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1 Introduction

Modern cosmology, the study of the large scale structure
and evolution of our universe (Peacock, 2000), has ad-
vanced to the point where we can now answer some very
fundamental questions about the distribution of matter
within our universe. Ever since Einstein postulated
the theory of General Relativity and, together with De
Sitter (Pais, 1982), showed how it could be applied to
the universe as a whole, generations of physicists have
pondered on the question of what is the overall geometry
of our universe. Within the past few years observations
of the relic microwave radiation from the “Big Bang”
(Bennett et al., 2003) have shown that the universe
exhibits a geometry quite unlike that expected from
theoretical prejudices alone.

Although on the largest scales the distribution of
matter within our universe is both homogeneous and
isotropic, on smaller scales—less than 1/20th the size of
our visible universe—it is highly inhomogeneous. Even
though the matter distribution of the universe was ex-
ceptionally smooth 300,000 years after the creation event
(Kolb and Turner, 1990), over billions of years the ubiq-
uitous attraction of the gravitational force amplifies the
minute fluctuations in the early matter distribution into
the structure we see today. Moreover, the current best
theories of structure formation suggest that the matter
distribution we observe is formed in a ‘hierarchical clus-
tering’ manner with the small structures merging to form
larger ones and so forth (Peacock, 2000). This growth of
structure is accelerated by an unseen massive ‘dark matter’
component in our universe. Although dark matter cannot
be observed directly, there is sufficient evidence within ob-
servations to conclusively infer its existence. Modifications
to Newton’s equations, to change gravitational accelera-
tions on large scales, have had limited success, and cannot
presently be cast in a form compatible with General Rela-
tivity (Sanders and McGaugh, 2002).

Understanding the distribution of matter within our lo-
cal universe can tell us much about the cosmic structure
formation process. While on the very largest scales grav-
ity is the dominant force, on smaller scales gas pressure
forces, from the gaseous inter-galactic (IGM) and inter-
stellar mediums (ISM), can play a significant role. In
clusters of galaxies, for example, hydrodynamic forces pro-
duced by the IGM lead to a distribution of gas that is held
close to hydrostatic equilibrium. Indeed, understanding
the interaction between the ISM and the stars that con-
dense out of it, is currently one of the hottest research
areas in cosmology (Thacker and Couchman, 2001). Since
if we can understand this process we are much closer to
being able to infer how the galaxies we observe relate to
the underlying distribution of dark matter that dominates
the evolution of structure.

Although we are yet to absolutely determine the relation
between galaxies and dark matter, measuring the distribu-
tion of galaxies is the only way of infering the distribution

of all matter (visible or not). Measurements of the speed
of recession of local galaxies, led Hubble (1929) to form
the distance-redshift relation now know as ‘Hubble’s Law’,
which has become a bedrock for the development of cosmo-
logical theory. Although modern surveys of galaxies use an
updated, and more accurate, form of the distance-redshift
relation to uncover the spatial distribution of galaxies, the
principles involved remain the same as those used by Hub-
ble.

Aided by highly automated observing and computer
driven data analysis, a new generation of high quality
galaxy redshift surveys is mapping our local Universe
with exquisite precision. The 2 degree field (2df, 2004)
and Sloan Digital Sky Survey (SDSS, 2004) provide as-
tronomers with a survey of the local universe out to a red-
shift of z ≃ 0.3, and contain over 200,000 and one million
(when complete) redshifts respectively. In figure 1 we show
the distribution of galaxies for the 2dF survey to give an
visual impression of the type of inhomogeneity observed.
Traditionally, one of the primary goals of analysis of

redshift surveys is the calculation of the two point auto-
correlation function (2-pt CF). The large sample volumes
provided by 2dF and the SDSS have allowed the 2-pt CF
to be calculated with great accuracy. While the initial con-
ditions produced by the “Big Bang” are widely believed to
exhibit Gaussian statistics (e.g. Kolb and Turner, 1990),
the formation of structure by gravitational instability in-
troduces non-Gaussian features into the statistics of the
matter distribution. Hence, the 2-pt CF cannot be a com-
plete descriptor of the underlying matter distribution at
late times. Astronomers were aware of this issue com-
paratively early in the development of the field, and the
theoretical basis for calculating higher order statistics was
developed through the 1970’s (see Peebles (1980) for a de-
tailed summary).

