at — Automatisierungstechnik 2018; 66(12): 1014-1026

DE GRUYTER OLDENBOURG

Applications

Fabian Just*, Ozhan Ozen, Philipp Bésch, Hanna Bobrovsky, Verena Klamroth-Marganska,

Robert Riener and Georg Rauter

Exoskeleton transparency: feed-forward
compensation vs. disturbance observer

Exoskelett Transparenz: Vorwdrtssteuerung vs. Stérbeobachter

https://doi.org/10.1515/auto-2018-0069
Received May 14, 2018; accepted October 25, 2018

Abstract: Undesired forces during human-robot interac-
tion limit training effectiveness with rehabilitation robots.
Thus, avoiding such undesired forces by improved me-
chanics, sensorics, kinematics, and controllers are the way
to increase exoskeleton transparency.

In this paper, the arm therapy exoskeleton ARMin
IV+ was used to compare the differences in transparency
offered by using the previous feed-forward model-based
controller, with a disturbance observer in a study. Sys-
tematic analysis of velocity-dependent effects of controller
transparency in single- and multi-joint scenarios per-
formed in this study highlight the advantage of using dis-
turbance observers for obtaining consistent transparency
behavior at different velocities in single-joint and multi-
joint movements. As the main result, the concept of the
disturbance observer sets a new benchmark for ARMin
transparency.

Keywords: exoskeleton, transparency, rehabilitation,

physical human-robot interaction (pHRI)

Zusammenfassung: Ungewollte Krifte bei Mensch-
Maschine Interaktionen limitieren die Trainingsqualitat
mit Rehabilitationsrobotern. Mit dem Vermeiden dieser
ungewollten Krédfte durch verbesserte Mechanik, Senso-
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rik, Kinematik und Regelungskonzepte wird die Trans-
parenz des Exoskeletts erhoht. In diesem Beitrag wurde
das Armexoskelett ARMin IV+ genutzt, um die zur Zeit
verwendete modellbasierte Vorwartssteuerung mit einem
Storbeobachter in einer Studie zu vergleichen. Die syste-
matische Analyse von geschwindigkeitsbasierten Effekten
der Transparenz in Einzelgelenk- und Multigelenkszena-
rien hebt die Vorteile des Stérbeobachters hervor, wel-
cher konsistentes Transparenzverhalten bei verschiede-
nen Geschwindigkeiten wihrend Einzelgelenk- und Mul-
tigelenksbewegungen zeigte. Als Hauptresultat setzt das
Konzept des Stérbeobachters einen neuen Mafdstab fiir
ARMin Transparenz.

Schlagworter: Exoskelett, Transparenz, Rehabilitation,
physikalische Mensch-Roboter Interaktion

1 Introduction

In rehabilitation, diagnosis, and therapy, robotic systems
are commonly used for the treatment of upper extremity
motor function impairments, with several studies showing
that training with robots fosters motor recovery [1, 2, 3]. For
transmitting the correct amount of supportive or resistive
force to the patient and for the patient’s inter-joint coordi-
nation, the underlying mechanical system needs to be me-
chanically transparent [4, 5, 6]. Transparency in physical
human-robot interaction (pHRI) is defined in the literature
in multiple, albeit similar ways: e. g., not to apply any as-
sistance/resistance to free motion [5], or that the robot’s
reaction forces perceived by the user are minimal [7].
While quantitative evaluation of transparency in pHRI
is performed through diverse assessments, no standard
procedure exists [4, 8]. In gait rehabilitation for example,
the motor torques of the Lokomat were used to gain arough
estimate of robot transparency by calculation of the root
mean square (RMS) interaction torques between the robot
and the human [9]. Others directly measured the robot-
human RMS interaction forces through force/torque sen-
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sors for several walking speeds by synchronizing walking
cadence to a metronomic tone [10]. Improving upon these
attempts, researchers on the FLOAT robot for gait rehabil-
itation even used a motorized test setup to assess trans-
parency at different velocities and different levels of body
weight support in a reproducible fashion. Here, the devi-
ation from the desired interaction forces was assessed in
all three directions using mean, standard deviation, and
peak force at the pHRI interaction point during given tra-
jectory movements [8]. In arm rehabilitation robotics, the
transparency of the exoskeleton robot RehabExos was an-
alyzed through subject’s forces during a one degree of free-
dom movement, with the goal to minimize these physi-
cal human-robot interaction forces [11]. These forces were
also measured through force/torque sensors attached to
the robot. For the arm exoskeleton ABLE, a nine point per-
formance index was developed combining multiple po-
sition, velocity, and tracking performance indices, joint
range limitation indices and several force/torque perfor-
mance indices [12]. These force/torque performance in-
dices were also measured with force/torque sensors. Mean
force/torque signals summarized over all sensors or split-
ted in the three coordinate system directions were ana-
lyzed on the sensor level [12]. Summarized, these papers in
literature focus mainly on the direct evaluation of interac-
tion force/torques on the sensor level. However, measure-
ments in exoskeletal systems at the sensor level entail not
only the force/torque needed to complete the movement,
but also misalignment effects of human and robotic axes,
passive tissue deformation forces/torques and partial arm
unloading effects on the exoskeleton that all can be inde-
pendent of the evaluation of the particular movement or
movement axes. Transforming the force/torque informa-
tion from the sensor level on the robotic axes through the
corresponding Jacobian orders influences axes depend-
ing, leading to a more neutral transparency analysis, es-
pecially for systems with several sensors that have dif-
ferent lever arms and therefore, different impact on the
robotics axes. Nevertheless, transparency analysis on the
axis (joint) level is rarely done in literature [13]. A system-
atic analysis on the joint level is needed to evaluate be-
havior and performance of transparency controllers. Since
transparency performance of different dynamic move-
ments should be equally good, the evaluation should con-
centrate on the effects of different movement velocities.
As an additional measure to mean pHRI torques also joint
peak torques should be analyzed. Only rarely joint peak
torques were the focus of the transparency analysis [13], al-
though they are directly related to the stick/slip effect that
is one of the most prominent disturbance components op-
posing robot transparency [13, 14].

