Nothing Special   »   [go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 12, 2022

Automated maneuvering using model-based control as key to autonomous shipping

Automatisiertes Manövrieren mittels modellbasierter Regelung als Schlüssel für die autonome Schifffahrt
  • Tobias Hahn

    Dipl.-Ing. Tobias Hahn is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on identification and control of maritime systems.

    EMAIL logo
    , Robert Damerius

    Robert Damerius, M. Sc. is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on the design of GNC systems for autonomous vehicles.

    , Carsten Rethfeldt

    Carsten Rethfeldt, M. Sc. is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on the control design of variable buoyancy systems.

    , Agnes U. Schubert

    Dr.-Ing. Agnes U. Schubert works as a research assistant in the field of marine control applications with a focus on modelling and model predictive control as well as the development of ergonomic assistance systems. The marine research is based on earlier experiences in chemical and medical automation.

    , Martin Kurowski

    Dr.-Ing. Martin Kurowski is scientific head of the research group marine control applications at the Institute of Automation at the University of Rostock. The research is focused on modelling and hybrid control of vessels and unmanned surface vehicles.

    and Torsten Jeinsch

    Prof. Dr.-Ing. Torsten Jeinsch holds the Chair of control engineering and is head of the Control Application Center (CAC) at the University of Rostock, Germany. His research interests are digital control, adaptive systems, optimal control and fault-tolerant systems with application to a wide range of fields including a focus on maritime processes.

Abstract

The paper discusses methods to increase the level of automation in ship handling towards autonomous operations with a focus on conventional vessels in maneuvering situations. In this context, a model-based approach for control system design of maneuvering vessels is introduced. The resulting model is applied to a multivariable control system including allocation, feedforward, and feedback modules. The established hybrid control system distinguishes between a transit mode with control in two degrees of freedom in compliance with the prevailing traffic regulations and a dynamic positioning mode in three degrees of freedom for the final stages of a berthing maneuver. The supervisor switches automatically between these two modes. The methods are validated on board the German research vessel DENEB in the port of Rostock.

Zusammenfassung

Der Beitrag diskutiert Methoden zur Erhöhung des Automatisierungsgrades in der Schiffsführung auf dem Weg zu einem möglichen autonomen Fahrbetrieb. Der Schwerpunkt liegt dabei auf Schiffen mit konventionellen Antriebskonfigurationen in Manöversituationen. In diesem Zusammenhang wird ein experimenteller Modellansatz für den Reglerentwurf von manövrierenden Fahrzeugen beschrieben, der in einen modellbasierten Allokations- und Vorsteuerungsentwurf sowie in die Applizierung dezentraler Mehrgrößenregler einfließt. Das hybride Regelungssytem unterscheidet zwischen einem Transitmodus, welcher mittels einer Zwei-Freiheitsgrade-Regelung die Transitfahrt unter Einhaltung der geltenden Verkehrsregeln realisiert, sowie einem Modus zur dynamischen Positionierung, welcher mit einer Drei-Freiheitsgrade-Regelung für die letzte Etappe von Anlegemanövern konzipiert ist. Mittels Supervisor erfolgt die Umschaltung zwischen den Modi automatisch. Die Methoden werden an Bord des deutschen Forschungsschiffes DENEB anhand von komplexen Manövrierexperimenten im Hafen von Rostock validiert.

Award Identifier / Grant number: 50NA1612

Award Identifier / Grant number: 50NA1809

Funding statement: The authors would like to thank the German Federal Ministry for Economic Affairs and Energy (BMWi) and the DLR Space Administration for funding and supporting the project GALILEOnautic I + II under the registration numbers 50NA1612 and 50NA1809.

About the authors

Tobias Hahn

Dipl.-Ing. Tobias Hahn is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on identification and control of maritime systems.

Robert Damerius

Robert Damerius, M. Sc. is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on the design of GNC systems for autonomous vehicles.

Carsten Rethfeldt

Carsten Rethfeldt, M. Sc. is a research assistant at the Institute of Automation at the University of Rostock. The research focuses on the control design of variable buoyancy systems.

Agnes U. Schubert

Dr.-Ing. Agnes U. Schubert works as a research assistant in the field of marine control applications with a focus on modelling and model predictive control as well as the development of ergonomic assistance systems. The marine research is based on earlier experiences in chemical and medical automation.

Martin Kurowski

Dr.-Ing. Martin Kurowski is scientific head of the research group marine control applications at the Institute of Automation at the University of Rostock. The research is focused on modelling and hybrid control of vessels and unmanned surface vehicles.

Torsten Jeinsch

Prof. Dr.-Ing. Torsten Jeinsch holds the Chair of control engineering and is head of the Control Application Center (CAC) at the University of Rostock, Germany. His research interests are digital control, adaptive systems, optimal control and fault-tolerant systems with application to a wide range of fields including a focus on maritime processes.

Acknowledgment

Special thanks go to the crew of the research vessel DENEB and the responsible staff from the Federal Maritime and Hydrographic Agency (BSH) for their openness towards the developments and their tireless support during the trials as well as the fruitful discussions on ship handling.