Early attempts to measure higher order moments of the
mass distribution, via the counts-in-cells method (again
see Peebles (1980)), suffered from inadequate sample size.
Because higher order moments tend to be progressively
dominated by the most dense regions in a given sample,
ensuring that adequate sampling has been performed is of
utmost importance. Ensuring low sample variance is also
necessary, and given one sample the only way to check
this is to analyse sub-samples, which rapidly depletes the
available information.

From a theoretical perspective, higher order statistics
are interesting in relation to gravitational perturbation
theory and the evolution of non-linear gravitational clus-
tering. Analyses examining the accuracy of numerical sim-
ulation methods often rely upon higher order statistics.
This is especially important in the study of gravitational
clustering in ‘scale free’ universes (Couchman and Peebles,
1998). The development of fast, parallel, statistical algo-
rithms is vital to progress in this arena. While the de-
velopment of parallel simulation algorithms has advanced
forward rapidly (e.g. Thacker et al., 2003) development of
parallel analysis tools has lagged behind. This is partially
due to the fact that the benefits of developing a parallel
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Figure 1: Distribution of galaxies in the two main slices from the 2dF galaxy redshift survey. Each point represents a
galaxy, and they combine to trace filament and wall structures in three dimensions. The geometry of the distribution
is directly related to the statistical properties of the conditions in our universe following the “Big Bang”.

analysis code can be shorted lived because the required
analyses can change rapidly (much faster than the simula-
tion algorithms themselves). The rapid development times
available on shared memory parallel machines make them
an ideal complement to large distributed memory machines
which most simulations are now run on.

Although throughout this paper we discuss the applica-
tion of our new method to cosmology, it can be applied
equally well to the statistics of any point process. Indeed
the terms ‘particle’ and ‘point’ are often used interchange-
ably. The method can also be modified to apply to dif-
ferent dimensions, although in 2 dimensions the gains are
expected to be less significant due to the reduced amount
of work in the counts-in-cells method.

The layout of this paper is as follows: in section , we
quickly review the statistics we wish to calculate. This is
followed by an explicit description of our new algorithm,
and an examination of its performance. Next we present
a brief case study on applying our algorithm to cosmology
and conclude with a brief summary.

2 Statistics: Moments and Correlation Functions

Due to space limitations a full discussion of the counts-
in-cells method, and how it is related to higher order mo-

ments, is beyond the scope of this paper. However an
excellent discussion of counts-in-cells and statistical mea-
surement processes may be found in Peebles (1980). For
completeness, we briefly summarize the statistics we are
interested in measuring.
The 2-pt CF, ξ(r), measures the radial excess/deficit

over Poisson noise for a point process. It is defined in terms
of the joint probability, δP , of finding objects in volume
elements δV1 and δV2 separated by a radial distance r12,
viz,

δP = n2(1 + ξ(r12))δV1δV2, (1)

where n is the average number density of the point process.
The Fourier transform pair of the 2-pt CF is the power
spectrum, P (|k|),

P (|k|) =
1

(2π)3

∫

V

e−ik.rξ(|r|)d3r (2)

which is used to describe the statistics of the initial density
field in cosmology.
The joint probability idea can be generalized to n-pt

processes, for example, the reduced 3-pt CF is defined by;

δP = n3δV1δV2δV3×

(1 + ξ(r1) + ξ(r2) + ξ(r3) + ζ(r1, r2, r3)), (3)
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where r1,r2 and r3 are defined by the triangle described
by the three points under consideration. For cosmology,
the assumptions of homogeneity and isotropy require that
ζ(r1, r2, r3) be a symmetric function of these three lengths.
Higher order correlation functions follow in a logical man-
ner.
Using the counts-in-cells method, it can be shown that

the second central moment µ2 =
〈

(N − nV )2
〉

, where N is
the count of points within spheres of radius r (and volume
V ), is given by

µ2 = nV + n2

∫

V

dV1dV2ξ(r12). (4)

The third central moment µ3 =
〈

(N − nV )3
〉

, is given by

µ3 = 3µ2 − 2nV + n3

∫

V

dV1dV2dV3ζ (5)

