
Abstract—Estimation by analogy (EBA) is one of the most at-

tractive  software  effort  development  estimation  techniques.

However, one of the critical issues when using EBA is the oc-

currence of missing data (MD) in the historical data sets. The

absence of  values of several  relevant software attributes  is a

frequent phenomenon that may cause inaccurate EBA estima-

tions. The MD can be numerical and/or categorical. This paper

evaluates  four  MD techniques (toleration,  deletion,  k-nearest

neighbors  (KNN)  imputation  and  support  vector  regression

(SVR) imputation) over four mixed data sets. A total of 432 ex-

periments were conducted involving four MD techniques, nine

MD percentages (from 10% to 90%), three missingness mecha-

nisms (MCAR: Missing Completely at Random, MAR: Missing

at Random and NIM: Non-Ignorable Missing) and four data

sets. The evaluation process consists of four steps and uses sev-

eral  accuracy  measures  such  as  standardized  accuracy  (SA)

and prediction level (Pred). 

The  results  suggest  that  EBA with  imputation  techniques

achieved significantly better SA values over EBA with tolera-

tion or  deletion regardless  of  the  mechanism of  missingness.

Moreover,  no  particular  MD  imputation  technique  outper-

formed  the  other  techniques  overall.  However,  according  to

Pred and other accuracy criteria, EBA with SVR was the best,

followed by KNN imputation; we also found that toleration in-

stead of deletion improves the accuracy of EBA.

Index Terms—Estimation by analogy, missing data, imputa-

tion.

I. INTRODUCTION

OFTWARE development  effort  estimation  (SDEE)  is

the process of predicting the effort required to develop a

software system. It is a  challenging and substantial activity

when managing a software project. The challenge arises due

to the complex relationship between effort and various soft-

ware attributes related to the personal,  product, and/or plat-

forms used in the project [1], [2].

S

Machine learning (ML) based estimation techniques are

gaining increasing attention in SDEE research, as they can

model the complex relationship between effort and software

attributes (cost drivers), especially when this relationship is

not  linear  and  does  not  seem  to  have  any  predetermined

form [2]. Estimation by Analogy (EBA) is one of the most

attractive  ML  techniques in the SDEE field,  and is essen-

tially a form of Case-Based Reasoning (CBR)[3]. The idea

of analogy based estimation is to determine the effort of the

new project as a function of the known efforts from similar

historical projects. Wen et al. [2] carried out a systematic lit-

erature review of ML SDEE techniques published between

1991 and 2010 and found that EBA is the most investigated

ML technique in SDEE (37% of selected studies).

The intensive and increasing use of EBA is due to its sev-

eral advantages including simplicity, mimicking human rea-

soning, ease to understand and no assumption is made about

the form of the relationship  [1],  [4]–[10]. Moreover,  EBA

can  handle  both  quantitative  and  qualitative  data  [5]–[7],

[11], [12]. Nonetheless, several studies pointed out that EBA

still has some limitations such as dealing with missing data

(MD)  which  is  a  widespread  problem  that  can  affect  the

ability to use data to construct effective EBA techniques [3],

[8],  [13],  [14].  However,  little attention has been given to

handling  missing  data  in  EBA  [3].  In  fact,  the  mapping

study of Idri et al. ]21] found that until 2015, only one paper

was published to deal with MD in EBA.

In a prior work [8], we evaluated two EBA techniques in

terms of SA criterion on seven data sets when used in con-

junction with three MD techniques (toleration, deletion and

KNN  imputation  method),  different  missingness  mecha-

nisms  (MCAR,  MAR and  NIM)  and  nine  percentages  of

MD (from 10% to 90%)  [8]. This was with the aim of deter-

mining  whether  the  KNN  imputation  method,  instead  of

deletion and toleration techniques, could improve the perfor-

mance of EBA when predicting software development effort

with incomplete data. The findings suggest that EBA using

KNN imputation outperformed EBA using deletion or toler-

ation regardless of the missingness mechanism and the MD

percentage.

However,  the study [8] has three limitations: (1) it only

dealt with numerical data , (2) it used one imputation tech-

nique (KNN), and (3) it used one accuracy criterion (SA),

which  is  insufficient  to  conclude  about  EBA  accuracy

[15], [16].

Thus, this paper improves our previous work with: (1) the

use of both numerical and categorical data, 2) the use of a

new  imputation  technique:   Support  Vector  Regression

(SVR), in addition to KNN, and (3) the use of a set reliable

accuracy  criteria  (e.g..  Pred(0.25),  Mean  Absolute  Error

(MAE), Mean Balanced Relative Error (MBRE), Mean In-

verted Balanced Relative Error  (MIBRE) and Logarithmic

Standard Deviation (LSD)), in addition to SA,  in order to

investigate if they would confirm the findings of [8].

Therefore, this study carry out an empirical evaluation of

EBA using four MD techniques:  toleration,  deletion, KNN

imputation, and SVR imputation with different percentages

(from  10%  to  90%)  and  three  missingness  mechanisms

(MCAR, MAR and NIM) over four mixed datasets including
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both numerical and categorical attributes (ISBSG R8, 

COCOMO81, USP05_FT and USP05_RQ).  

Toward this aim, four research questions were discussed 

(RQs): 

• (RQ1) Is there evidence that the use of KNN and SVR 

imputations rather than toleration/deletion improves the 

accuracy of EBA in terms of SA when using mixed 

datasets?  

• (RQ2) Is there evidence that SVR imputation instead of 

KNN imputation would improve EBA accuracy measured 

in terms of SA?  

• (RQ3) Is there evidence that the missingness mechanism 

and the MD percentage affect the accuracy of EBA over 

mixed datasets? 

• (RQ4) Does the performance of EBA in terms of 

Pred(0.25), MAE, MBRE, MIBRE and LSD confirm the 

findings of SA? 

The structure of the paper is the following: Section II 

presents the concepts of MD and EBA. Section III describes 

the data sets used. Section IV presents the empirical design 

which includes the process of generate MD and the empirical 

evaluation process. The results are presented and discussed in 

Section V. Section VI concludes by discussing the findings as 

well as some directions for future work. 

II. BACKGROUND 

This section presents the concepts of MD and an overview of 

the software effort estimation by analogy process we used in 

this study. 

A. Concepts of MD 

This section gives an overview of the different missingness 

mechanisms (i.e., different ways in which data can be 

missing) and the different MD techniques.  

1)  Missigness mechanism 

Understanding the missing data mechanism is a key stage in 

comprehending the impact of the missing data on a specific 

analysis, or missing data methods [17], [18]. Rubin’s 

classification of Missing Data Mechanisms has been regarded 

as being “fundamental to the modeling of incomplete data” 

[19] and is in common use in the field of missing data. Little 

and Rubin classified missing data mechanisms as[17]: 

• Missing completely at random (MCAR) is when the 

probability that an observation is missing does not depend 

on either the observed or the missing values.  