F.Just et al., Exoskeleton transparency = 1015
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Figure 1: The ARMin IV+ exoskeleton robot with the three physical
human-robot interaction (pHRI) wrenches }_l,-,,[)si from force/torque
sensors S; at upper arm (ua), lower arm (la), and hand (h) are cir-
cled. The shoulder angle, 6, the robot axes (joints) 6, and arm
lengths 4, and [, are marked respectively. At this position all three
sensors local coordinate systems are in the indicated global coordi-
nate system (Axis x is parallel to the sagittal axis).

This paper focuses on the assessment of the trans-
parency of the exoskeleton robot ARMin IV+. ARMin IV+
is an actuated seven degrees of freedom (DoFs) exoskele-
ton robot and has a six DoFs force/torque sensor at all
three interaction points between human and robot at the
upper arm (ua), the lower arm (la), and the hand (h)
(see Fig.1). Based on the measured force/wrench at the
PHRI points through the three sensors, we want to eval-
uate transparency systematically through mean and peak
PHRI forces and torques. Such a systematic evaluation al-
lows quantifying the performance of the robot and enables
comparing performance of different control strategies in a
standardized way. We also introduce a generalizable eval-
uation metric, which is used to assess the transparency of
each single axis (joint). As a generalization, the evalua-
tion metric is expanded to multi-axis evaluation to con-
sequently assess transfer of transparency characteristics
from single-joint to multi-joint evaluation. All assessments
were performed at two different velocities. As a systematic
analysis, we evaluate the current model-based controller
of ARMin IV+ and compare its results to a newly imple-
mented disturbance observer, which is already used in mo-
tion control systems previously described in literature [15].

Section 2 summarizes the applied methods including
an analysis of transparency metrics, the ARMin IV+ robot
with its Jacobian, the two control concepts, and the study
designs. Next, section 3 presents the results of the two
studies and the questionnaire used. Subsequently, sec-
tion 4 discusses the results of quantitative and subjective
data, and finally, in section 5 conclusions on the results of
the paper are drawn.
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2 Methods

In this section, the technical term “transparency” is de-
fined. Consequently, the equations that will be needed
for assessment of transparency, different evaluation con-
cepts, and their implications will be derived. In the fol-
lowing, the application of these equations on the ARMin
rehabilitation robot are shown and the ARMin Jacobian
information is provided. Subsequently, the two investi-
gated controllers, i) a feed-forward model-based controller
and ii) a disturbance observer are presented. Finally, an
overview on subjects and ethics is given before introduc-
ing the designs for a single-joint and a multi-joint trans-
parency study and their primary outcomes measures.

2.1 Implications of the transparency
definition

All variations of systems’ transparency definitions in lit-
erature aim to reach a full disturbance compensation [5,
7, 16]. Optimally, the estimated disturbances 7 4 can fully
compensate for the effective disturbances 74 of a system:

System transparency definition: Ty, — T4 = 0. (1)

In reality however, a disturbance will never be fully com-
pensated e. g., due to noise, communication delay, inertia,
and limited update rate. Even in an physical human-robot
interaction system perfectly compensating the mentioned
disturbances, there will always remain a minimum of dis-
turbance f(t ;) for two reasons. First, robotic systems are
causal, i. e., the disturbance compensation can only be ap-
plied after the disturbance has been measured. Second,
the human user creates interactions h;,, that depend on
the actual pose of the robot, the desired torques of the cur-
rently selected robotic training scenario 7 4, the perceived
disturbances, and the human’s movement capabilities and
intention. However, the resulting interactions that are ini-
tiated by the human user h;,, with the system cannot be
known a priori. Therefore, the controller has to wait until
interactions can be measured R, s, €. 8., by a force/torque
sensor S;. The measured six dimensional force-torque in-
teractions are called interaction wrench ilint,S,—' For the ap-
plication of the transparency objective in (1), the interac-
tion wrench h;,; needs to be analyzed. In literature, mainly
the direct wrench signals at the single pHRI points hint,si
were in the focus of evaluation [12, 10, 11]. For multidimen-
sional rehabilitation robots like ARMin lever arms from
both sides of an axis exist. Transparency evaluation iso-
lated only on the sensor level ﬁint,si entails not only the

DE GRUYTER OLDENBOURG

disturbances in movement direction, but also all other
force/torque disturbances in all coordinate system direc-
tions. These other force/torque disturbances are misalign-
ment effects of the human axes to the robotic axes, muscle
tension of the human, skin deformation effects as well as
unloading effects of the arm on the robotic structure, es-
pecially when the freedom of movement of the arm is lim-
ited against gravity. These other disturbances can be in-
dependent of the force/torque needed to exert the particu-
lar evaluated movement, but they still fully influence the
transparency evaluation on the sensor level.

