscript. We also thank the two anonymous reviewers for several helpful comments.
This work was supported in part by the National Science Foundation under Grant CCF-1217023,
by a Marie Curie Career Integration Grant (Grant Agreement No. 631489), and by EPRSC Grant
EP/N013999/1.

147

148

References

[1] Python script for SPARC with AMP decoding.

[2] The coded modulation library, 2008.

[3] E. Abbe and A. Barron. Polar coding schemes for the AWGN channel. In Proc. IEEE Int.
Symp. Inf. Theory, pages 194–198. IEEE, 2011.

[4] V. Aref, N. Macris, and M. Vuffray. Approaching the rate-distortion limit with spatial cou-
pling, belief propagation, and decimation. IEEE Trans. Inf. Theory, 61(7):3954–3979, 2015.

[5] E. Arikan. Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory, 55(7):3051 –3073,
July 2009.

[6] A. Ashikhmin, G. Kramer, and S. ten Brink. Extrinsic information transfer functions: model
and erasure channel properties. IEEE Trans. Inf. Theory, 50(11):2657–2673, 2004.

[7] R. R. Bahadur and R. R. Rao. On deviations of the sample mean. The Annals of Mathematical
Statistics, 31(4), 1960.

[8] J. Barbier, M. Dia, and N. Macris. Proof of threshold saturation for spatially coupled sparse
superposition codes. In Proc. IEEE Int. Symp. Inf. Theory, 2016.

[9] J. Barbier, M. Dia, and N. Macris. Threshold saturation of spatially coupled sparse super-
position codes for all memoryless channels. In IEEE Inf. Theory Workshop, 2016.

[10] J. Barbier, M. Dia, and N. Macris. Universal Sparse Superposition Codes with Spatial Cou-
pling and GAMP Decoding. arXiv:1707.04203, July 2017.

[11] J. Barbier and F. Krzakala. Replica analysis and approximate message passing decoder for
sparse superposition codes. In Proc. IEEE Int. Symp. Inf. Theory, 2014.

[12] J. Barbier and F. Krzakala. Approximate message passing decoder and capacity-achieving
sparse superposition codes. IEEE Trans. Inf. Theory, 63(8):4894–4927, August 2017.

[13] J. Barbier, C. Schülke, and F. Krzakala. Approximate message-passing with spatially coupled
structured operators, with applications to compressed sensing and sparse superposition codes.
Journal of Statistical Mechanics: Theory and Experiment, (5), 2015.

149

[14] J. Barbier, C. Schülke, and F. Krzakala. Approximate message-passing with spatially coupled
structured operators, with applications to compressed sensing and sparse superposition codes.
Journal of Statistical Mechanics: Theory and Experiment, 2015(5):P05013, 2015.

[15] A. Barron and A. Joseph. Least squares superposition codes of moderate dictionary size,
reliable at rates up to capacity. Arxiv:1712.06866, 2010.

[16] A. Barron and A. Joseph. Least squares superposition codes of moderate dictionary size are
reliable at rates up to capacity. IEEE Trans. Inf. Theory, 58(5):2541–2557, Feb. 2012.

[17] A. R. Barron and S. Cho. High-rate sparse superposition codes with iteratively optimal
estimates. In Proc. IEEE Int. Symp. Inf. Theory, 2012.

[18] R. Barron, B. Chen, and G. Wornell. The duality between information embedding and source
coding with side information and some applications. IEEE Trans. Inf. Theory, 49(5):1159 –
1180, May 2003.

[19] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with
applications to compressed sensing. IEEE Trans. Inf. Theory, pages 764–785, 2011.

[20] M. Bayati and A. Montanari. The LASSO Risk for Gaussian Matrices. IEEE Trans. Inf.
Theory, 58(4):1997–2017, April 2012.

[21] C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: turbo-codes.
IEEE Trans. Commun., 44(10):1261 –1271, Oct 1996.

[22] R. E. Blahut. Algebraic codes for data transmission. Cambridge University Press, 2003.

[23] G. Böcherer, F. Steiner, and P. Schulte. Bandwidth efficient and rate-matched low-density
parity-check coded modulation. IEEE Trans. Commun., 63(12):4651–4665, 2015.