• Missing at Random (MAR) means that the probability that 

an observation is missing depends only on the values of the 

observed data.  

• Non-Ignorable Missing (NIM): means that the missing 

data mechanism is related to the missing values.  

2) MD techniques 

There are three approaches to this problem: MD deletion 

technique, MD toleration techniques, and MD imputation 

techniques [13], [20]. 

a) Toleration  

MD toleration technique is an embedded strategy in which 

analysis is performed directly on the data set with MD[8], 

[18]. Despite its simplicity, toleration is not  a reliable 

approach, sometimes even providing estimates that are less 

efficient than estimation from deletion technique [8], [17]. 

 

b) Deletion technique 

Deletion is the most commonly used technique for dealing 

with missing data among researchers [8], [21]. It omits all 

cases with missing values from the analysis and only includes 

those cases for which all measurements are observed. This 

method has many advantages since it is easy to use. Also, it 

produces unbiased estimates for the parameters if the 

assumption that the data are MCAR holds. Nevertheless, 

deletion is not generally recommended since omitting cases 

with MD would result in a significant loss in power and 

precision due to the reduced sample size. Moreover, if the 

MCAR assumption does not hold, this method can result in 

biased parameter estimates as it is ignoring potential 

systematic differences between the complete and incomplete 

cases.  Consequently, deletion can only be justified if the 

missing data mechanism in operation is MCAR and the MD 

percentage is small [22].  

 

c) Imputation technique 

MD imputation replaces missing values by suitable estimates 

and then applies standard complete-data methods to the filled 

in data [17].This method is attractive to practitioners because 

the resulting completed data can be handled using standard 

software for rectangular data sets. Imputation uses available 

data to impute the missing data and hence, an important 

characteristic of a good imputation method is that it makes 

good use of information in the incomplete cases. Moreover, it 

is important to take into account the missingness mechanism 

while using imputation technique [8], [18].  

B. Effort estimation by analogy: An Overview 

EBA  is based on the use of historical information from 

completed projects with known effort [10]. It is based on the 

following affirmation: similar software projects have similar 

costs. It has been deployed as follows. EBA has been 

proposed since a long time as a valid alternative to effort 

estimation by parametric effort estimation and/or expert 

judgment [23]. In 1997, it has been presented in the form of a 

detailed estimation methodology and has been applied on a 

set of historical software projects data sets [10]. EBA consists 

of three steps: 

1) Identification of cases: each project is described by a set 

of attributes that are believed to be significant in 

determining similarity and can influence effort.  

2) Retrieval of similar cases: several distance metrics can 

be used to calculate how much the new target project 

differs from the other projects based on their attribute 

values. In this study, we used the Euclidean and the overlap 

distances for numerical and categorical software attributes 

respectively [10], [24]. 

3) Case adaptation: involves two phases in order to 

generate an estimate of the new project. First, we decide on 

the number of similar projects and second we define the 
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adaptation strategy. The number of analogues (k) refers to 

the number of most similar projects used to generate the 

estimation.  Several studies in SDEE analyzed the impact of 

the number of analogues [9], [25], [26]. This study varied 

the number of analogues between 2 and 5. The second 

phase consists on selecting the adaptation strategy to 

provide an effort estimate. We used the arithmetic mean 

[10], arithmetic median [27] and inverse ranked weighted 

mean [28].   

In order to select the best variant of ABE, we varied the 

adaptation strategy and the number of analogues as described 

above and chose the best configuration of ABE, i.e. having 

the lowest Mean of Absolute Error (MAE). 

III. DATA DESCRIPTION 

This study uses four available data sets: ISBSG repository 

(release 8), COCOMO81[23], USP05_FT[9] and 

USP05_RQ[9].  Table I provides an overview of these 

datasets, including number of attributes (numerical and 

categorical), observations, and previous use. The minimum, 

mean and maximum of effort and size are given.  

Since the aim of this study is to deal with missing numerical 

and categorical data, the solution adopted was to use (1) all 

the attributes for the COCOMO81 data set, (2) 11 attributes 

for USP05_FT and USP05_RQ data sets, and (3) 20 

attributes for the ISBSG data set. The attributes chosen for 

USP05_FT, USP05_RQ and ISBSG data sets are the results 

of our previous studies related to software effort estimation 

[4][7][8] . Table III shows the attributes chosen for ISBSG, 

USP05 and COCOMO81 data sets, where (N) and (C) 

indicate numerical and categorical attributes respectively. 

IV. EXPIREMENT DESIGN 

This section describes the experimental process used in this 

study. It consists of four main steps: data removal, complete 

data set generation, EBA evaluation using SA, and EBA 

evaluation using Borda count method based on Pred(0.25), 

MAE, MBRE, MIBRE and LSD. A similar process was 

followed in [8]. The study was designed to apply EBA with 

nine percentages of incomplete mixed data (from 10% to 

90%), three different MD mechanisms (MCAR, MAR and 

NIM), and four MD techniques (toleration, deletion, KNN 

imputation, and SVR imputation) over four data sets. Hence, 

the experimental design consists in evaluating 9 percentages 

× 4 MD techniques × 3 MD mechanisms × 4 datasets = 432 

different effort estimation experiments.  

A. Step 1:  Data removal 

The first step in the experimental process requires a complete 

data set to work with. For this purpose, we first preprocessed 

the four datasets by deleting cases with MD to obtain the 

corresponding seven complete data sets. We then used the 

complete datasets to artificially generate MD by mimicking 

the different mechanisms. A similar approach was followed 

in [8], [20]. By combining the four datasets, three 

missingness mechanisms and nine percentages, we obtained 

4×3×9 =108 incomplete data sets at this stage. 

B. Step 2: Complete data set generation 

This step uses four MD techniques: toleration, deletion, KNN 

imputation and SVR imputation to generate complete datasets 

from those of Step 1. After applying the four MD techniques 

on the 108 incomplete datasets of step 1, we obtained 432 

complete datasets.  

a) Deletion 

Under the deletion technique, projects with missing values at 

any attribute are omitted in the experiments.  

b) Toleration 

The toleration technique uses a special value NULL to replace 

a missing value in a data set. A similar approach was used in 

[8], [13], [14]. Hence, the following operations on NULL are 

defined for distance metrics:  

(��) �(b	, NULL) =  �(NULL	, b ) = (NULL	, NULL ) = NULL 

(��)	W+ NULL = NULL + w = w 

where �	is the distance used in Classical Analogy (e.g. 

Euclidean distance). 