However, another way of analyzing human-robot in-
teractions is to transform the measured interaction wrench
hint,si at sensor S; to pHRI torques on the robot axes 7g,
by means of the corresponding Jacobian s [13]. This
transformation on the axes level allows to analyze the ef-
fect of the disturbances on each axis separately leading to
a more neutral transparency analysis. Especially if multi-
ple pHRI interaction points exist with different lever arms
on one robot axis, then the proportional influence of each
measured interaction wrench ilim’si on the robotic axis can
only be determined through the corresponding Jacobian
on the axes level and not on the sensor level. At the same
time, the pHRI torques T, are anyways required as an in-
put for the majority of controllers (e. g., admittance con-
trol). All measured interaction wrenches hint,si mapped on
all robot axes T, can be summed up to the pHRI torque
at the corresponding axes (joints) 7ug;. The summarized
torque vector Ty, for all five robot axes induced by all N
pHRI wrenches h;,; 5. can be calculated

N N
T _
TpHRI = Z] int,S; 'hint,S,- = Z Tsp @
i=1 i=1

where J iTnt,s,- represents the Jacobian of sensor S; in the sen-
sor frame mapping to the robot joints and the measured
wrench i’int,s,- in sensor frame, embodies the correspond-
ing force/torque sensor data. The product of Jacobian and
force/torque sensor data, Ts, is the applied torque on all
robot axes caused by the pHRI sensor S;. The general equa-
tion (2) can be specified, since ARMin IV+is equipped with
three (N = 3) pHRI points S; € [ua, la, h]:

Tpnr1 =J iTnt,ua “Rintua +J iTnt,la Rineia +7 iTnt,h “Rine

TpHRI = Tug + Tig + Th> 3)
where exemplary the Jacobian J},, ,, has dimension [5x6],
the interaction wrench hy, ,, has dimension [6x1], and the
T, has dimension [5x1] for the following five axes evalua-
tion of ARMin IV+.
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2.2 ARMin IV+ exoskeleton robot

The ARMin IV+ exoskeleton robot [17] has seven actuated
DoFs

0 = [6,,6,,05,6,,65,0,6,]" . (4)

0, (horizontal shoulder abduction/adduction), 6, (shoul-
der elevation), 05 (internal /external shoulder rotation), 6,
(elbow flexion/extension), 05 (forearm pronation/supina-
tion), 8¢ (wrist flexion/extension), and 6, (hand open-
ing/closing). In this paper, the first five axes are evaluated.
Axis 6; = O (neutral flexion) and 6; = 0 (closed hand)
are position controlled by a PD controller. Therefore, for
simplicity reasons the vectors for torque and position in
this paper contain the first five ARMin axes, and the vector
sizes are [5x1]. For calculating the robot’s kinematics and
inertia matrices, potentiometers measure all possible an-
thropometric exoskeleton adaptations to the user’s body
in absolute values. This includes online measurements of
the upper arm length 1, the lower arm length [;,, and
the shoulder angle 6, of the ARMin IV+ exoskeleton (see
Fig. 1). This small but important expansion of the ARMin’s
sensor concept allows including major mechanic adapta-
tions in the feed-forward control of the device [17].

Table 1: Influence of the components of the three force/torque sen-
sors S,q, Sig» and Sy, in sensor coordinate system on the robot axes
torque (14, ..., Ts) through the partially decoupled Jacobian. “x” and
“0” represent “influence” or “no influence” on the axis torque
through the sensor element across its range of motion during the
study. The concordant coordinate system for all three sensors is
displayed in Fig. 1.

s, K K FE 1, T
T 0 X X X X X
T, 0 X x 0 X X
3 0 0 0 x 0 O
T 0 o o0 o o0 o0
Ts 0 0o o0 o o0 O
Ts, KK B o1, 1
2] X X X X X X
T, X X X X x 0
3 0 X x 0 X X
T, 0 X x 0 X X
Ts 0 0o o x 0 O
Ts, Fy Fy F, 1 L, T
21 X X x X X X
1, X X x X X X
T3 0 X X X X X
T, 0 X x 0 X X
Ts 0 0 0 x 0 O

