Nothing Special   »   [go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 21, 2018

Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem

  • Rahul Biswas , Asha K. Dond and Thirupathi Gudi EMAIL logo

Abstract

In finite element approximation of the Oseen problem, one needs to handle two major difficulties, namely, the lack of stability due to convection dominance and the incompatibility between the approximating finite element spaces for the velocity and the pressure. These difficulties are addressed in this article by using an edge patch-wise local projection (EPLP) stabilization technique. The article analyses the EPLP stabilized nonconforming finite element methods for the Oseen problem. For approximating the velocity, the lowest-order Crouzeix–Raviart (CR) nonconforming finite element space is considered; whereas for approximating the pressure, two discrete spaces are considered, namely, the piecewise constant polynomial space and the lowest-order CR finite element space. The proposed discrete weak formulation is a combination of the standard Galerkin method, EPLP stabilization and weakly imposed boundary condition by using Nitsche’s technique. The resulting bilinear form satisfies an inf-sup condition with respect to EPLP norm, which leads to the well-posedness of the discrete problem. A priori error analysis assures the optimal order of convergence in both the cases, that is, order one in the case of piecewise constant approximation and 32 in the case of CR-finite element approximation for pressure. The numerical experiments illustrate the theoretical findings.

Funding statement: The second author gratefully acknowledges financial support from the National Board for Higher Mathematics (NBHM), Government of India.

A Appendix

The H1- and L2-stability of the L2-orthogonal projection Jh:L2(Ω)CR1(𝒯) lead to the following approximation properties for locally quasi-uniform plus shape-regular meshes.

Lemma A.1 (L2-Orthogonal Projections).

The L2-projection Jh:L2(Ω)CR1(T) satisfies

h𝒯-1(w-Jhw)+h(w-Jhw)Ch𝒯w2for all wH2(Ω).

Further, the trace inequality (2.5) over each edge implies

(ehhe-1w-JhwL2(e)2)12Ch𝒯32wfor all wH2(Ω).

Proof.

The L2-orthogonal projection Jh:L2(Ω)CR1(𝒯) exhibits the following H1- and L2-stability properties [2, Theorem 4.1,4.2], [12, Theorem 4]:

  1. Jhvv,

  2. h𝒯-1JhvCh𝒯-1v,

  3. hJhvChv.

Let Πh be any local quasi-interpolation. Then

(A.1)v-Πhv+h𝒯(v-Πhv)1Ch𝒯2v2.

Since w-Jhw is L2-orthogonal to CR1(𝒯), we have

w-Jhw2=(w-Jhw,w-Jhw)=(w-Jhw,w-Πhw).

Then the Cauchy–Schwarz inequality and (A.1) imply w-Jhww-ΠhwCh𝒯2w2. Using the quasi-interpolation, the triangle inequality and the H1 stability property (c), we find

h(w-Jhw)=h(w-Πhw)+hJh(Πhw-w)
(A.2)h(w-Πhw)+Ch(Πhw-w)Ch𝒯w2.

The weighted L2-stability as defined in (b) gives

h𝒯-1(w-Jhw)h𝒯-1(w-Πhw)+h𝒯-1Jh(w-Πhw)
(A.3)h𝒯-1(w-Πhw)+Ch𝒯-1(w-Πhw)Ch𝒯w2.

The trace inequality over each edge and (A.2)–(A.3) imply

ehhe-1(w-Jhw)L2(e)C(h𝒯-1(w-Jhw)+((w-Jhw)))Ch𝒯32w2.

This concludes the proof. ∎

Remark A.2.

For 𝐰[CR1(𝒯)]2, the trace inequality implies

|ehehe|(𝐰-𝐉h𝐰)𝐧|2ds|ehhe(𝐰-𝐉h𝐰)L2(e)2
(A.4)C(𝐰-𝐉h𝐰12+hT2𝐰-𝐉h𝐰22).

The estimate for the first part on the right-hand side of (A.4) follows from (A.2). In the second part, a use of the inverse inequality and the H1-stability of the L2-projection as defined in (c) result in

hT(𝐰-𝐉h𝐰)2hT(𝐰-Πh𝐰)2+hT𝐉h(𝐰-Πh𝐰)2
hT(𝐰-Πh𝐰)2+𝐉h(𝐰-Πh𝐰)1Ch𝒯𝐰2.