It can be seen from the above discussion that the effect of the 

NULL is to ignore the participating attributes that have MD in 

searching similar objects. Therefore, the more NULLs in the 

data set, the fewer attributes will be participating in searching 

analogues through similarity measures.  

c) KNN imputation 

Figure 1 shows the KNN imputation (KNNI) process. KNN 

imputation belongs to the analogy based algorithms; it is 

computationally simple and has proven to be effective 

approach to estimate missing values of attributes in different 

software engineering datasets [21].  Using KNN for 

imputation requires adapting the three analogy steps of 

Section II.B: (1) Identification of cases, (2) Retrieval of 

similar projects, and (3) Case adaptation. In the following, we 

present how we adapted each step to serve the imputation 

process. 

The identification of cases step mainly aims to calculate the 

distance between each incomplete project and the complete 

projects. The most similar complete projects were used as 

source analogues in the imputation process. To determine the 

distance between the incomplete project and the complete 

projects, we use a combination of two distance measures. 

Hence, the distance between an incomplete case P� and a 

complete case P� is calculated using Equation (1). 

����, ��� = 	�����, ��� + �����, ���																								(�) 
where:  

• d��P�, P��is the Euclidean distance used to calculate the 

similarity between P� and P� taking into consideration only 

the numerical attributes. It is calculated using Equation (2):   

d��P�, P�� = �∑ (P��−P��)	���!� 																													(2)					     
• d#�P�, P�� is the hamming distance used to evaluate the 

similarity between P� and P� taking into consideration only 

the categorical attributes. The formula of d#�P�, P��	is given 

by Equation (3): 

d#�P�, P�� =$δ(P��, P��)
�
�!�

																																						(3)	 
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TABLE I Selected Software Attributes from ISBSG, USP05, and COCOMO81 Data Sets. (N: numerical and C: categorical) 

ISBSG USP05 COCOMO81 

Value adjustment factor (N) 

Maximum team size (N) 

User-based business units (N) 

User-based locations (N) 

User-based concurrent users (N) 

Input count (N) 

Output count (N) 

Enquiry count (N) 

Interface count (N) 

Measurement technique (C) 

Reference table approach (C) 

Recording method (C) 

Development platform (C) 

Programming language (C) 

Used methodology (C) 

Development technique (C) 

Organization type (C) 

Business area type (C) 

Application type (C) 

Data file (N) 

Data entry (N) 

Data output (N) 

Unadjusted function point (N) 

Internal complexity (C) 

Language (C) 

Tools (C) 

Applications experience (C) 

Database systems (C) 

Methodology (C) 

Application type (C) 

KDSI (N) 

RELAY (C) 

DATA (C) 

CPLX (C) 

TIME (C) 

STOR (C) 

VIRT (C) 

TURN (C) 

ACAP (C) 

AEXP (C) 

PCAP (C) 

VEXP (C) 

LEXP (C) 

MODP (C) 

TOOL (C) 

SCED (C) 

MODE (C) 

TABLE II Description Statistics of the Selected Data Sets 

Data set #of Projects #of attributes Effort 

   Min Max Median Mean SkewnessKurtosis 

USP05RQ 102 11 0.5 50 3 8.05 2.01 3.60 

USP05FT 58 11 0.5 24 1 3.21 3.03 8.84 

ISBSG 89 20 24 36286 2101 3779.52 3.49 14.74 

COCOMO81 63 17 6 11400 98 683.44 4.47 21.87 

where δ(P��, P��) is the hamming distance between	P��  and	P��. 
The Hamming distance between two sets of binary digits is 

the number of corresponding binary digit positions that differ 

divided by the number of comparisons made [31]  

The case adaptation step matches the imputation phase. First, 

we decide on the number of analogous projects, k. we varied 

k from 1 to 5. Thereafter, to impute the missing values, we 

had to decide also on the adaptation strategy. For numerical 

attributes, we choose the weighted mean since it allows the 

higher similar projects to have more influence than the lower 

ones. For categorical attributes, we imputed a missing value 

with the attribute value of the most similar project to the 

incomplete project. 

d) SVR imputation 

Support vector machine has been developed by [32] and it is 

a supervised learning approach based on statistical theory.  It 

has been gaining popularity due to its attractive features and 

promising empirical performance. Based on the structural 

risk minimization (SRM) principle, SVM is able to control 

the complexity of the model and its generalization ability, 

which can be used for solving two-class or multi-class 

classification and regression problems in various fields [33]–

[35]. SVM possesses many advantages including fast-

learning, global optimization, and excellent generalization 

abilities due to minimizing the tradeoff between the 

complexity of the model and its generalization ability 

compared with other approaches such as artificial neural 

networks [36], linear regression and radial Basis functions 

neural networks (RBFNs) [37]. 

With the introduction of Vapnik’s ε-insensitivity loss 

function, the regression model of SVMs, called support 

vector regression (SVR), has received increasing attention to 

solve nonlinear regression problems. The investigation of 

SVR for software development effort estimation was 

originally carried out by Oliveira [37]. They found that SVR 

outperforms both linear regression and RBFNs for software 

effort estimation over NASA data set.   

 

 

Figure 1 KNN imputation process 

 

The main challenge when dealing with SVR is how to solve 

the dual problem [38]. The traditional quadratic programming 

(QP) algorithms solvers are slow, particularly for large 

problems[34], [35]. In addition, those algorithms can be 

complex, subtle, and difficult for an engineer to implement 

[34].  
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Specific algorithms were developed in order to make easier 

the use of SVR, such as Vapnik’s chunking [39] and Osuna’s 

decomposition [40]. Those algorithms make the training of 

SVR possible by breaking the large QP problem into a series 

of smaller QP ones and optimizing only a subset of training 

data patterns at each step. The subset of training data patterns 

optimized at each step is called the working set. Thus, these 

approaches are categorized as the working set methods. 

Based on the idea of the working set methods, [34] proposed 

the Sequential Minimal Optimization (SMO) algorithm that 

selects the size of the working set as two and uses a simple 

analytical approach to solve the reduced smaller QP 

problems. Thereafter, [38] ascertained inefficiency associated 

with Platt’s SMO and suggested a modified version of SMO 

that can solve the SVR QP problem without any extra matrix 

storage and without using numerical QP optimization steps at 

all. Hence, this work  uses the SMO-SVR algorithm of [38]. 

Moreover, An important factor that influences the 

performance of SVR is how to adequately select model 

parameters (C, ε, γ), which play an important role for a good 

generalization performance [41]. This paper uses a selection 

methodology based on Particle Swarm Optimization (PSO) to 

search global solutions of the optimal parameters (ε, C, γ) 

[42], [43]. 

Before proceeding to imputation, SVR transforms categorical 

variable into numerical ones. In fact, SVR maps each 

possible value for a categorical attribute into a number. 