[24] CCSDS. 131.0-B-2 TM Synchonization and Channel Coding, August 2011.

[25] B. Chen and G. Wornell. Quantization index modulation: a class of provably good methods
for digital watermarking and information embedding. IEEE Trans. Inf. Theory, 47(4):1423
–1443, May 2001.

[26] S. Cho. High-dimensional regression with random design, including sparse superposition codes.
PhD thesis, Yale University, 2014.

[27] S. Cho and A. Barron. Approximate iterative bayes optimal estimates for high-rate sparse
superposition codes. In Sixth Workshop on Information-Theoretic Methods in Science and
Engineering, 2013.

[28] A. Coja-Oghlan and L. Zdeborová. The condensation transition in random hypergraph 2-
coloring. In Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
241–250, 2012.

[29] M. Costa. Writing on dirty paper (corresp.). IEEE Trans. Inf. Theory, 29(3):439 – 441, May
1983.

150

[30] D. J. Costello and G. D. Forney. Channel coding: The road to channel capacity. Proc. IEEE,
95(6):1150–1177, 2007.

[31] T. Cover. Broadcast channels. IEEE Trans. Inf. Theory, 18(1):2–14, 1972.

[32] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons,
2012.

[33] H. David and H. Nagaraja. Order Statistics. John Wiley & Sons, 2003.

[34] F. Den Hollander. Large deviations, volume 14. Amer. Mathematical Society, 2008.

[35] D. L. Donoho, A. Javanmard, and A. Montanari. Information-theoretically optimal com-
pressed sensing via spatial coupling and approximate message passing. IEEE Trans. Inf.
Theory, (11):7434–7464, Nov. 2013.

[36] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

[37] A. El Gamal and Y.-H. Kim. Network Information Theory. Cambridge University Press,
2011.

[38] W. Equitz and T. Cover. Successive refinement of information. IEEE Trans. Inf. Theory,
37(2):269 –275, Mar 1991.

[39] U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) everything. IEEE
Trans. Inf. Theory, 51(10):3401–3416, 2005.

[40] U. Erez, S. Shamai, and R. Zamir. Capacity and lattice strategies for canceling known
interference. IEEE Trans. Inf. Theory, 51(11):3820 – 3833, Nov. 2005.

[41] U. Erez and S. ten Brink. A close-to-capacity dirty paper coding scheme. IEEE Trans. Inf.
Theory, 51(10):3417–3432, 2005.

[42] U. Erez and R. Zamir. Achieving 1
2 log(1 + snr) on the AWGN channel with lattice encoding

and decoding. IEEE Trans. Inf. Theory, 50(10):2293–2314, 2004.

[43] A. J. Felstrom and K. S. Zigangirov. Time-varying periodic convolutional codes with low-
density parity-check matrix. IEEE Trans. Inf. Theory, 45(6):2181–2191, 1999.

[44] A. Fengler, P. Jung, and G. Caire. Sparcs for unsourced random access. arXiv:1901.06234,
2019.

[45] G. D. Forney and G. Ungerboeck. Modulation and coding for linear gaussian channels. IEEE
Trans. Inf. Theory, 44(6):2384–2415, 1998.

[46] R. G. Gallager. Information theory and reliable communication, volume 2. Springer, 1968.

[47] S. Gelfand and M. Pinsker. Coding for a channel with random parameters. Problems of
Control and Information, 9:19 – 31, January 1980.

[48] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero. Distributed video coding. Pro-
ceedings of the IEEE, 93(1):71 –83, Jan. 2005.

151

[49] H. Gish and J. Pierce. Asymptotically efficient quantizing. IEEE Trans. Inf. Theory,
14(5):676–683, 1968.

[50] A. Goldsmith. Wireless communications. Cambridge University Press, 2005.

[51] A. Greig and R. Venkataramanan. Techniques for improving the finite length performance of
sparse superposition codes. IEEE Transactions on Communications, 66(3):905–917, 2018.

[52] A. Guillén i Fàbregas, A. Martinez, and G. Caire. Bit-interleaved coded modulation. Now
Publishers Inc, 2008.

