Nothing Special   »   [go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 27, 2021

Influence of the road profile accuracy on disturbance compensation in active suspension systems

Einfluss der Straßenprofilgenauigkeit auf die Wirksamkeit von Störgrößenaufschaltungen in aktiven Fahrwerken
  • Felix Anhalt

    Felix Anhalt received the Master’s degree in mechanical engineering from Technical University of Munich in 2016. Since 2017 he has been working as scientific staff at the Chair of Automatic Control at TU Munich. His current research interests are in cloud-supported preview control of active suspension systems.

    ORCID logo EMAIL logo
    and Boris Lohmann

    Boris Lohmann received the Dipl.-Ing. degree in electrical engineering and the Ph. D. (Dr.-Ing.) degree in electrical engineering from the University of Karlsruhe, Karlsruhe, Germany, in 1987 and 1991, respectively. He is a Full Professor and the Head of the Chair of Automatic Control with the Department of Mechanical Engineering, Technical University of Munich, Germany. His research interests include linear and nonlinear control systems design, modeling and model reduction, autonomous driving as well as applications in mechatronics and automotive.

Abstract

By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.

Zusammenfassung

Durch den Einsatz von Störgrößenaufschaltungen in aktiven Fahrwerken können Kenntnisse über das Straßenprofil zur Verbesserung des Fahrkomforts und der Fahrsicherheit genutzt werden. Da das angenommene Straßenprofil niemals perfekt mit dem tatsächlichen Profil übereinstimmen wird, untersuchen wir die Wirksamkeit mehrerer Störgrößenaufschaltungen bei unterschiedlichen Verfälschungen des angenommenen Straßenprofils. Hierzu verwenden wir sowohl synthetische als auch gemessene Straßenprofile und zwei Viertelfahrzeugmodelle unterschiedlicher Komplexität. Zwar lässt sich keine allgemeingültige Aussage über die noch tolerierbare Verfälschung treffen, jedoch identifizieren wir besonders kritische Faktoren und leiten daraus Empfehlungen für den praktischen Einsatz ab.

About the authors

Felix Anhalt

Felix Anhalt received the Master’s degree in mechanical engineering from Technical University of Munich in 2016. Since 2017 he has been working as scientific staff at the Chair of Automatic Control at TU Munich. His current research interests are in cloud-supported preview control of active suspension systems.

Boris Lohmann

Boris Lohmann received the Dipl.-Ing. degree in electrical engineering and the Ph. D. (Dr.-Ing.) degree in electrical engineering from the University of Karlsruhe, Karlsruhe, Germany, in 1987 and 1991, respectively. He is a Full Professor and the Head of the Chair of Automatic Control with the Department of Mechanical Engineering, Technical University of Munich, Germany. His research interests include linear and nonlinear control systems design, modeling and model reduction, autonomous driving as well as applications in mechatronics and automotive.

Acknowledgment

The authors would like to thank Klaus Löhe for the recording and sharing of the road profile data as well as Johannes Strohm for the provision of the FIR-filter-based disturbance compensator and helpful discussions on the topic.

  1. Author contributions: Felix Anhalt designed the study, carried out the simulations and evaluated the results. Boris Lohmann initiated the research project including the topic of this paper and revised the text.

References

1. S. Kashem, R. Nagarajah and M. Ektesabi. Vehicle Suspension Systems and Electromagnetic Dampers. Springer Singapore, Singapore, 2018.10.1007/978-981-10-5478-5Search in Google Scholar

2. C. Jablonowski, C. Schimmel and V. Underberg. The chassis of the all-new AUDI A8. In P.E. Pfeffer, editor, 8th International Munich Chassis Symposium 2017, Proceedings, pages 7–26. Springer Fachmedien Wiesbaden, Wiesbaden, 2017.10.1007/978-3-658-18459-9_2Search in Google Scholar

3. S. Cytrynski, U. Neerpasch, R. Bellmann and B. Danner. Das aktive Fahrwerk des neuen GLE von Mercedes-Benz [The active chassis of the new GLE from Mercedes-Benz]. German. ATZ Automobiltech Z, 120(12):42—45, 2018.10.1007/s35148-018-0171-8Search in Google Scholar

4. M. Pyper, W. Schiffer and W. Schneider. ABC – Active Body Control. Von der Blattfederung zum aktiven System für mehr Fahrsicherheit und Fahrkomfort [ABC - Active Body Control: From leaf springs to an active system for greater ride safety and comfort]. German, volume 24 of Die Bibliothek der Technik. Verlag moderne industrie, Munich, 2003.Search in Google Scholar

5. H. E. Tseng and D. Hrovat. State of the art survey: active and semi-active suspension control. Veh Syst Dyn, 53(7):1034–1062, 2015.10.1080/00423114.2015.1037313Search in Google Scholar

6. M. M. Ahmed and F. Svaricek. Preview optimal control of vehicle semi-active suspension based on partitioning of chassis acceleration and tire load spectra. In 2014 European Conwtrol Conference (ECC). (Strasbourg), pages 1669–1674. IEEE, 2014.10.1109/ECC.2014.6862615Search in Google Scholar