Unlike KNN imputation technique, SVR imputation (SVRI) 

requires building a model for each missing value in the 

dataset.  Fig.2 shows the imputation method based on SMO-

SVR. Let X be a N×D matrix of N projects described by d 

attributes. For each attribute i, we construct: 

1. A complete dataset, Complete_X�	containing all projects P� for which the values )*,+  were not missing. 

2. An incomplete dataset, Incomplete_X�,	containing all 

projects P� for which the values )*,+  were missing 

Next, the i-. attribute X� is set as the dependent attribute of 

Complete_X�	and Incomplete_X� datasets. Then, the SMO-

SVR model is trained using Complete_X�. Firstly, the PSO 

algorithm is used to determine the optimal values of ε, C and 

γ. Next, those optimal values were used to train the SMO-

SVR model. Finally, the missing values were imputed by the 

SMO-SVR model by using the Incomplete_X�	as the test set. 

C. Step 3: EBA accuracy evaluation using SA 

The accuracy of EBA was assessed using the Jackknife 

method in which the target project is excluded from the 

historical dataset and its effort estimation is calculated using 

the actual effort values of the remaining projects[44].  

The accuracy of EBA was assessed in four steps: 

1) Evaluation using SA 

The first evaluation step aims to compare the accuracy of 

EBA  with random guessing using the Standardized Accuracy 

(SA) suggested by Shepperd and MacDonell [45]. SA 

evaluates how good a SDEE technique is in comparison to 

random guessing. It is based on the Mean of Absolute Error 

(MAE) and is defined by Equation (4): 

 

 

SA12 = 1 −	 MAE62789:::::::;< 		× 100			(4) 
where 789@A  is defined to be the MAE of the estimation 

method �+  and 789@B  is the mean of a large number of (in 

our case 1000) random guessing. In the random guessing 

procedure, a training instance is randomly chosen with equal 

probability from the training set and its effort value is used as 

the estimate of the test instance. SA gives us an idea of how 

good an estimation method is in comparison to random 

guessing. Since the term 789@A is in the nominator, the 

higher the SA values, the better an estimation method is. 

The interpretation of SA is that the ratio represents how much 

better it is as a predictive model (�+  ) than the mean or 

random guessing (�<). A value close to zero is discouraging 

and a negative value would be worrisome. The positive sign 

of SA means the predictive models are better than mean or 

random guessing. Meanwhile the negative sign is shows how 

bad the predictive models are against the mean as an 

estimator. Unlike MRE-based error measures which have 

been criticized for being biased and favoring 

underestimation, SA is an unbiased and standardized 

accuracy measure. 

2) Hypothesis testing 

The second step aimed to statistically investigate the 

significance of the results found in step 1. Awareness about 

statistical validation of the published results had increased 

among machine learning researchers, in particular is software 

effort estimation [46].  

Hypothesis testing is the process of inferring from a sample 

whether or not a given statement about the population 

appears to be true [47]. The first step in hypothesis testing is 

Incomplete 

Dataset

CDEFGHIH_J+  
(Training Set) 

KLMDEFGHIH_J+  
(Test Set) 

Predict the missing 

Value using the 
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Is  )*,+  
missing ? PSO 

Optimized (ε, C, γ) 

Complete 

Dataset

Figure 2 SVR imputation process 
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establishing a null hypothesis. The null hypothesis is 

typically a statement contrary to what the researcher is 

attempting to confirm; we assume the null hypothesis to be 

true, and use data to try and refute it [47]. The statement that 

the researcher would like to prove is called the alternative 

hypothesis. We often establish a significance level (i.e. α-

levels). It is is a limit on how unusual a result we will accept. 

An α-level of 0.05 means that if our observations from our 

collected data would occur less than 5% of the time given 

that the null hypothesis is true, then we will reject the null 

hypothesis [47]. 

However, null hypothesis testing is not sufficient to analyze 

and interpret data. A more refined goal of statistical analysis 

is to provide an evaluation of certainty or uncertainty of the 

size of an effect [45],[48]. The American Psychological 

Association (2001) has suggested that researchers report the 

confidence interval for research data. A confidence interval is 

an inference to a population in terms of an estimation of 

sampling error. More specifically, it provides a range of 

values that fall within the population with a level of 

confidence of 100*(1 - α) % (i.e. the level of confidence is 

95% for α =0.05). Confidence intervals (CIs) offer much 

more information and allow us to move beyond dichotomous 

thinking and adopt an “estimation thinking”. Estimation 

thinking focuses on how big an effect is; this is usually more 

valuable than knowing whether or not the effect is zero, 

which is the focus of dichotomous thinking. Confidence 

intervals convey information about magnitude and precision 

of effect simultaneously, keeping these two aspects of 

measurement closely linked [49]–[51]. 

This study used the Wilcoxon statistical test which is a non-

parametric procedure used to test whether there is sufficient 

evidence that the median of two probability distributions 

differ in location [52]. All statistical tests were two-sided and 

performed at α=0.05 significance level. Confidence intervals 

were calculated using Hodges-Lehmann estimates of shift 

[53], [54].  To adjust for multiple testing, we used the Holm-

Bonferroni method [55].  

 

3) Effect size results 

To verify how meaningful is the improvement and how 

important are the results, the effect size criterion defined by 

Equation (5) was used: 

N =	OPQRSTUVBW@B                                                                (5) 

where X�< is the sample standard deviation of the random 

guessing. The ∆ values can be interpreted in terms of the 

categories proposed by Cohen [56] of small (around 0.2), 

medium (around 0.5) and large (around 0.8). A medium or 

large value of ∆ indicates an acceptable degree of confidence 

on the model predictions over random guessing. 

D. Step 4: EBA accuracy evaluation using Borda Count 

The use of SA enabled us to explore the influence of the 

missingness mechanisms and MD percentages and techniques 

on the prediction ability of the EBA technique. In fact, SA 

determines if EBA is reasonable (i.e., is actually predicting, 

and how much better is it than random guessing), but does 

not evaluate its accuracy [16]. Thus, SA alone is not 

sufficient to conclude about EBA accuracy and should be 

used with other metrics [15], [16].  

Hence, we evaluated The EBA technique using a set of 

reliable accuracy measures that are believed to be less 

sensitive to bias and asymmetry. These measures are: 

Pred(0.25), Mean Absolute Error (MAE), Mean Balanced 

Relative error (MBRE), Mean Inverted Balanced Relative 

Error (MIBRE) and logarithmic standard deviation (LSD) as 

shown in Equations (8)–(12), respectively. Using a set of 

accuracy measures would ensure that different aspects are 

captured and would give more confidence in the results 

obtained compared with using only one accuracy measure. 

Similar approach was used in [57]–[59]. 