[53] A. Gupta and S. Verdù. Nonlinear sparse-graph codes for lossy compression. IEEE Trans.
Inf. Theory, 55(5):1961 –1975, May 2009.

[54] A. Gupta, S. Verdù, and T. Weissman. Rate-distortion in near-linear time. In Proc. IEEE
Int. Symp. on Inf. Theory, 2008.

[55] V. Guruswami and P. Xia. Polar codes: Speed of polarization and polynomial gap to capacity.
IEEE Trans. Inf. Theory, 61(1):3–16, Jan. 2015.

[56] P. Hall. On the rate of convergence of normal extremes. Journal of Applied Probability,
16(2):433–439, 1979.

[57] J. Hamkins and K. Zeger. Gaussian source coding with spherical codes. IEEE Trans. Inf.
Theory,, 48(11):2980–2989, Nov. 2002.

[58] C. Herzet, A. Drémeau, and C. Soussen. Relaxed recovery conditions for omp/ols by exploiting
both coherence and decay. IEEE Trans. Inf. Theory, 62(1):459–470, 2016.

[59] K. Hsieh, C. Rush, and R. Venkataramanan. Spatially coupled sparse regression codes: Design
and state evolution analysis. In Proc. IEEE Int. Symp. Inf. Theory. IEEE, 2018.

[60] S. Ihara and M. Kubo. Error exponent for coding of memoryless Gaussian sources with a
fidelity criterion. IEICE Trans. Fundamentals, E83-A(10), Oct. 2000.

[61] A. Ingber and Y. Kochman. The dispersion of lossy source coding. In Data Compression
Conference (DCC), pages 53 –62, March 2011.

[62] S. Jalali and T. Weissman. Rate-distortion via Markov Chain Monte Carlo. In Proc. IEEE
Int. Symp. on Inf. Theory, 2010.

[63] S. Janson. Random Graphs. Wiley, 2000.

[64] A. Joseph. Achieving information-theoretic limits with high-dimensional regression. PhD
thesis, Yale University, 2012.

[65] A. Joseph and A. R. Barron. Fast sparse superposition codes have near exponential error
probability for R < C. IEEE Trans. Inf. Theory, 60(2):919–942, Feb. 2014.

[66] I. Kontoyiannis. An implementable lossy version of the Lempel-Ziv algorithm-I: Optimality
for memoryless sources. IEEE Trans. Inf. Theory, 45(7):2293 –2305, nov 1999.

152

[67] I. Kontoyiannis and C. Gioran. Efficient random codebooks and databases for lossy compres-
sion in near-linear time. In IEEE Inf. Theory Workshop, pages 236 –240, 2009.

[68] I. Kontoyiannis, K. Rad, and S. Gitzenis. Sparse superposition codes for Gaussian vector
quantization. In IEEE Inf. Theory Workshop, page 1, 2010.

[69] S. Korada and R. Urbanke. Polar codes are optimal for lossy source coding. IEEE Trans.
Inf. Theory, 56(4):1751 –1768, April 2010.

[70] S. Korada and R. Urbanke. Polar codes for slepian-wolf, wyner-ziv, and gelfand-pinsker. In
IEEE Inf. Theory Workshop, Jan. 2010.

[71] V. Kostina and S. Verdú. Fixed-length lossy compression in the finite blocklength regime.
IEEE Trans. on Inf. Theory, 58(6):3309–3338, 2012.

[72] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová. Probabilistic reconstruction in
compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. Journal
of Statistical Mechanics: Theory and Experiment, (8), 2012.

[73] S. Kudekar and H. D. Pfister. The effect of spatial coupling on compressive sensing. In
Proc. 48th Annual Allerton Conference on Communication, Control, and Computing, pages
347–353, 2010.

[74] S. Kudekar, T. Richardson, and R. L. Urbanke. Spatially coupled ensembles universally
achieve capacity under belief propagation. IEEE Trans. Inf. Theory, 59(12):7761–7813, De-
cember 2013.