Both these equations show how integrals over the correla-
tion functions enter in to calculations of the central mo-
ments. Relationships for the higher order moments can be
constructed, but rapidly become lengthy to calculate (e.g.
Fry and Peebles, 1978).
The final definition we require is one that relates higher

order cumulants to the variance. To aid our discussion
we introduce the following notation: the over-density of a
point process relative to the mean density, ρ̄, is given by
δ(x) = ∆ρ(x)/ρ̄ where ∆ρ = ρ(x)− ρ̄ is the local deviation
from the average density. Although this is most usually
recognized as a continuum description, it also provides a
useful construct for our discussion of point processes. For
example, since the local density of particles in the counts-
in-cells method is given by N/V , δ(x) ≃ (N/V − n)/n.
From this definition of δ(x) the n-th order connected mo-
ments of the point process define the ‘Sp’ statistics via the
following definition1:

〈δp〉 = Sp

〈

δ2
〉p−1

. (6)

The Sp statistics play a central role in analysis of red-
shift surveys. To date, up to S9 has been calculated by
researchers (Szapudi et al., 1996).

3 The Smoothed Field Algorithm (SFA)

While the counts-in-cells method is conceptually beau-
tiful in its relation to the Sp statistics, it is computation-
ally strenuous to calculate. As the radius of the sampling
sphere becomes larger, on average the work to calculate
the count within the sphere will grow at a cubic rate. In
reality the situation can be potentially worse, since inef-
ficiencies in particle book-keeping can appear (i.e. having
to search far down tree-nodes, or equivalently searching

1The Sp statistics are motivated by the assumption that, given
the 2-pt CF, ξ(r) = (r0/r)γ , the n-pt correlation functions scale as
ξ(n)(λx1, ..., λxn) = λ−γ(n−1)ξ(n)(x1, ..., xn), see Balian and Scha-
effer (1989).

through very dense cells in a grid code). To counter this
problem one can use a hierarchical (tree) storage of counts
in cells on a grid, as discussed in Szapudi et al. (1999).
This greatly improves calculation time, since the summa-
tion over particles within cells is much reduced at large
radii. Using this method it has been reported that 109

samples from a data set with 47 million particles can be
generated in 8 CPU hours.
The basis of our alternative ‘smooth field algorithm’ is

that each counts-in-cells value is a discrete sample of the
local density field smoothed over the scale of the sample
sphere. In the continuum limit of an infinite number of par-
ticles, defining the density δ(x), the sampled value δs(x)
can be written as an integral over the spherical top-hat
function W (r, rf )

W (r, rf ) =

{

1, r ≤ rf ;

0, r > rf ,
(7)

of radius rf and the raw density field δ(x), to give,

δs(x) =
1

VTH

∫

V

δ(x+ r)W (|r|, rf )d
3r, (8)

where V is the volume of the periodic sample region and
VTH the volume of the sample sphere (a 3 dimensional top-
hat). Via the Convolution Theorem, the Fourier transform

of δs(x), namely, δ̂s(k) is given by

δ̂s(k) = δ̂(k)Ŵ ((|k|, rf ). (9)

Thus we can quickly calculate the entire δs(x) field by
Fourier methods.
The discrete calculation of counts can be expressed in

almost the same way, except that the continuous density
field is replaced by a discrete sum of three dimensional
Dirac delta functions, δD(x),

Ns(x) =
1

VTH

∫

V

Np
∑

i=1

δD(x+ r− xi)W (|r|, rf )d
3r (10)

where Np is the number of particles in the simulation, and
xi gives the position of particle i. In the counts-in-cells
method the integral over the volume is replaced by a sum-
mation within the given search volume VTH .
To connect these two approaches all that is needed is

a smoothing function that will convert a discrete set of
points to a continuous density field. We require a smooth-
ing function, A(x), which can be summed over the particle
positions to reproduce a smooth field δ(x). Provided we
can do this, we can use Fourier methods to precalculate all
of the required δs(x) values and greatly reduce the amount
of work. In practice it will be necessary to define a discrete
density on a grid, and then use an interpolation process
to provide a continuum limit. The smoothing idea has
been studied in great depth (see Hockney and Eastwood
(1988) for explicit details) and there exists a series of com-
putationally efficient smoothing strategies that have good
Fourier space properties, as well as having well defined
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interpolation function pairs. The most common smooth-
ing function (‘assignment function’) mechanisms are ‘CIC’
(Cloud-in-Cell), and ‘TSC’ (Triangular Shaped Cloud).
Cloud-in-cell interpolation provides a continuous piece-
wise linear density field, while TSC has a continuous value
and first derivative. The only potential issue of difficulty
is that sampling a continuous periodic variable at discrete
points means that the Fourier domain is finite and periodic
and thus has the possibility of being polluted by aliased in-
formation (with images separated by 2π/L where L is the
size of the period). In practice, the higher order assign-
ment functions have a sufficiently sharp cut-off in Fourier
space that this is not a significant problem2.
Having established that we can convert our discrete set