We evaluated the EBA variants (i.e. with four MD techniques 

and three missingness mechanisms) according to those 

performance measures and used Borda counting method to 

rank them over the four datasets in order to identify which 

variants were the most accurate. The Borda count method 

was used for the first time in SDEE by Azzeh et al. [59] and 

then by Idri et al. [58] and it allows to take into consideration 

different aspects of prediction performance since it is based 

on five performance measures. 89+ =	 |H+ − Ĥ+|       (6)        7[9 = P\A]A                                            (7) 

�^H_(0.25) = �<<b ∑ c1	de	7[9+ ≤ 0.250	DIℎH^hdiH jb+!�     (8)   

789 = 	 �k∑ 89+k+!�                    (9) 

7l[9 = 	 �b∑ PQAm��	(]A,êA)b+!�                  (10)     

7Kl[9 = 	 �b∑ PQAmno	(]A,êA)b+!�                                          (11)   

pXq = 	r∑ (sAtuvv )vwAxykR�                               (12) 

 

where:  

• H+	andĤ+ are the actual and predicted effort for the ith 

project. 

• z+ = ln(H+	) − ln	(Ĥ+) 
• i� is an estimator of the variance of the residual z+ . 

V. RESULTS 

This section presents and discusses the experimental results 

when evaluating the accuracy of EBA using MD. 

A. EBA Evaluation using SA (RQs 1-3) 

The first objective is to investigate the effect of the MD 

techniques on the accuracy of EBA in terms of SA. Figures 

3a-c show the median SA values for EBA applied to the four 

data sets with three mechanisms of missingness, different 

MD percentages and four MD techniques. In general, we 

notice that the SA values decrease as the MD percentage 

increases regardless the mechanism of missingness. 

For the MCAR mechanism, we observe that the imputation 

techniques outperformed toleration and deletion (SA values 

at 10% of MD: 41% for SVRI, 41% for KNNI, 37% for 

toleration and 34% for deletion). Moreover, Fig.3-a shows 

that toleration outperformed deletion (SA values at 10% of 

MD: 37% for toleration and 34% for deletion). Note that 

SVR and KNN imputations performed almost the same.  
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For MAR mechanism, Fig.3-b shows that the imputation 

techniques have the same performance (SA values at 10% of 

MD: 35% for SVRI, 34% for KNNI). Moreover, they both 

outperformed toleration and deletion (SA values at 10% of 

MD: 31% for Toleration, 31% for Deletion). Moreover, we 

notice that toleration and deletion gave the same 

performance.  

As for NIM mechanism, we notice that the imputation 

techniques gave similar performances (SA values at 10% of 

MD: 32% for SVRI and 32% for KNNI). Moreover, 

toleration and deletion performed the same (SA values at 

10% of MD: 26% for toleration and 27% for deletion). 

1) Hypothesis testing 

In the previous section, we found that imputation techniques 

(KNN or SVR) instead of toleration and deletion improved 

the performance of EBA. This section investigates whether 

this improvement is statistically significant. Moreover, we 

investigate whether the improvement varies with the 

mechanisms of missingness. To do that, we compared the 

median of SA values across data sets for each MD percentage 

using the Wilcoxon t-test. We drew the following hypothesis: 

NH1: The prediction performance of EBA is not affected by 

the MD technique. 

NH2: The prediction performance of EBA when using MD 

techniques is not affected by the mechanism of missingness. 

Each null hypothesis was evaluated separately for the MD 

techniques and the three missingness mechanisms. Tables II 

and III sum up the results of the Wilcoxon t-test conducted to 

evaluate NH1 and NH2 respectively, where p(α) denotes the 

p-value of the Wilcoxon test, α’ denotes the significance level 

corrected by Holm-Bonferroni correction and CI denotes the 

confidence interval. Table II shows the results of Wilcoxon 

test on NH1. We notice that the difference between SVR and 

KNN imputations is not significant regardless of the 

mechanism of missingness. The confidence intervals also 

reflect this finding. We notice that for MCAR and MAR 

mechanisms, the confidence intervals have negative values. 

This means that no imputation technique is always superior to 

the other. For MCAR mechanism, we observe that the 

difference between KNN and SVR is between -1.679 and 

0.416. This means that KNN outperformed SVR by 1.679 

and SVR outperformed KNN by 0.416. The case of MAR is 

the similar to MAR. However, under NIM, we observe that 

SVR outperformed KNN and the magnitude of the difference 

is between 0.484 and 0.7 

Table II also shows that imputation techniques often 

significantly outperformed toleration and deletion. We notice 

that the magnitude of the difference is larger with deletion 

compared to toleration. The improvement given by the 

imputation techniques over toleration/deletion is larger when 

using MCAR or NIM compared to MAR. This is due to the 

fact that, under MCAR mechanism, imputation techniques 

outperformed largely toleration and deletion. Moreover, 

under NIM mechanism, toleration and deletion gave the 

worst results (negative values of SA). Under MAR 

mechanism, the performance of imputation techniques 

decreased and the toleration/deletion gave acceptable 

performance which explains the small CI. 

To evaluate the impact of the missingness mechanisms on the 

accuracy of EBA, Table III reports the results of the 

statistical tests of NH2; it can be noticed that:  

• The difference between MCAR and MAR is significant when 

using SVR, KNN and toleration. However, the difference is 

not significance when using deletion. 

• The difference between MCAR and NIM is in general 

significant. 

• The difference between MAR and NIM is significant for 

SVR, toleration and deletion. However, it is not significant 

in the case of KNN.  

2) Effect size results 

To ensure that the results are not generated by chance and to 

assess if there is effect improvement over random guessing, 

we evaluate the effect size measured by means of Equation 

(5). Table VII reports the median values of the effect size ∆ 

of EBA using the four MD techniques under three 

mechanisms of missingness and nine MD percentages across 

the four datasets where the baseline method is random 

guessing. 

From Table VII, we notice that the ∆ values are higher than 

0.5, which means that the results obtained by EBA in terms 

of SA are more likely not to be due to chance under: 

• MCAR mechanism when using: 1) imputation, 2) 

toleration/deletion with MD percentage less than 80%. 

• MAR mechanism when using: 1) KNN imputation with 

MD percentage less than 90%, 2) SVR imputation, 

toleration or deletion with MD percentage less than 80%.  

• NIM mechanism when using: 1) SVR/KNN imputation 

with MD percentage less than 90%, 2) toleration with MD 

percentage less than 60%, 3) deletion with MD percentage 

less than 70%. 

B.  EBA  Evaluation using Borda Count (RQ4) 

Although SA results would confirm if EBA outperform 

random guessing, they are not sufficient to conclude about 

the accuracy of EBA [15], [16]. This section evaluates EBA 

with four MD techniques and three missingness mechanisms 

using a set of reliable performance measures as explained in 

Section V.C. Thereafter, we rank the four variants of EBA 

(i.e. with the four MD techniques) using the Borda count 

method. Table VI shows the ranking over the four datasets. 