F. Just et al., Exoskeleton transparency = 1017

Three 6 DoFs force/torque sensors measure the pHRI
at all three interaction points upper arm (ua), lower arm
(la), and hand (h). Due to the placement of interaction
points, sensor (ua) measures influences on the first three
axes, sensor (la), on the first five axis, and sensor (h), on
the first six axes. The Jacobian that is applied to distribute
the measured pHRI interaction wrench at the sensors to
torques at the joints is partially decoupled to allow the
human subjects for more intuitive multi-joint movements
(see Tab. 1). The decoupling focuses on the upper arm ro-
tation (axis 3), which is only controlled by torques of sen-
sor S,, not with forces of sensor S,,. Similarly, the lower
arm rotation (axis 5) is only torque controlled by sensors
S;4 and Sy, Importantly, a rotation of the lower arm induced
through torque 7, at the lower arm sensor S;, does not cre-
ate a rotation of the upper arm (see Tab. 1). A rotation in-
duced by 7, of the hand sensor S;, instead is leading to up-
per and lower arm rotation. This particular chosen decou-
pling of upper and lower arm rotation should enable more
intuitive multi-joint movements due to an increase in sim-
ilarity to single-joint movement control in ARMin.

During movement the major disturbances that influ-
ence the performance of the ARMin exoskeleton robot are:
gravitation, friction, inertia, cable and spring elasticity.
For robot torque characteristics in the Lagrangian form the
following sum of disturbances can be defined:

T4 =M(0)0+g,(0)+n,0,0), (5)

where M represents the mass matrix of the actuated ex-
oskeleton. The function g, contains the gravitational ef-
fects of the robot. The symbol, 7., summarizes all po-
sition, velocity and acceleration-dependent effects like
spring and cable elasticity, friction effects as well as all
other effects that can not be modeled. Fig.2 shows the

Inertia
Gravitation
Friction

Spring
Cable l\/

hint

Figure 2: Mechanical system of plant ARMin IV+ and patient con-
nected through the actual joint positions 6 and the generalized pa-
tient interaction wrenches h;,;, which is representative for all three
pHRI points at the upper arm, lower arm, and hand. Furthermore,
the disturbance torques 745 and desired torques 7,5 are inputs to
the plant ARMin.
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disturbances 74 in the control loop as well as the influ-
ences of the generalized patient interaction wrench h;,;,
which includes data from all three pHRI points of ARMin.
Safety of the human in ARMin during operation with dif-
ferent controllers is tackled through a safety system incor-
porating limitations for the end-effector workspace, joint
workspace, velocities and wrench on the joint and end-
effector level.

2.3 Feed-forward model-based controller

A model-based controller uses physical feed-forward mod-
els to compensate unwanted disturbances 7 4, which are
usually subsystems or physical properties of the exoskele-
ton [11]. The feed-forward model consists of several model-
based controllers that allow online adaptive compensa-
tion (OAC). Hereby, the OAC refers to the online adaption
of ARMin’s geometry to the anthropometry of the patient
[17]. The OAC expands the model-based controller that has
been implemented and successfully tested in a large inter-
ventional study [1]. The OAC is currently used in our ARMin
IV+ devices in the clinics.

As seen in Fig.3, independent models for compen-
sating cable and spring elasticity as well as friction and
gravitation are implemented. All models are provided with
real-time position data of each axis by position sensors.
In the friction model, the position data is differentiated

osition
Tf . Sensor | ¢
- Gravitation
pring
Cable ﬂ
T dis lT dis
T des T des -+ 72117;3 % - 0
ARMin b
hint

Figure 3: The feed-forward model-based controller includes models
for gravitation, friction, spring, and cable elasticity [17]. Summariz-
ing all model torques, the disturbances estimation 7 ;5 should com-
pensate the disturbances 74 of the exoskeleton ARMin. The signals
T4s and T, are the input to the plant ARMin. The patient-robot
interaction wrench h;,; is representative for all three interaction
points at the upper arm, lower arm and hand.
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once to receive additional velocity information. An iner-
tia compensation model was not implemented, because
of high delays to derive an accurate acceleration signal
through two times differentiation of the encoder position
information [18]. The missing inertial compensation is ex-
pected to create higher measured mean and peak torques
of T g, nevertheless dynamic movements in ARMin are
not restricted thereby [18]. Each model is described in de-
tail in [17]. All model-based controllers provide desired
torque output to ARMin at 1000 Hz to compensate the dis-
turbances with an estimation 74 in a feed-forward fash-
ion (see Fig. 3). The axis-wise sums of the model torques
are consequently applied to ARMin to compensate the ex-
oskeleton’s disturbance T ;:

Tgis = Te + T+ Tp + Ty (6)

2.4 Velocity-based disturbance observer

A velocity-based disturbance observer is a robust closed-
loop acceleration controller using velocity and inertia in-
formation of the ARMin. The observer controls the inertial
parameters of each axis individually with a virtual nom-
inal axis inertia m,. The concept for the velocity-based
disturbance observer from [15] was implemented in the
ARMin IV+ for 5 DoFs. The controller converts the mass
matrix M(0) as introduced in (5) into the nominal mass
matrix M,,,,, containing only virtual nominal inertia en-
tries m,, on the main diagonal for all five axes

Mnom = diag (mn,b mn,Z» mn,3’ mn,lw mn,S) . (7)