of points into a continuous density defined by a grid of val-
ues and an interpolation function, we must decide upon the
size of grid to be used. The initial configuration of points
(corresponding to a low amplitude power spectrum) is
such that the majority of neighbouring particles have sep-

arations close to the mean inter-particle separation N
1/3
p .

Therefore, for this configuration we use a grid defined such
that L3 = Np. This is beneficial on two counts: firstly, the
grid requires a comparatively small amount of memory to
store than the particle data, and secondly, it captures al-
most all the density information stored in the particle dis-
tribution (since most particles are separated by sizes close
to the grid spacing).
To summarize, the steps in the SFA are as follows:

1. Use an assignment function, A(x), to smooth the mass
(m) associated with each of the particles on to a grid.
This creates the grid representation of the density
field, ρ(x):

ρ(x) =
m

V

Np
∑

i=1

A(xi − x)

2. Fourier transform the density field ρ(x) to form δ̂(k)

3. Multiply by G(k), the product of the Fourier trans-
form of the real space top-hat filter (Ŵ (k, rf ) =
3(sin(krf )− krf cos(krf ))/kr

3

f ) and the inverse of the
assignment function filter, which includes an alias sum
out to two images

4. Fourier transform the resulting field back to real space

5. Calculate δS(x) at all sampling positions using the
interpolation function pair to the original assignment
function A(x)

6. Calculate desired statistics

In this paper we have used a 3rd order polynomial as-
signment function (‘PQS’, see Hockney and Eastwood,

2See Hockney and Eastwood (1988) for a discussion of this point.
Aliases can only be removed completely by assigning information to
all points on the sampling grid for each point/particle, which it too
computationally expensive to be feasible.

1988) which is defined (in 1-dimension) by;

A1(x) =















2

3
+ |x|2

(

|x|
2

− 1
)

, |x| ≤ 1;

1

6
(2− |x|)3, 1 < |x| ≤ 2;

0, |x| > 2,

(11)

and the 3-dimensional function is defined A(x, y, z) =
A1(x)A1(y)A1(z). Note that A(x, y, z) is not an isotropic
function, which in this case is beneficial for speed, since it
is unnecessary to calculate a square root. It also simplifies
calculating the Fourier transform of the assignment func-
tion since all the dimensions are now separable. Note that
A1(x) has a comparatively wide smoothing profile, and
therefore its Fourier transform is a strongly peaked func-
tion with good band-limiting properties. This is advan-
tageous for dealing with the aliasing problem mentioned
earlier. Indeed, the Fourier transform of A1(x) is:

Â(kx) =

(

sin(kx/2)

kx/2

)4

, (12)

which has a 1/k4 suppression of power. This is sufficiently
sharp to ensure that only the first and second images need
be accounted for in G(k) (the Green’s function associated
with top-hat filtering and the assignment process).

4 Performance Comparison

Before proceeding to parallelize the algorithm, it is
instructive to compare the speed of the serial algorithm
as compared to the counts-in-cells method. In figure 2 we
show the time to calculate 2.1× 106 samples on 2.6× 105

points as a function of the sample radius. A (logarithmic)
least-squares fit showed that the time for the standard
counts-in-cells method (version 1) grows as r2.5, which
is slightly lower than the expected value of r3. For the
second counts-in-cells algorithm we developed, which
is optimized by storing a list of counts in the chaining
cells used to control particle book-keeping in the code,
the dependence with radius was found to be r2. This is
understood from the perspective that most of the work in
each sample has already been performed in the summation
within chaining cells and that the work for each sample
thus becomes dependent on sorting over the cells at the
surface of the sample area, which is proportional to r2.
However comparison of both these methods to the SFA
shows they are far slower in comparison. Because the en-
tire δs(x) field is precalculated (modulo the interpolation
process to non-grid positions) in the SFA method, the
time to calculate the samples is constant as a function
of radius, and is exceptionally fast. Based up the data
presented in figure 2, we initially estimated being able
to calculate 109 sample points on a 5123 data set in
less than 2 CPU hours, which is over 4x faster than the
results reported for tree-optimized counts-in-cells methods
(Szapudi et al., 1999). We have recently confirmed this
result using our parallel code, which took 6.5 minutes on
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Figure 2: Comparison of speed for two versions of the
counts-in-cells (CIC) method versus SFA for 2.6×105 par-
ticles and 2.1 × 106 sample points at different smooth-
ing radii. Least squares fits are given for all data. The
first counts-in-cells method is a straight summation over
particles contained within the sampling sphere, while the
second method is optimized to store a count of particles
within chaining cells. Provided a chaining cell lies within
the radius of the sampling sphere then the sum within the
chaining cell is not necessary.