We notice that EBA with SVR imputation generally 

outperformed the other EBA variants except for USP05FT 

under MAR and USP05RQ under NIM. 

Moreover, we notice that toleration generally improves the 

EBA accuracy compared to deletion except for ISBSG under 

MAR/NIM and USP05FT under NIM. 

Furthermore, we compared the four EBA variants across the 

four datasets. Table VII shows the results of this ranking. We 

notice that EBA with SVR imputation was the best, followed 

by KNN imputation, toleration and lastly deletion regardless 

the missingness mechanisms.  
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Figure 3(a-c) SA values of Classical Analogy applied to four data sets with three mechanisms of missingness, different MD percentages and four MD 

techniques

TABLE III Results of Wilcoxon test of NH2 
  KNN Toleration Deletion 

  p(α)/ α’ Z CI p(α)/ α’ Z CI p(α)/ α’ z CI 

 Min Max Min Max Min Max 

MCAR SVR 0.123/0.05 1.540 -1.679 0.416 0.008/0.0167 2.666 3.688 5.783 0.008/0.01 2.666 5.097 9.408 

KNN     0.008/0.0125 2.666 2.996 4.911 0.008/0.0083 2.666 4.879 9.060 

Toleration         0.011/0.025 2.547 1.012 4.491 

MAR SVR 0.499/0/025 0.676 -0.766 0.362 0.008/0.0125 2.666 1.842 4.759 0.008/0.01 2.666 1.780 4.217 

KNN     0.011/0.0167 2 .547 1.264 4.814 0.008/0.0083 2.666 1.387 4.438 

Toleration         0.767/0.05 0.296 -1.299 1.230 

NIM SVR 0.790/0.05 0.757 0.484 0.700 0.008/0.0167 2.666 3.530 6.160 0.008/0.01 2.666 3.262 5.508 

KNN     0.008/0.0125 2.666 2.836 6.782 0.008/0.083 2.666 2.509 6.069 

Toleration         0.515/0.025 0.652 -0.732 1.206 

TABLE IV Results of Wilcoxon test of NH1 

  MAR NIM 

  p(α)/ α’ Z CI p(α)/ α’ Z CI 

 Min Max Min Max 

SVR MCAR 0.008/0.0167 2.666 2.126 5.292 0.008/0.025 2.666 3.088 7.783 

MAR     0.038/0.05 2.073 0.004 3.222 

KNN MCAR 0.008/0.0125 2.666 1.909 5.071 0.008/0.025 2.666 2.855 6.884 

MAR     0.086/0.05 1.718 -0.200 3.108 

Toleration MCAR 0.008/0.05 2.666 1.121 4.135 0.008/0.025 2.666 3.350 8.043 

MAR     0.008/0.0167 2.666 1.828 4.558 

Deletion MCAR 0.314/0.05 1.007 -1.050 2.001 0.021/0.025 2.310 0.381 3.919 

MAR     0.008/0.0167 2.666 1.900 4.194 

TABLE V Median values of effect size of EBA across the four datasets based on comparison with random guessing baseline method 

 MCAR    MAR    NIM    

 SVRI KNNI Toleration Deletion SVRI KNNI Toleration Deletion SVRI KNNI Toleration Deletion 

10% -2.34 -2.43 -2.1 -2.06 -2.28 -2.49 -1.98 -1.93 -2.09 -2.4 -1.76 -1.76 

20% -2.15 -1.89 -1.82 -1.53 -1.95 -2.07 -1.49 -1.68 -1.84 -1.72 -1.49 -1.49 

30% -2 -1.58 -1.53 -1.27 -1.74 -1.6 -1.27 -1.32 -1.48 -1.33 -1.19 -1.28 

40% -1.62 -1.27 -1.27 -0.91 -1.45 -1.51 -1.08 -1.18 -1.19 -1.28 -0.82 -1.01 

50% -1.29 -0.99 -1.04 -0.82 -1.04 -1.16 -0.81 -0.94 -1.06 -0.96 -0.63 -0.76 

60% -1.08 -0.89 -0.9 -0.67 -0.85 -0.94 -0.71 -0.83 -0.82 -0.75 -0.48 -0.63 

70% -0.83 -0.8 -0.65 -0.63 -0.69 -0.67 -0.55 -0.7 -0.71 -0.64 -0.46 -0.43 

80% -0.64 -0.71 -0.4 -0.43 -0.45 -0.63 -0.4 -0.4 -0.59 -0.56 -0.2 -0.16 

90% -0.56 -0.55 -0.28 -0.26 -0.35 -0.47 -0.06 -0.18 -0.4 -0.47 -0.09 -0.05 
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TABLE VI Borda Count ranking of the four MD techniques under the three missingness mechanisms. 

 EBA 

 MCAR MAR NIM 

  SVRI KNNI Toleration Deletion SVRI KNNI Toleration Deletion SVRI KNNI Toleration Deletion 

ISBSG 1 3 2 4 1 3 4 2 1 2 4 3 

COCOMO81 1 2 3 4 1 3 2 4 1 2 3 4 

USP05FT 1 2 3 4 2 1 3 4 1 2 4 3 

USP05RQ 1 2 3 4 1 3 2 4 2 1 3 4 

TABLE VII Borda Count ranking of the four MD techniques 

under the three missingness mechanisms across data sets. 

 
 SVRI KNNI Toleration Deletion 

MCAR 1 2 3 4 

MAR 1 2 3 4 

NIM 1 2 3 4 

VI. CONCLUSION AND FUTURE WORK 

This study evaluated EBA using four MD techniques: 

toleration, deletion, KNN imputation, and SVR imputation 

with different percentages (from 10% to 90%) and three 

missingness mechanisms (MCAR, MAR and NIM) on four 

datasets (ISBSG R8, COCOMO81, USP05_FT and 

USP05_RQ) with mixed data (numerical and categorical). 

four research questions RQs 1-4 have been discussed. The 

findings when answering RQs 1-4 are as follows: 

(RQ1): Is there evidence that the use of KNN and SVR 

imputations rather than toleration/deletion improves the 

accuracy of EBA in terms of SA when using mixed datasets? 

We found that EBA with imputation techniques achieved 

significantly better SA values over EBA with toleration or 

deletion regardless of the mechanism of missingness.  

EBA with toleration provided significantly better SA over EBA 

with deletion when the missingness mechanism is MCAR. 

However, under MAR or NIM mechanisms, the improvement 

provided by toleration over deletion is not significant. 

Moreover, EBA outperformed random guessing when using 

imputation techniques. However, when using 

toleration/deletion at high percentages of MD, EBA 

underperformed random guessing.  

(RQ2): Is there evidence that SVR imputation instead of KNN 

imputation would improve EBA accuracy measured in terms of 

SA?  

In terms of SA, we found that the performance difference 

between the imputation techniques KNN and SVR was not 

significant.  