7. K. Çaliskan, R. Henze and F. Küçükay. Potential of road preview for suspension control under transient road inputs. IFAC-PapersOnLine, 49(3):117–122, 2016.10.1016/j.ifacol.2016.07.020Search in Google Scholar

8. A. Hać. Optimal linear preview control of active vehicle suspension. Veh Syst Dyn, 21(1):167—195, 1992.10.1080/00423119208969008Search in Google Scholar

9. K. J. Kitching, D. Cebon and D. J. Cole. An experimental investigation of preview control. Veh Syst Dyn, 32(6):459–478, 1999.10.1076/vesd.32.6.459.4226Search in Google Scholar

10. M. Soh, H. Jang, J. Park, Y. Sohn and K. Park. Development of preview active suspension control system and performance limit analysis by trajectory optimization. Int. J. Automot. Technol., 19(6):1001–1012, 2018.10.1007/s12239-018-0097-xSearch in Google Scholar

11. J. N. Strohm and B. Lohmann. Vorausschauende StorgroBenaufschaltung für die Schwingungsdampfung am Viertelfahrzeug [Proactive disturbance compensator for vibration damping of a quarter-car]. German. at - Automa- tisierungstechnik, 65(8):596—607, 2017.10.1515/auto-2017-0026Search in Google Scholar

12. J. Marzbanrad, G. Ahmadi, H. Zohoor and Y. Hojjat. Stochastic optimal preview control of a vehicle suspension. J Sound Vib, 275(3-5):973–990, 2004.10.1016/S0022-460X(03)00812-5Search in Google Scholar

13. M. Rahman and G. Rideout. Using the lead vehicle as preview sensor in convoy vehicle active suspension control. Veh Syst Dyn, 50(12):1923–1948, 2012.10.1080/00423114.2012.707801Search in Google Scholar

14. D. C. Barton and J. D. Fieldhouse. Automotive Chassis Engineering. Springer International Publishing, Cham, 2018.10.1007/978-3-319-72437-9Search in Google Scholar

15. Verein Deutscher Ingenieure. VDI Guideline 2057: Human Exposure to Mechanical Vibrations – Whole-Body Vibration. Beuth Verlag, Berlin, 2017.Search in Google Scholar

16. M. Mitschke and H. Wallentowitz. Dynamik der Kraftfahrzeuge [Dynamics of Motor Vehicles]. German. Springer Fachmedien Wiesbaden, Wiesbaden, 2014.10.1007/978-3-658-05068-9Search in Google Scholar

17. G. Koch. Adaptive Control of Mechatronic Vehicle Suspension Systems. Shaker, Aachen, 2011.Search in Google Scholar

18. G. Koch, S. Spirk, N. Pletschen and B. Lohmann. Hybrides Fahrwerkskonzept mit Fahrzustandsadaptiver Regelung [Hybrid suspension concept with adaptive control depending on driving condition]. German. ATZ Automobiltech Z, 114(12):1012–1019, 2012.10.1007/s35148-012-0520-ySearch in Google Scholar

19. U. Weist, J. Missel, S. Cytrynski, D. Mehren, T. Schwarz and S. Kern. Fahrkomfort der Extraklasse. ATZextra, 18(5):124–128, 2013.10.1365/s35778-013-0060-4Search in Google Scholar

20. S. Spirk. Modulare vertikaldynamische Regelungskonzepte für ein hybrid aktuiertes Fahrwerk [Modular Vertical Dynamic Control Concepts for a Hybrid Actuated Suspension System]. German. Verlag Dr. Hut, München, 2016.Search in Google Scholar

21. S. Spirk, G. Koch and B. Lohmann. Improving suspension control by an optimal control component and disturbance compensation. IFAC Proc. 44(1):6272—6278, 2011.10.3182/20110828-6-IT-1002.03218Search in Google Scholar

22. International Organization for Standardization. ISO standard 8608:2016: Mechanical vibration – road surface profiles – reporting of measured data. ISO, Geneva, 2016.Search in Google Scholar

23. K. Lohe. Ein modellgestütztes Konzept zur fahrbahnadaptiven Fahrwerksregelung [A Model-based Concept for Road-Adaptive Suspension Control]. German. FAU University Press, Erlangen, 2018.Search in Google Scholar

24. K. Lohe. Road profile adaptive unevenness estimation, suspension control and unevenness parameter identification. Estimation results with the pFAU test trailer. In 9. VDI/VDE-Fachtagung AUTOREG 2019, VDI-Bericht 2349, pages 221—232. VDI Verlag GmbH, Düsseldorf, 2019.Search in Google Scholar

25. F. Anhalt. Influence of the road profile accuracy on the performance of disturbance compensation in active suspension systems, Dataset, Technical University of Munich, 2019. URL: https://mediatum.ub.tum.de/1507630.Search in Google Scholar

Received: 2020-07-13
Accepted: 2021-02-01
Published Online: 2021-05-27
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.11.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0116/html
Scroll to top button