32 processors to calculate 109 samples on a 5123 particle
data set produced for a project being conducted at the
Pittsburgh Supercomputing Center.

5 Parallelization

Typically when calculating statistics, the value of the
sampling radius (equivalently the top-hat radius) is varied
so that the entire sampling process must be repeated many
times. Thus the most obvious method of parallelization is
to create several different grids for each smoothing radius
and process them in parallel. However, available memory
considerations may well make this impractical. Instead,
it is better to parallelize each calculation for each radius.
This is non-trivial as the following algorithmic steps must
be parallelized:

1. Calculation of Green’s function

2. Forward FFT of density grid to k-space

3. Multiplication of density grid by Green’s function

4. Reverse FFT to real space

5. Sum over sample points

The first four items have all been parallelized previously for
our main simulation code (see Thacker et al., 1998). The fi-
nal step, while appearing to be somewhat straightforward,
must be approached with care (as we shall demonstrate).
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Figure 3: Comparison of speed-ups for different implemen-
tations of the SFA. Version 1(a) is the standard method
with block data decomposition but no directed assignment
within RADs. Version 1(b) forces data and threads to
spread across RADs. Version 2 corresponds to our data
local sampling and is clearly superior.

The obvious issues which need to addressed are (1) en-
suring each thread has a different random seed for sample
positions and (2) that the sum reduction of the final values
across threads is performed. In practice, both of these is-
sues can be dealt with in very straightforward ways using
the OpenMP shared memory programming standard. Sum
reductions can be controlled via the REDUCTION primitive
while different random seeds can be set using an array of
initial values. Parallelization in this environment turned
out to be straightforward.

Tests on a 32 processor HP GS320 (1 GHz Alpha EV6/7
processors) at the Canadian Institute for Theoretical As-
trophysics (CITA), showed reasonable speed-up (see figure
3), but comparatively poor efficiency (22%) when 32 pro-
cessors were used. There is also a noticeable step in the
speed-up at 4 to 8 processors. This step is caused by mem-
ory for a job being moved to a second memory domain, or
‘resource affinity domain’ (RAD), within the machine. The
32 processor machine has 8 RADs in total, connected via
a cross-bar, with 4 processors belonging to each RAD. La-
tency to remote RADs is significantly higher than to local
RADs, which explains the increased execution time. Addi-
tionally, as the amount of traffic on the cross-bar between
the RADs increases, latencies are known to increase by
very large factors (up to 3000 nanoseconds, Cvetanovic,
2003). This is a serious bottleneck in the GS320 design
which has been removed in the latest GS1280 machine.
Ultimately, to improve performance on the GS320, it is
necessary to increase the locality of the sampling technique
to reflect the locality of memory within the machine, and
avoid sending data across the cross-bar.

Note that using a block decomposition of data across
the RADs means that locality is only really necessary in
one axis direction. Therefore, we adopted the following
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Figure 4: Initial and final point configurations for a slice through a simulation with 2.6× 105 particles.

strategy to improve performance:

1. Block decomposition of the δs(x) grid across RADs

2. Pre-calculate the list of random positions in the z-axis

3. Parallel sort the list of random positions in increasing
z value

4. Parallelize over the list of z positions, calculating x
and y values randomly

The resulting sample still exhibits Poisson noise statistics
and is therefore valid for our purposes. However, the sam-
ple points are now local in the z direction, which greatly
reduces the possibility of remote access due to the block
assignment of data. The scaling improvement for this
method is shown in figure 3. The improvement is striking.
We achieved a 1.2x increase in performance for the sin-
gle processor result alone, while at 32 processors we have
achieved a 4.8× improvement in speed-up and a tripling
of the parallel efficiency (82%). Note that the speed-up is
still not perfect for the improved version. This may be a
bandwidth issue since the interpolation at each sampling
point requires 64 grid values, which breaks down into 16
cache lines, with only 8 floating point calculations per-
formed for all the data in each cache line. Note that it is
unlikely that using the next lowest level of interpolation
(TSC) would help. TSC requires 27 points grid points per
sample, which is 9 cache lines, with 6 floating point calcu-
lations per cache-line. Thus the overall ratio of calculation
to memory fetches is actually reduced.