(RQ3): Is there evidence that the missingness mechanism and 

the MD percentage affect the accuracy of EBA measured in 

terms of SA over mixed datasets? 

We found that EBA with MCAR instead of MAR achieved 

significantly better SA values when using imputation or 

toleration. However, when using deletion, the improvement of 

EBA with MCAR instead MAR is not significant. EBA with 

MCAR instead of NIM achieved significantly better SA values 

regardless of the MD technique used. EBA with MAR instead 

of NIM achieved significantly better SA values when using 

toleration/deletion. However, when using imputation, the 

difference is not significant. 

(RQ4): Does the performance of EBA in terms of Pred(0.25), 

MAE, MBRE, MIBRE and LSD confirm the findings of SA? 

When using the Borda count based on five accuracy criteria, 

we found that EBA with SVR was the best, followed by KNN 

imputation. We also notice that toleration instead of deletion 

improves the accuracy of EBA. These findings confirm those 

of [14], [15] stating that different measures capture different 

aspects of EBA performance: SA determines if a technique is 

reasonable (i.e., is actually predicting, and how much better is 

it than random guessing) while other accuracy metrics measure 

how close a prediction is to its correct value.  

Future work aims to confirm our finding with different variants 

of EBA techniques (e.g. Fuzzy Analogy) and other software 

effort estimation techniques. Moreover, other imputation 

techniques may give different results. 
 

REFERENCES 

[1] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra, “Research patterns 

and trends in software effort estimation,” Inf. Softw. Technol., vol. 
91, p. , 2017. 

[2] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature 

review of machine learning based software development effort 
estimation models,” Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59, 

2012. 

[3] A. Idri, F. A. Amazal, and A. Abran, “Analogy-based software 

development effort estimation: A systematic mapping and review,” 

Inf. Softw. Technol., vol. 58, pp. 206–230, 2014. 

[4] F. A. Amazal, A. Idri, and A. Abran, “Improving Fuzzy Analogy 

based Software Development Effort Estimation,” in 21st Asia-Pacific 

Software Engineering Conference (APSEC), 2014, pp. 1–4. 

[5] F. A. Amazal, A. Idri, and A. Abran, “An analogy-based approach to 

estimation of software development effort using categorical data,” in 

Joint Conference of the International Workshop on Software 

Measurement and the International Conference on Software Process 

and Product Measurement, 2014, pp. 252–262. 

[6] A. Idri and A. Abran, “Evaluating software project similarity by 

using linguistic quantifier guided aggregations,” Proceedings Joint 

9th IFSA World Congress and 20th NAFIPS International 

Conference, Volume: 1, 2001, pp. 470 - 475. 

 [7] A. Idri, F. A. Amazal, and A. Abran, “Accuracy Comparison of 

Analogy-Based Software Development Effort Estimation 

Techniques,” Int. J. Intell. Syst., vol. 31 (2), pp. 128–152, 2016. 

[8] A. Idri, I. Abnane, and A. Abran, “Missing data techniques in 

analogy-based software development effort estimation,” J. Syst. 

Softw., vol. 117, pp. 595–611, 2016. 

[9] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter, “A flexible method 

for software effort estimation by analogy,” Empir. Softw. Eng., vol. 

12, no. 1, pp. 65–106, 2007. 

[10] M. Shepperd and C. Schofield, “Estimating Software Project Effort 

Using Analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 12, pp. 736–

743, 1997. 

[11] A. Idri and I. Abnane, “Fuzzy Analogy Based Effort Estimation: An 

Empirical Comparative Study,” in IEEE International Conference on 

Computer and Information Technology (CIT), 2017, pp. 114–121. 
[12] F. A. Amazal, A. Idri, and A. Abran, “Software Development Effort 

Estimation Using Classical and Fuzzy Analogy: a Cross-Validation 

Comparative Study,” Int. J. Comput. Intell. Appl., vol. 13, no. 3, p. 

IBTISSAM ABNANE, ALI IDRI: IMPROVED ANALOGY-BASED EFFORT ESTIMATION WITH INCOMPLETE MIXED DATA 1023



1450013, 2014.

[13] J. Li, A. Al-Emran, and G. Ruhe, “Impact Analysis of Missing Values

on  the  Prediction  Accuracy  of  Analogy-based  Software  Effort

Estimation  Method  AQUA,”  First  Int.  Symp.  Empir.  Softw.  Eng.

Meas. (ESEM 2007), pp. 126–135, 2007.

[14] I.  Abnane  and  A.  Idri,  “Evaluating  Fuzzy  Analogy  on  Incomplete

Software Projects data,” in IEEE Symposium Series on Computational

Intelligence (SSCI), 2016.

[15] M. Azzeh and A. B. Nassif, “A hybrid model for estimating software

project effort from Use Case Points,” Appl. Soft Comput. J., pp. 1–9,

2016.

[16] A.  Idri,  I.  Abnane,  and  A.  Abran,  “Evaluating  Pred(p)  and

standardized  accuracy  criteria  in  software  development  effort

estimation,” J. Softw. Evol. Process, no. September, 2017.

[17] R.  J.  A.  Little  and  D.  .  Rubin,  “Statistical  Analysis  with  Missing

Data,” Wiley, New York., 1987.

[18] D.  .  Little,  R.J.A.,  Rubin,  “Analysis  of  social  science  data  with

missing values,” Sociol. Methods Res., pp. 292–326, 1989.

[19] G.  Molenberghs  and  M.  G.  Kenward,  Missing  Data  in  Clinical

Studies, vol. 61. John Wiley & Sons, 2007.

[20] Q. Song, M. Shepperd, X. Chen, and J. Liu, “Can k-NN imputation

improve the  performance  of  C4.5  with  small  software  project  data

sets? A comparative evaluation,” J. Syst. Softw., vol. 81, no. 12, pp.

2361–2370, 2008.

[21] A.  Idri,  I.  Abnane,  and  A.  Abran,  “Systematic  Mapping  Study  of

Missing  Values  Techniques  in  Software  Engineering  Data,”  in

International  Conference  on  Software  Engineering,  Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD),

2015 16th IEEE/ACIS, 2015, pp. 1–8.

[22] J. Schafer, Analysis of Incomplete Multivariate Data. 1997.

[23] B.  W.  Boehm,  “Software  Engineering  Economics,”  IEEE  Trans.

Softw. Eng., vol. SE-10, no. 1, 1984.

[24] L.  C.  Briand,  K.  El  Emam,  D.  Surmann,  I.  Wieczorek,  and K.  D.

Maxwell, “An assessment and comparison of common software cost

estimation modeling techniques,” Proc. 21st Int. Conf. Softw. Eng. -

ICSE ’99, pp. 313–322, 1999.