[75] S. Kudekar, T. J. Richardson, and R. L. Urbanke. Threshold saturation via spatial coupling:
Why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inf. Theory,
57(2):803–834, 2011.

[76] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister. Threshold saturation for spatially
coupled LDPC and LDGM codes on BMS channels. IEEE Trans. Inf. Theory, 60(12):7389–
7415, 2014.

[77] A. Lapidoth. On the role of mismatch in rate distortion theory. IEEE Trans. Inf. Theory,
43(1):38 –47, Jan 1997.

[78] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov. Iterative decoding threshold
analysis for LDPC convolutional codes. IEEE Trans. Inf. Thy, 56(10):5274–5289, 2010.

[79] S. Liang, J. Ma, and L. Ping. Clipping can improve the performance of spatially coupled
sparse superposition codes. IEEE Commun. Letters, 21(12):2578–2581, Dec. 2017.

[80] S. Lin and D. J. Costello. Error control coding, volume 2. Prentice Hall Englewood Cliffs,
2004.

[81] K. Marton. Error exponent for source coding with a fidelity criterion. IEEE Trans. Inf.
Theory, 20(2):197 – 199, Mar 1974.

[82] D. G. Mitchell, M. Lentmaier, and D. J. Costello. Spatially coupled ldpc codes constructed
from protographs. IEEE Trans. Inf. Theory, 61(9):4866–4889, 2015.

153

[83] A. Montanari. Graphical models concepts in compressed sensing. In Y. C. Eldar and G. Ku-
tyniok, editors, Compressed Sensing, pages 394–438. Cambridge University Press, 2012.

[84] P. Moulin and R. Koetter. Data-hiding codes. Proc. IEEE, 93(12):2083 – 2126, Dec. 2005.

[85] A. No and T. Weissman. Rateless lossy compression via the extremes. IEEE Trans. Inf.
Theory, 62(10):5484–5495, 2016.

[86] J. O’Sullivan, P. Moulin, and J. Ettinger. Information theoretic analysis of steganography.
In IEEE Int. Symp. on Inf. Theory, 1998.

[87] Y. Polyanskiy, H. V. Poor, and S. Verdú. Channel coding rate in the finite blocklength regime.
IEEE Trans. Inf. Theory, 56(5):2307–2359, 2010.

[88] S. Pradhan, J. Chou, and K. Ramchandran. Duality between source coding and channel
coding and its extension to the side information case. IEEE Trans. Inf. Theory, 49(5):1181 –
1203, May 2003.

[89] S. Pradhan and K. Ramchandran. Distributed source coding using syndromes (DISCUS):
design and construction. IEEE Trans. Inf. Theory, 49(3):626 – 643, Mar 2003.

[90] R. Puri, A. Majumdar, and K. Ramchandran. Prism: A video coding paradigm with motion
estimation at the decoder. IEEE Trans. Image Process., 16(10):2436 –2448, Oct. 2007.

[91] S. Rangan. Generalized approximate message passing for estimation with random linear
mixing. In Proc. IEEE Int. Symp. Inf. Theory, pages 2168–2172, 2011.

[92] D. Rebollo-Monedero, R. Zhang, and B. Girod. Design of optimal quantizers for distributed
source coding. In Data Compression Conference, pages 13 – 22, March 2003.

[93] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, 2008.

[94] B. Rimoldi. Successive refinement of information: characterization of the achievable rates.
IEEE Trans. Inf. Theory, 40(1):253 –259, Jan 1994.

[95] C. Rush, A. Greig, and R. Venkataramanan. Capacity-achieving sparse superposition codes
via approximate message passing decoding. IEEE Trans. Inf. Theory, 63(3):1476–1500, March
2017.

[96] C. Rush, K. Hsieh, and R. Venkataramanan. Capacity-achieving sparse regression codes via
spatial coupling. In Proc. IEEE Inf. Theory Workshop, 2018.

[97] C. Rush and R. Venkataramanan. The error probability of sparse superposition codes with
approximate message passing decoding. Arxiv:1712.06866, 2017.

[98] D. Sakrison. A geometric treatment of the source encoding of a Gaussian random variable.
IEEE Trans. Inf. Theory, 14(3):481 – 486, May 1968.