The disturbance observer is changing the plant, ARMin
(see Fig.4), into a double integrator with the defined
virtual nominal inertia parameters m, of (7). Since the
controller is implemented as a single axis controller, no
further axes indexing is required. The measured position
data 0 as shown in Fig. 4 is used for the derivation. The in-
ertia m(@) of an arbitrary axis abstracted from the inertia
matrix M(0),

m(8) = m, + Am(8), (8)

is always the sum of its axis corresponding nominal iner-
tia m, and remaining inertia Am(@). The remaining inertia
Am(0) is treated as an disturbance and thus compensated
for through the disturbance observer. Importantly, since
the remaining inertia Am(0) entails also all non-diagonal
entries of the mass matrix, the compensation of these lead
to an enhanced axes decoupling. The single axis definition
of disturbance therefore yields

T4 = Am ()6 + g, (8) +11,(8,0), ©)
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Inertia

Gravitation

Tdes

Velocity-Based

{ Tdes + Tais + TpHRI
Disturbance s o P

7A—dis

Friction

Spring
(JablciJ

Tdis

Observer

wv}
]

Rins, F/ h;
S T int X
< < |
TpHRI S e Jaco- [~ Sensor i Patient |
Si [ bian
Position|
i Sensor [~

Figure 4: Single axis control loop with the velocity-based disturbance observer. The patient-robot interaction wrench h;,; is measured at
each interaction point S; with force/torque sensors as ilint,si‘ Multiplied with the respective Jacobian using all position sensor information
0, the robot axes torque Ts, is calculated. Summarizing all g, of all sensors, as seen in (2), results in Tyyg,. The sum Tyes + Tgjs + Tpur is the

control input for the plant ARMin.

where g,(0) and 1,(8, 8) are the scalar axis entries of the
corresponding vectors of (5) and 7 is an approximation
of the unknown disturbance 7 ;.

As seen in Fig. 4, one input to the velocity-based dis-
turbance observer is the vector of pHRI on the axes level
Tpuri that encodes the movement intention of the pa-
tient from all robot-patient interaction points: upper arm
cuff, lower arm cuff, and hand cuff. Another input to the
velocity-based disturbance observer is the desired torque
from higher level control, 74,5, which summarizes all game
and safety-related torques that shape the haptic envi-
ronment of the exoskeleton. Without higher level control
(Tges = 0), only input from the patient is taken into ac-
count. The sum of all input torques reduced by the actual
inertial torque of the axis is an applied and complemen-
tary definition of the approximated disturbance presented
in (9) through the sum of all disturbances and can be seen
as equivalent.

Tgis = Tdes + TpHRI — mne’ (10)
because 7;; = O when the summed input torque is
equal to what is currently executed on the axis. However,
since acquiring real-time axis acceleration information is
very costly and may be not feasible for only axis posi-
tion sensing systems like ARMin, further assumptions of
the velocity-based disturbance observer are taken to esti-
mate (10).

During derivation of the velocity-based disturbance
observer theory, it follows that for quasi-static approxi-
mated disturbances,

(11)

Tgis = 0,

the estimation error decays to zero. However, most distur-
bances are not quasi-static leading to non-zero error for the
disturbance estimation 7 ;. This limits performance with
respect to robot transparency across different velocities.
Therefore, the limitation introduces a systematic error be-
havior that will increase differences between the approx-
imated 74 and real disturbance 74, with increasing joint
velocities. Through this control design limitation it follows
that the estimated disturbance T 4, is equal to the approxi-
mated disturbance 74 from (10) delayed by the following
low-pass filter represented in the Laplace s-domain:

w

C
S+ W,

Tais = (12)

Tais>

where w, is the low-pass filter angular cut-off frequency.
Since the approximated disturbance 7, is not known,
the derivation continued with (10) in combination with
the velocity limitation leading to (12). Finally, the velocity-
based disturbance observer estimates the disturbance
from (10) through the summarized and low-pass filtered in-
put torque.

. w,

T =
dis S+ w,

(%dis * Tges T TpHRI + 9mnwc) - 9mnwc (13)

Due to the low computational effort of the disturbance
observer, the sampling rate of ARMin IV+ could be in-
creased to 1800 Hz. For the five axes that were controlled
by the disturbance observer, the chosen low-pass filter cut-
off frequencies that also determine the bandwidth of the
controller and consecutively the bandwidth of ARMin are
tuned in a region above the clinically relevant movement
speed of human arms:

w. =21f.

f.=[10Hz,16 Hz,30 Hz, 48 Hz,110 Hz] . (14)
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For systems like ARMin where only joint position infor-
mation is available, joint acceleration information through
differentiation or additional hardware is costly. Therefore,
the velocity-based disturbance observer taking velocity in-
formation could be an alternative giving a compromise be-
tween performance and delay.

2.5 Subjects and ethics

All studies and the questionnaire were performed with
20 healthy subjects (10 females and 10 males, 19 right-
handed, mean age: 26.2 + 2.2 years; mean height:
1.75 + 0.09 m; mean weight: 677+ 11.1kg). All stud-
ies were approved by the responsible institutions (KEK-
ZH-Nr. 2015-0013, Zurich, Switzerland, and on clinicaltri-
als.gov NCT02720341).