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. 10.1137/S0036142901384162Search in Google Scholar

[2] R. E. Bank and H. Yserentant, On the H1-stability of the L2-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. 10.1007/s00211-013-0562-4Search in Google Scholar

[3] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 38 (2001), no. 4, 173–199. 10.1007/s10092-001-8180-4Search in Google Scholar

[4] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544–2566. 10.1137/050631227Search in Google Scholar

[5] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4–6, 853–866. 10.1016/j.cma.2006.07.011Search in Google Scholar

[6] J. H. Bramble, J. E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω), Math. Comp. 71 (2002), no. 237, 147–156. 10.1090/S0025-5718-01-01314-XSearch in Google Scholar

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar

[8] E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012–2033. 10.1137/S0036142903437374Search in Google Scholar

[9] E. Burman, M. A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations, SIAM J. Numer. Anal. 44 (2006), no. 3, 1248–1274. 10.1137/040617686Search in Google Scholar

[10] E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy–Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997. 10.1002/num.20076Search in Google Scholar

[11] E. Burman and P. Hansbo, A stabilized non-conforming finite element method for incompressible flow, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 23–24, 2881–2899. 10.1016/j.cma.2004.11.033Search in Google Scholar

[12] C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for H1-stability of the L2-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157–163. 10.1090/S0025-5718-01-01316-3Search in Google Scholar

[13] B. Cockburn, G. Kanschat and D. Schötzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comp. 73 (2004), no. 246, 569–593. 10.1090/S0025-5718-03-01552-7Search in Google Scholar

[14] B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations, J. Sci. Comput. 31 (2007), no. 1–2, 61–73. 10.1007/s10915-006-9107-7Search in Google Scholar

[15] B. Cockburn, G. Kanschat and D. Schötzau, An equal-order DG method for the incompressible Navier–Stokes equations, J. Sci. Comput. 40 (2009), no. 1–3, 188–210. 10.1007/s10915-008-9261-1Search in Google Scholar

[16] M. Crouzeix and V. Thomée, The stability in Lp and Wp1 of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. 10.2307/2007825Search in Google Scholar

[17] H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem, IMA J. Numer. Anal. 36 (2016), no. 2, 796–823. 10.1093/imanum/drv032Search in Google Scholar

[18] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar

[19] A. K. Dond and T. Gudi, Patch-wise local projection stabilized finite element methods for convection-diffusion-reaction problem, preprint. 10.1002/num.22317Search in Google Scholar

[20] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. 10.1007/978-1-4757-4355-5Search in Google Scholar

[21] L. P. Franca, V. John, G. Matthies and L. Tobiska, An inf-sup stable and residual-free bubble element for the Oseen equations, SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407. 10.1137/060661454Search in Google Scholar

[22] S. Ganesan, G. Matthies and L. Tobiska, Local projection stabilization of equal order interpolation applied to the Stokes problem, Math. Comp. 77 (2008), no. 264, 2039–2060. 10.1090/S0025-5718-08-02130-3Search in Google Scholar

[23] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar

[24] V. John, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016. 10.1007/978-3-319-45750-5Search in Google Scholar

[25] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987. Search in Google Scholar

[26] P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations, SIAM J. Numer. Anal. 48 (2010), no. 2, 659–680. 10.1137/090767807Search in Google Scholar

[27] P. Knobloch and L. Tobiska, Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem, Numer. Methods Partial Differential Equations 29 (2013), no. 1, 206–225. 10.1002/num.21706Search in Google Scholar

[28] G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742. 10.1051/m2an:2007038Search in Google Scholar

[29] G. Matthies and L. Tobiska, Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem, IMA J. Numer. Anal. 35 (2015), no. 1, 239–269. 10.1093/imanum/drt064Search in Google Scholar

[30] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15. 10.1007/BF02995904Search in Google Scholar

[31] H.-G. Roos, Robust numerical methods for singularly perturbed differential equations: A survey covering 2008–2012, ISRN Appl. Math. 2012 (2012), Article ID 379547. 10.5402/2012/379547Search in Google Scholar

[32] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 2008. Search in Google Scholar

[33] L. Tobiska, Finite element methods of streamline diffusion type for the Navier–Stokes equations, Numerical Methods (Miskolc 1990), Colloq. Math. Soc. János Bolyai 59, North-Holland, Amsterdam (1991), 259–266. Search in Google Scholar

[34] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127. 10.1137/0733007Search in Google Scholar

[35] S. Turek and A. Ouazzi, Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations, J. Numer. Math. 15 (2007), no. 4, 299–322. 10.1515/jnum.2007.014Search in Google Scholar

[36] J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016. Search in Google Scholar

Received: 2017-10-13
Revised: 2018-04-24
Accepted: 2018-06-08
Published Online: 2018-06-21
Published in Print: 2019-04-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.12.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2018-0020/html
Scroll to top button