[25] E.  Mendes,  “A Comparative  Study  of  Cost  Estimation  Models  for

Web Hypermedia Applications,” Empir. Softw. Eng., vol. 8, no. 2, pp.

163–196, 2003.

[26] M. Azzeh and Y. Elsheikg,  “Learning Best  K analogies  from Data

Distribution  for  Case-Based  Software  Effort  Estimation,”  in  The

Seventh International Conference on Software Engineering Advances,

2012, no. 2, pp. 341–347.

[27] L. Angelis and I. Stamelos, “A Simulation Tool for Efficient Analogy

Based Cost Estimation,” Empir. Softw. Eng., vol. 5, no. 1, pp. 35–68,

2000.

[28] G.  K.  Michelle,  M.  Cartwright,  and  L.  Chen,  “Experiences  Using

Case-Based Reasoning to Predict Software Project Effort,” no. Ml, pp.

1–22, 2000.

[29] A.  Idri,  A.  Abran,  and  T.  M.  Khoshgoftaar,  “Investigating  soft

computing  in  case-based  reasoning  for  software  cost  estimation,”

International Journal of Engineering Intelligent Systems for Electrical

Engineering and Communications, 10 (3), 2002. p. 147-157. 

[30] A.  Idri,  A.  Zahi,  and  E.  Mendes,  A.  Zakrani,   “Software  Cost

Estimation Models Using Radial Basis Function Neural Networks”,

Mensura-IWSM: Software Process and Product Measurement , 2007,

pp 21-31.

[31] S.  Yenduri,  “an  Empirical  Study  of  Imputation  Techniques  for

Software Data Sets,” Louisiana State, 2005.

[32] V. N. Vapnik, The Nature ofStatistical Learning Theory. New York,

1995.

[33] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,

“Improvements  to  the  SMO algorithm for  SVM regression,”  IEEE

Trans. Neural Networks, vol. 11, no. 5, pp. 1188–1193, 2000.

[34] J.  C.  Platt,  “Sequential  minimal optimization:  A fast  algorithm for

training  support  vector  machines,”  Adv.  Kernel  MethodsSupport

Vector Learn., vol. 208, pp. 1–21, 1998.

[35] A. Smola and B. Scholkopf, “A tutorial on support vector regression,”

Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[36] X.  Chen,  Q.  Zhou,  and  H.  Xiao,  “Combination  of  Support  Vector

Regression  with  Particle  Swarm  Optimization  for  Hot-spot

temperature  prediction  of  oil-immersed  power  transformer,”  Prz.

Elektrotechniczny, no. 8, pp. 172–176, 2012.

[37] A. L. I. Oliveira, “Estimation of software project effort with support

vector regression,” Neurocomputing,  vol.  69, no.  13–15,  pp. 1749–

1753, 2006.

[38] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,

“Improvements to platt’s SMO algorithm for SVM classifier design,”

1999.

[39] V.  N.  Vapnik,  “An overview of  statistical  learning  theory.,”  IEEE

Trans. Neural Netw., vol. 10, no. 5, pp. 988–99, 1999.

[40] E.  Osuna,  R.  Freund,  and  F.  Girosi,  “Training  support  vector

machines:  an  application  to  face  detection,”  in  IEEE  Computer

Society  Conference  on  Computer  Vision  and  Pattern  Recognition,

1997, pp. 130–136.

[41] H.  Hsieh,  T.  Lee,  and  T.-S.  Lee,  “A  Hybrid  Particle  Swarm

Optimization  and  Support  Vector  Regression  Model  for  Financial

Time Series Forecasting,” Int. J. Bus. Adm., vol. 2, no. 2, pp. 48–56,

2011.

[42] C. W. Hsu, C. . Chang, and C. J. A. Lin, “A practical guide to support

vector classification.,” 2003.

[43] Q. Zong, W. Liu, and L. Dou, “Parameters selection for SVR based on

PSO,” in 6th World Congress on Intelligent Control and Automation,

2006, no. 1, pp. 2811–2814.

[44] E.  Kocaguneli  and  T.  Menzies,  “Software  effort  models  should  be

assessed via leave-one-out validation,” J. Syst. Softw., vol. 86, no. 7,

pp. 1879–1890, 2013.

[45] M. Shepperd  and  S.  MacDonell,  “Evaluating  prediction  systems in

software project estimation,” Inf. Softw. Technol., vol. 54, no. 8, pp.

820–827, 2012.

[46] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data

Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[47] G. M. Foody, “Classification accuracy comparison: Hypothesis tests

and  the  use  of  confidence  intervals  in  evaluations  of  difference,

equivalence  and  non-inferiority,”  Remote  Sens.  Environ.,  vol.  113,

no 8, pp. 1658–1663, 2009.

[48] S. Greenland et al., “Statistical tests,  P values, confidence intervals,

and power: a guide to misinterpretations,” Eur. J. Epidemiol., vol. 31,

no. 4, pp. 337–350, 2016.

[49] C.  J.  Geyer,  “Nonparametric  Tests  and  Confidence  Intervals,”  In

Pract., pp. 1–14, 2003.

[50] G. Cumming and S. Finch, “Inference by eye: Confidence intervals

and how to read pictures of data.,” Am. Psychol., vol. 60, no. 2, pp.

170–180, 2005.

[51] M. J. Gardiner and D. G. Altman, Statistics with confidence: confi-

dence intervals and statistical guidelines. 1989.

[52] D. Sheskin, Handbook of Parametric and Non-parametric Procedures.

CRC Press, 1997.

[53] E. Lehmann, “Nonparametrics: Statistical methods based on ranks,”

Prentice Hall New Jersey, 1998.

[54] J. L. Hodges and E. L. Lehmann, “Estimates of Location Based on

Rank Tests,” Ann. Math. Stat., 1963.

[55] H.  Abdi,  “1  Overview  2  Preliminary :  The  different  meanings  of

alpha,” Encycl. Res. Des., pp. 1–8, 2010.

[56] J. Cohen, “Quantitative Methods in Psychology,” Psychol. Bull., vol.

112, no. 1, pp. 155–159, 1992.

[57] M.  Hosni,  A.  Idri,  A.  Abran,  and  A.  B.  Nassif,  “On the  value  of

parameter tuning in heterogeneous ensembles effort estimation,” Soft

Computing, Springer Berlin Heidelberg, pp. 1–34, 2017.

[58] A. Idri, M. Hosni, and A. Abran, “Improved Estimation of Software

Development Effort Using Classical and Fuzzy Analogy Ensembles,”

Appl. Soft Comput., vol. 49, pp. 990–1019, 2016.

[59] M. Azzeh, A. B. Nassif, and L. L. Minku, “An empirical evaluation of

ensemble adjustment methods for analogy-based effort estimation,” J.

Syst. Softw., vol. 103, pp. 36–52, 2015.

1024 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