2.6 Single-joint transparency study

In a single-joint transparency study, the transparency of
the first five axes of the ARMin were evaluated individ-
ually with 7yg; on both controllers to investigate trans-
parency for each single axis across velocities. The subject
was guided towards a predefined starting position by a po-
sition controller. Only the axis that had to be evaluated
in the respective condition was set to transparent mode
(T4es = 0) while all other axes remained in fixed PD po-
sition control-mode to eliminate the movement influence
of other DoFs. A screen was placed in front of the sub-
ject that showed a moving reference object (red car) and
a marker corresponding to the current axis position (blue
car) as seen in Fig.5 a). The subject was asked to follow
the red reference car with the own blue car over the range
of motion of the axis in transparent mode at constant ref-
erence speed (see Tab. 2). Successful tracking of the red

Figure 5: Visual feedback for the a) Single-Joint Transparency Study,
b) Multi-Joint Transparency Study. The reference object is the red
car that has to be tracked with the motion of the respective axis
mapped to the position of the blue car. To indicate that the blue car
is close enough to the red reference car, the blue car turns its color
into green.

DE GRUYTER OLDENBOURG

Table 2: Axes range of motion and corresponding “slow” and “fast”
angular speeds of the single-joints for the transparency study.
Anatomical axes were defined according to [19].

Axis Rangeof Motion® Slow ; Fast ;
1 (15,90) 15 30
2 (40, 80) 10 20
3 (0,65) 20 40
4 (15,90) 20 40
5 (—65,65) 45 90

car was indicated by the red reference car color turning to
green (see Fig. 5). Additional auditory feedback in form of a
metronome sound was provided to help the subject main-
tain the desired movement pace. In each condition, 30 rep-
etitions across the full range of motion were recorded. The
condition was finished after 30 repetitions.

For each axis a “slow” and a “fast” condition were
tested. The tested speeds and ranges of motion for each
axis in Tah. 2 were chosen to cover the upper and lower lim-
its of velocity and motion range from experience of daily
usage of ARMin in clinics according to therapists respec-
tively.

The order of the model-based controller and the dis-
turbance observer was randomized for each subject. In
each controller block, the order of axes tested was random-
ized for each subject. For each axis, first the “slow” sce-
nario, and then the “fast” scenario was executed.

The corresponding axis torque signal 7,ug; from the
full recorded vector Ty, in (3) shows the influence of all
force/torque sensors in and against the axis movement di-
rection. Therefore, the axis torque signal T,ug; is taken
for the evaluation of the remaining axis torque. Similar to
the interpretation of different transparency evaluation out-
comes used in literature, the absolute mean [12] and abso-
lute peak torque [8] are analyzed in this paper. The first
primary outcome measure was the mean absolute human-
robot interaction torque in the corresponding movement
axis direction

1 &
Tm,pHRI = n Z mean |TpHRI,k| > (15)

k=1

where T gy« is the vector with all measurements of move-
ment repetition k and n = 30 is the number of movement
repetitions. This measure provides valuable information
about the average interaction torque felt in and against
movement direction. The second primary outcome mea-
sure is the mean peak absolute human-robot interaction
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torque in the direction of movement over all repetitions.

l n
Tp,pHRI = Z max |Tpppk| - (16)

k=1

Through the importance of mean peak analysis, as dis-
cussed in the introduction, this outcome measure pro-
vides an impression about the maximum torque felt in and
against movement direction.

2.7 Multi-joint transparency study

Directly after the single-joint transparency study, a multi-
joint transparency study with the respective controller was
executed. Since the application field of the seven DoFs ex-
oskeleton robot ARMin is mainly multi-joint movements
and to assess transfer characteristics of the two controllers
from single-joint evaluation to multi-joint evaluation, we
decided to also evaluate transparency of the two con-
trollers for multi-joint movements. Therefore, the partici-
pants were asked to track a reference object on a circular
path with the end-effector parallel to the coronal plane in
front of them (see Fig.5 b). All five relevant axes (joints)
(6, ...,65) were in transparent mode (74, = 0), the wrist
was fixed in neutral flexion (64 = 0) and the hand was fixed
in a closed position (6; = 0). The diameter of the circle was
d. = 0.28 m and the center position was set to the sub-
ject’s chest height to cover typical activities of daily living
like grasping and reaching tasks like in a repetitive reha-
bilitation training. 10 repetitions each for a “slow” (45;)
and “fast” movement speed (90 g) were tested for each con-
troller and participant.

Primary outcome measures were similar to the single-
joint transparency study: 7, ,yg;, the mean absolute pHRI
torque, and 7, ,yg;, mean peak absolute pHRI torque in
the direction of movement of all five movement axes. This
time, the number of movement repetitions was n = 10
instead of 30 (see equations (15), (16)). Single-joint and
multi-joint transparency studies were performed on the
same cohort and as part of the same experiment. There-
fore, the order of the controllers was blockwise random-
ized for each subject.