[99] D. Sakrison. The rate distortion function for a class of sources. Information and Control,
15(2):165 – 195, 1969.

154

[100] D. Sakrison. The rate of a class of random processes. IEEE Trans. Inf. Theory, 16(1):10 –
16, Jan 1970.

[101] J. L. Shanks. Computation of the Fast Walsh-Fourier transform. IEEE Trans. Comput.,
18(5):457–459, May 1969.

[102] N. Sommer, M. Feder, and O. Shalvi. Low-density lattice codes. IEEE Trans. on Inf. Theory,
54(4):1561–1585, April 2008.

[103] Q. Spencer, C. Peel, A. Swindlehurst, and M. Haardt. An introduction to the multi-user
mimo downlink. IEEE Commun. Mag., 42(10):60 – 67, Oct. 2004.

[104] Y. Sun, Y. Yang, A. Liveris, V. Stankovic, and Z. Xiong. Near-capacity dirty-paper code
design: A source-channel coding approach. IEEE Trans. Inf. Theory, 55(7):3013 –3031, July
2009.

[105] Y. Takeishi, M. Kawakita, and J. Takeuchi. Least squares superposition codes with Bernoulli
dictionary are still reliable at rates up to capacity. IEEE Trans. Inf. Theory, 60:2737–2750,
2014.

[106] Y. Takeishi and J. Takeuchi. An improved upper bound on block error probability of least
squares superposition codes with unbiased bernoulli dictionary. In IEEE Int. Symp. on Inf.
Theory, pages 1168–1172, 2016.

[107] S. ten Brink. Convergence of iterative decoding. Electronics letters, 35(13):1117–1119, 1999.

[108] S. ten Brink, G. Kramer, and A. Ashikhmin. Design of low-density parity-check codes for
modulation and detection. IEEE Trans. Commun., 52(4):670–678, 2004.

[109] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[110] R. Tibshirani, M. Wainwright, and T. Hastie. Statistical learning with sparsity: the LASSO
and generalizations. Chapman and Hall/CRC, 2015.

[111] D. Tse and P. Viswanath. Fundamentals of wireless communication. Cambridge University
Press, 2005.

[112] R. Venkataramanan, A. Joseph, and S. Tatikonda. Lossy compression via sparse linear re-
gression: Performance under minimum-distance encoding. IEEE Trans. Inf. Thy, 60(6):3254–
3264, June 2014.

[113] R. Venkataramanan, T. Sarkar, and S. Tatikonda. Lossy compression via sparse linear regres-
sion: Computationally efficient encoding and decoding. IEEE Trans. Inf. Theory, 60(6):3265–
3278, June 2014.

[114] R. Venkataramanan and S. Tatikonda. Sparse regression codes for multi-terminal source and
channel coding. In 50th Allerton Conf. on Commun., Control, and Computing, 2012.

[115] R. Venkataramanan and S. Tatikonda. The rate-distortion function and excess-distortion
exponent of sparse regression codes with optimal encoding. IEEE Trans. Inf. Theory,
63(8):5228–5243, August 2017.

155

[116] M. Wainwright, E. Maneva, and E. Martinian. Lossy source compression using low-density
generator matrix codes: Analysis and algorithms. IEEE Trans. Inf. Theory, 56(3):1351 –1368,
2010.

[117] A. D. Wyner and J. Ziv. The rate-distortion function for source coding with side information
at the decoder. IEEE Trans. Inf. Theory, 22:1 – 10, January 1976.

[118] Y. Yan, L. Liu, C. Ling, and X. Wu. Construction of capacity-achieving lattice codes: Polar
lattices. arXiv:1411.0187, 2014.

[119] Y. Yang, S. Cheng, Z. Xiong, and W. Zhao. Wyner-Ziv coding based on TCQ and LDPC
codes. IEEE Trans. Commun., 57(2):376 –387, Feb. 2009.

[120] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister. A simple proof of Maxwell saturation
for coupled scalar recursions. IEEE Trans. Inf. Theory, 60(11):6943–6965, 2014.