References

1. Alessandri, A., S. Donnarumma, S. Vignolo, M. Figari, M. Martelli, R. Chiti and L. Sebastiani. 2015. System control design of autopilot and speed pilot for a patrol vessel by using LMIs. In: Proceedings of 16th international congress of the international maritime association of the mediterranean (IMAM 2015), Pola, Croatia.10.1201/b18855-76Search in Google Scholar

2. Berking, B. and W. Huth (eds). 2016. Handbuch Nautik – Navigatorische Schiffsführung, 2. Auflage. DVV Media Group, Seehafen Verlag, Hamburg.Search in Google Scholar

3. BMWi. 2018. Maritime Forschungsstrategie 2025. Bundesministerium für Wirtschaft und Energie, www.bmwi.de.Search in Google Scholar

4. Breivik, M., S. Kvaal and P. Østby. 2015. From Eureka to K-Pos: Dynamic Positioning as a Highly Successful and Important Marine Control Technology. In: Proceedings of the 10th Conference on Manoeuvring and Control of Marine Craft, Copenhagen, Denmark, pp. 313–323.10.1016/j.ifacol.2016.01.001Search in Google Scholar

5. CENELEC. 2014. Maritime navigation and radiocommunication equipment and systems – Track control systems. European Standard EN 62065:2014, European Committee for Electrotechnical Standardization.Search in Google Scholar

6. EquasisStatistics. 2018. The world merchant fleet in 2017. http://www.emsa.europa.eu/equasis-statistics/items.html.Search in Google Scholar

7. Eriksen, B.-O.H. and M. Breivik. 2017. Modeling, Identification and Control of High-Speed ASVs: Theory and Experiments. In: (T.I. Fossen, K.Y. Pettersen and H. Nijmeijer, eds) Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles. Springer International Publishing, Cham, pp. 407–431.10.1007/978-3-319-55372-6_19Search in Google Scholar

8. Finger, G., A.U. Schubert, T. Riebe, S. Fischer, M. Gluch and M. Baldauf. 2020. Consumption and Emission Minimised Ship Manoeuvring. In Proceedings of OCEANS 2020. Singapore.10.1109/IEEECONF38699.2020.9389278Search in Google Scholar

9. Fossen, T.I.. 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons. ISBN 978-1-119-99868-6.10.1002/9781119994138Search in Google Scholar

10. IMO. 1994. Guidelines for vessels with dynamic positioning systems. Technical Report MSC/Circ.645, International Maritime Organization.Search in Google Scholar

11. Johansen, T.A. and T.I. Fossen. 2013. Control allocation – A survey. Automatica 49 (5): 1087–1103. 10.1016/j.automatica.2013.01.035. ISSN 0005-1098.Search in Google Scholar

12. Källström, C. G. 2000. Autopilot and track-keeping algorithms for high-speed craft. Control Eng. Pract. 8: 185–190.10.1016/S0967-0661(99)00167-7Search in Google Scholar

13. Kurowski, M., A. Schubert and T. Jeinsch. 2020. Automated Maneuvering in Confined Waters using Parameter Space Model and Model-based Control. IFAC-PapersOnLine 53 (2): 14495–14500. 10.1016/j.ifacol.2020.12.1452. ISSN 2405-8963. 21st IFAC World Congress.Search in Google Scholar

14. Miller, A.. 2014. Model Predictive Control of the ship’s motion in presence of wind disturbances. Sci. J. Marit. Unive. Szczecin 39 (111): 107–115.Search in Google Scholar

15. Mizuno, N., H. Kakami and T. Okazaki. 2012. Parallel Simulation Based Predictive Control Scheme With Application To Approaching Control For Automatic Berthing. In: Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft, Arenzano, Italy, pp. 19–24.10.3182/20120919-3-IT-2046.00004Search in Google Scholar

16. Naval Command Germany. 2019. Facts and figures on the maritime dependence of the Federal Republic of Germany Annual Report 2019. Technical Report Edition 32, Naval Command Germany.Search in Google Scholar

17. Nguyen, T.D., A.J. Sørensen and S.T. Quek. 2008. Multi-Operational Controller Structure for Station Keeping and Transit Operations of Marine Vessels. IEEE Trans. Control Syst. Technol. 16 (3): 491–498.10.1109/TCST.2007.906309Search in Google Scholar

18. Rethfeldt, C., A.U. Schubert, R. Damerius, M. Kurowski and T. Jeinsch. 2021. System Approach for Highly Automated Manoeuvring with Research Vessel DENEB. In Proceedings of 13th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles (CAMS), Oldenburg, Germany, pp. 1–6.Search in Google Scholar

19. Schubert, A.U., M. Kurowski, M. Gluch, O. Simanski and T. Jeinsch. 2018. Manoeuvring Automation towards Autonomous Shipping. In Proceedings of the 14th International Naval Engineering Conference INEC, International Ship Control Systems Symposium iSCSS, Glasgow, UK, pp. 1–8. 10.24868/issn.2631-8741.2018.020.Search in Google Scholar

20. Schubert, A.U., M. Kurowski, R. Damerius, S. Fischer, M. Gluch, M. Baldauf and T. Jeinsch. 2019. From Manoeuvre Assistance to Manoeuvre Automation. J. Phys. Conf. Ser., Int. Marit. Port Technol. Dev. Conf. Int. Conf. Marit. Auton. Surface Ships MTEC/ICMASS 1357: 1–12. 10.1088/1742-6596/1357/1/012006.Search in Google Scholar

21. ShipandOffshore. 2019. The future of shipping? www.shipandoffshore.net/fileadmin/pdf_Fachartikel/autonomousspo119.pdf/.Search in Google Scholar

22. Sørensen, A. J., S. I. Sagatun and T. I. Fossen. 1996. Design of a Dynamic Positioning System using Model-Based Control. Control Eng. Pract. 4 (3): 359–368. 10.1016/0967-0661(96)00013-5. ISSN 0967-0661.Search in Google Scholar

23. YARA. 2021. YARA Birkeland project. www.yara.com/corporate-releases/yara-to-start-operating-the-worlds-first-fully-emission-free-container-ship/.Search in Google Scholar

24. Young, Peter and J. Willems. 1972. An approach to the linear multivariable servomechanism problem. International Journal of Control. 10.1080/00207177208932211.Search in Google Scholar

Received: 2021-10-15
Accepted: 2022-03-14
Published Online: 2022-05-12
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0146/html
Scroll to top button