2.8 Questionnaire

A questionnaire was issued to the participants to eval-
uate the subjective performance of the two controllers.
After performing the single-joint and multi-joint trans-
parency study, but before switching controllers, the fol-
lowing statements were assessed:

F. Just et al., Exoskeleton transparency = 1021

1. Ifelt disturbances during my movements.
2. Exact movements were difficult to perform.

The participants could rate each statement on a 7-point
Likert scale (strongly agree, agree, slightly agree, uncer-
tain, slightly disagree, disagree, strongly disagree). After
the single-joint and multi-joint study with the second con-
troller, the same two questions were presented to the par-
ticipants again. Additionally, a final question assessed the
subjective opinion comparing the two controllers:

3. Ifound one block more comfortable than the other.

(@) No (b)Block1 (c)Block 2.

2.9 Data evaluation and statistics

Statistical analysis was performed using the R environ-
ment for statistical computing (version 3.4.4., R Core Team,
2018). Linear mixed models were derived using “ImerTest”
to assess the relationship between the primary outcomes
(Tm,prr1 OF Tp purr Tespectively) for the two speed levels
and the two controllers. Since every axis is a different me-
chanical system, individual models were built to check sig-
nificance at each axis. Since every subject had different
anatomical and physiological parameters, a random ef-
fect for inter-subject variability and an additional random
effect to account for different subjects and their interac-
tion with the controller were introduced. Model assump-
tions were checked through visual examination of resid-
ual plots. The resulting mixed effect models used for both
primary outcomes for each separate axis are:

10g (Tpm prr1) =108 (T, puri) ~ Controller x Speed

+ (1|Subject) + (1|Subject : Controller)
(17)

A general linear hypothesis test with multiple compar-
isons for the linear mixed effect models was then per-
formed using “glht()” of the R package “multcomp” to test
for the significance and the effect of the controller on mean
torque and mean peak torque for each axis-speed combi-
nation [20]. The function “ghlt()” adjusts the p-values by
a single-step procedure, which incorporates correlations
and is more powerful than the classical Bonferroni correc-
tion [20]. The significance level was set to (‘*’, p < 0.05). A
p-value of (“*****, p < 0.001) corresponds to a highly signif-
icant result.

The questionnaire statements 1) and 2) were analyzed
with the Wilcoxon rank signed test using integer scores
(1,...,7) for the 7-point Likert scale. A simple percentage
score was used to evaluate question 3).
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Single-Joint Transparency Study Results
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Figure 6: Single-joint transparency study: Mean absolute torque 7, ;yr; and mean absolute peak torque 7, ,z, for all five tested axes of
ARMin for the 20 subjects visualized as boxplots. The four scenarios are OS = Observer Slow Speed, OF = Observer Fast Speed, MS = Model
Slow Speed, MF = Model Fast Speed. All comparisons between disturbance observer and related feed-forward model scenario were highly

significant (“***’, p < 0.001).

3 Results

In this section the quantitative results from the single-joint
and multi-joint transparency study are presented before
the result from the questionnaire given to the subjects.

3.1 Single-joint transparency study

The disturbance observer “slow” speed scenario showed
the lowest mean absolute interaction torque 7, ,yg; for
every of the five tested axes (see Fig. 6). The disturbance
observer “fast” speed scenario showed the second lowest
mean absolute interaction torques for every axis. Fig 6 il-
lustrates that the velocity conditions in the model-based
scenarios had a mixed effect on the mean absolute torque.
The variability of the measured interaction torques as il-
lustrated by the boxplot whisker range in Fig. 6 was lower
with the disturbance observer by a factor of 2 to 10 com-
pared to the model-based controller.

The mean peak torque 7, ,yg; Of the disturbance ob-
server “slow” speed scenario resulted in the lowest values
over all axes except for axis 1 (see Fig. 6). The disturbance
observer “fast” speed scenario showed the second low-
est mean torque peaks on every axis. The disturbance ob-
server “fast” speed mean peak torque was higher than the
“slow” speed mean peak torque on every axis. The mean
peak torques for the feed-forward model-based scenario
did not show velocity dependence.

3.2 Multi-joint transparency study

Similar to the single-joint transparency study, Fig. 7 shows
that the disturbance observer “slow” speed scenario had
the lowest mean torque and mean peak torque results
over all axes. Additionally, the disturbance observer “fast”
speed scenario had the second lowest mean torque and
mean peak torque results of each axis. Overall, the dis-
turbance observer scenarios showed highly significantly
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Multi-Joint Transparency Study Results
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Figure 7: Multi-joint transparency study: Mean absolute torque 7, jyr @and mean absolute peak torque 7, pyg, for all five tested axes of
ARM:in for the 20 subjects visualized as boxplots. The four scenarios are OS = Observer Slow Speed, OF = Observer Fast Speed, MS = Model
Slow Speed, MF = Model Fast Speed. All comparisons between disturbance observer and related feed-forward model-based scenario were

highly significant (“***’, p < 0.001).

lower mean torque and mean peak torque values com-
pared to the feed-forward model-based scenario counter-
parts (see Fig. 7). The effect of velocity in the feed-forward
model measurements was axis-dependent and no overall
systematic increase can be observed in the mean torque
and mean peak torque plots. The variability of the mea-
sured interaction torques as illustrated by the boxplot
whisker range in Fig.7 was lower in the disturbance ob-
server by a factor of 2 to 10 compared to the feed-forward
model-based controller.