[121] R. Zamir. Lattice Coding for Signals and Networks: A Structured Coding Approach to Quan-
tization, Modulation, and Multiuser Information Theory. Cambridge University Press, 2014.

[122] R. Zamir, S. Shamai, and U. Erez. Nested linear/lattice codes for structured multiterminal
binning. IEEE Trans. Inf. Theory, 48(6):1250 –1276, June 2002.

156

	1 Introduction
	1.1 The Sparse Regression Codebook
	1.2 Organization of the monograph

	I AWGN Channel Coding with SPARCs
	2 Optimal Decoding
	2.1 Problem set-up
	2.2 Performance of the optimal decoder
	2.3 Performance with i.i.d. Bernoulli dictionaries
	2.4 Proofs
	2.4.1 Proof of Proposition 2.1
	2.4.2 Proof of Theorem 2.1
	2.4.3 Proof sketch of Theorem 2.2

	3 Computationally Efficient Decoding
	3.1 Adaptive successive hard-decision decoding
	3.1.1 Intuition and analysis

	3.2 Iterative soft-decision decoding
	3.2.1 State evolution

	3.3 Adaptive successive soft-decision decoder
	3.4 Approximate Message Passing (AMP) decoder
	3.4.1 Analysis of the AMP decoder
	3.4.2 Error exponent and gap from capacity with AMP decoding

	3.5 Comparison of the decoders
	3.6 Proofs
	3.6.1 Proof of Lemma 3.3
	3.6.2 Proof of Lemma 3.6
	3.6.3 Proof Sketch of Theorem 3.3

	4 Finite Length Decoding Performance
	4.1 Reducing AMP decoding complexity
	4.1.1 Hadamard-based design matrices
	4.1.2 Online computation of t2 and early termination

	4.2 Power allocation
	4.2.1 Iterative power allocation

	4.3 Code parameter choices at finite code lengths
	4.3.1 Effect of L and M on concentration
	4.3.2 Effect of power allocation on concentration

	4.4 Comparison with coded modulation
	4.5 AMP with partial outer codes
	4.5.1 Decoding SPARCs with LDPC outer codes
	4.5.2 Simulation results
	4.5.3 Outer code design choices

	5 Spatially Coupled SPARCs
	5.1 Spatially coupled SPARC construction
	5.2 AMP decoder for spatially coupled SPARCs
	5.2.1 State evolution for SC-SPARCs
	5.2.2 Interpretation of the AMP decoder

	5.3 Measuring the performance of the AMP decoder
	5.3.1 Asymptotic State Evolution analysis

	5.4 Simulation results

	II Lossy Compression with SPARCs
	6 Optimal Encoding
	6.1 Problem set-up
	6.2 Performance of the optimal decoder
	6.3 Proof of Theorem 6.2
	6.3.1 Second moment method computations
	6.3.2 Refining the second moment method
	6.3.3 A non-asymptotic bound for P(X=0)

	7 Computationally Efficient Encoding
	7.1 Computationally efficient encoding algorithm
	7.2 Heuristic derivation of the algorithm
	7.3 Main result
	7.3.1 Gap from D*(R)
	7.3.2 Successive refinement interpretation

	7.4 Simulation results
	7.5 Proof of Theorem 7.1

	III Multiuser Communication and Compression with SPARCs
	8 Broadcast and Multiple-access Channels
	8.1 The Gaussian broadcast channel
	8.2 SPARCs for the Gaussian broadcast channel
	8.3 Bounds on error performance
	8.3.1 Optimal decoding
	8.3.2 AMP decoding

	8.4 Simulation results
	8.5 The Gaussian multiple-access channel
	8.6 SPARCs for the Gaussian multiple-access channel
	8.7 Power allocation for AMP decoding
	8.8 Simulation results

	9 Communication and Compression with Side Information
	9.1 Binning with SPARCs
	9.2 Wyner-Ziv coding with SPARCs
	9.3 Gelfand-Pinsker coding with SPARCs

	10 Open Problems and Further Directions
	10.1 Channel coding with SPARCs
	10.2 Lossy compression with SPARCs
	10.3 Multi-terminal coding schemes with SPARCs
	References