3.3 Questionnaire

The Wilcoxon test of question 1) revealed that people felt
significantly less disturbances with the disturbance ob-
server than with the feed-forward model-based controller
(p < 0.001, 95% confidence interval of [1.5,3.0] points
better). The evaluation of question 2) showed that exact
movements were easier to perform with the disturbance

observer compared to the feed-forward model-based con-
troller (p < 0.001, 95% confidence interval of [2.0,3.5]
points better). For question 3, 95% of the participants
judged the disturbance observer to be more comfortable
than the feed-forward model-based controller and 5%
(1 person) said that no differences were felt.

4 Discussion

In this section the different effects of the result section
are discussed for the single-joint and multi-joint trans-
parency study including the transfer of controller trans-
parency characteristics between them, as well as the ques-
tionnaire.

4.1 Single-joint transparency study

The main goal of achieving higher transparency is reached
by a reduction of mean torque and mean peak torque
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in axis movement direction. Fig. 6 shows clearly that the
disturbance observer achieved significantly lower mean
torques and mean peak torques compared to the feed-
forward model-based controller on every axis. Therefore,
the disturbance observer achieved a significantly higher
transparency than the feed-forward model-based con-
troller for every axis and speed tested.

This is probably due to the fact that on one hand the
disturbance observer is a feedback controller that reduces
the system’s error dynamics, while on the other hand the
model-based controller is a feed-forward system that can-
not react to the system’s dynamics. Furthermore, for the
model-based controller the missing inertial compensation
supposably increased mean and mean peak torque values
as evaluated in [18].

The systematic increase of disturbance observer mean
torque and mean peak torque in Fig. 6 due to a velocity
increase can be explained by the disturbance observer’s
low-pass filter limitations of the disturbance torque veloc-
ity as introduced in (12). This limitation was taken into ac-
count since ARMin only uses position sensors, so a double
derivative to obtain acceleration data would be too noisy
for control purposes.

The major boxplot whisker range differences between
the controllers indicate that the disturbance observer has a
much lower inter-subject variability compared to the feed-
forward model-based controller. Subsequently, high level
control can be reliably tuned for further studies and effects
from old studies on the ARMin with the disturbance ob-
server could be more significant now.

4.2 Multi-joint transparency study

Due to similar and clear results as in the single-joint study,
the same advantages of the disturbance observer over
the model-based controller apply for multi-joint move-
ments as for single-joint movements. Furthermore, the
main statement of the multi-joint study is the direct trans-
fer of the assessed benefits of the disturbance observer to a
complex and multidimensional movement. This success-
ful transfer is probably mainly due to decoupling of the
upper and lower arm rotational axes (axis 3 and axis 5)
in the Jacobian leading to more similar single-joint control
in multi-joint movements. Another main reason is suppos-
ably the applied characteristic of the disturbance observer
trying to remove all non-diagonal entries in the mass ma-
trix M,,,, as defined in (7). Since the model-based feed-
forward controller did entail neither particular character-
istics, no distinct transfer similarities from single-joint to
multi-joint evaluation could be observed. Even with the
discussed differences of axes level transparency evalua-
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tion and sensor level transparency evaluation, it is ex-
pected that also the force/torque transparency evaluation
on the sensor level [12] would have lead to clear results
in favor of the disturbance observer. The tested movement
covered activities of daily living for our patients. Therefore,
the transparency study on multi-joint movements showed
arepresentative transfer of the results to the clinical appli-
cation of the multi-axis rehabilitation robot ARMin IV+.

4.3 Questionnaire

The subjective rating of the participants in all questions
significantly supported the quantitative data presented.
Overall, 95 % of the participants preferred the disturbance
observer and found it more comfortable, thus demonstrat-
ing that the assessed technical reliability also transfers to
the subjective perception of the participants.

5 Conclusion

In this paper, a systematic method for velocity-dependent
transparency evaluation on an axis level is presented that
can be expanded to the multi-joint level for generalization.
The transparency evaluation was consequently applied on
the currently used feed-forward model-based and a distur-
bance observer for the arm exoskeleton robot ARMin IV+.

In comparison, the disturbance observer significantly
outperformed the model-based feed-forward controller
in transparency, reliability, and systematic performance
for every test speed and axis. The transfer to multi-axis
movements was shown to be straightforward with simi-
lar highly significant results probably due to Jacobian and
disturbance observer characteristics of partial axes decou-
pling. The significant questionnaire results strengthened
the quantitative data. Most importantly, the disturbance
observer is available in form of a general framework that
only requires adaption of a few parameters, while model-
based controllers depend on the quality of the model, re-
quire models for different effects, and do not necessarily
show consistent behavior across working range and veloc-
ity range.

Due to its evident advantages, the disturbance ob-
server will be employed in ARMin devices as a standard
controller in future research at the Sensory-Motor-System
Lab of ETH Zurich. It is expected that positive clinical re-
sults from previous work with ARMin [1] still hold and the
use of the disturbance observer as used transparency con-
troller would have led to even clearer results in favor of
robot-assisted rehabilitation with ARMin.
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