6 Application: Moments in Initial Conditions

The initial conditions for cosmological structure are
prescribed by initial density, temperature and velocity
fields. Although there is debate over whether evolution in
the early universe (such as magnetic fields) may induce a
non-Gaussian signal in the initial conditions (White et al.,
1994), most researchers believe that the density field
is Gaussian process, and the velocity may be derived
directly from it. In the absence of non-Gaussian features,
the density field, which is usually discussed in terms of
the linear over-density δ, is completely described by its
continuous power spectrum P (k) = Akn, where A is a
normalization constant. This initially smooth field evolves
under gravity to produce the locally inhomogeneous and
biased distribution of galaxies we observe today (see figure
4, which compare particles positions from initial to final
outputs). Early evolution, when δ(x) ≪ 1, is in the linear
regime and can be described by perturbation theory.
As the over-density values approach and later exceed
unity, it is necessary to use simulations to calculate the
non-linear evolution. Thus, ideally, the initial conditions
for simulations should correspond to the latest time that
can be followed accurately by perturbation theory.

Scoccimarro (1998) has developed an algorithm for the
fast calculation of the particle positions required for cos-
mological simulations via 2nd order Lagrangian perturba-
tion theory (2LPT). We have recently implemented this
algorithm in parallel using OpenMP. Although 2LPT re-
quires more computation, it has significant advantages over
the standard 1st order technique (known as the Zel’dovich
(1968) approximation) as higher order moments exhibit far
less transient deviations at the beginning of the simulation.
Further, one should in principle be able to follow the initial
evolution to slightly later epochs using 2LPT and therefore
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begin simulations at a slightly later time. In practice, the
transient deviation issue is most significant.
In general, the more negative the spectral index the

faster the initial transients die away. This is helpful, since
most simulations are conducted with an effective spectral
index, n, of between -1.5 to -3 (depending on the size of the
simulation volume). Also, although we have focused solely
on particle position statistics in this paper, it is worth
noting that a similar analysis can be applied to velocity
fields defined on the point process. Analysis of the tran-
sients in the velocity divergence field, θ = ∇.v, shows an
even greater improvement when using the 2LPT method
(Scoccimarro, 1998).

To test whether our new 2LPT code was reproducing the
correct results we have compared the measured S3 statis-
tics for our 2LPT initial conditions versus those produces
with the Zel’dovich approximation (1st order). At the ini-
tial expansion factor of a = 1, the ZA predicts the following
value for S3 (Bernardeau, 1994);

S3 =
28

7
− (3 + n), (13)

while 2LPT predicts;

S3 =
34

7
− (3 + n). (14)

Thus after performing the 2nd order correction the value
of S3 should increase by 6/7. In figure 5 we show the cal-
culated values of S3 for two sets of initial conditions, one
created using the ZA and the other with the additional
2LPT correction. Both the SFA measured values of S3 are
high for this particular set of phases (as compared to the
theoretical prediction), but we have confirmed that alter-
native random seeds can produce similar results. Indeed
we have found the values of S3 are quite dependent upon
the phases of the Fourier waves used, and achieving a value
that is asymptotic to the theoretical value is extremely dif-
ficult. We are currently investigating this phenomenon in
more detail. However, a brief visual inspection of figure
5 provides evidence that the residual, ∆, between the ZA
and 2LPT results is close to 6/7 ≃ 0.86. Analysis of the
set of residuals between the two lines gives ∆ = 0.88±0.03
(1σ deviation), confirming that our code is accurately re-
producing the difference in S3 values.

7 Summary and Discussion

We have presented a new fast algorithm for rapid
calculation of one point cumulants for point pro-
cesses. Our algorithm is based upon a smoothed
field approach, which reproduces the underlying sta-
tistical properties of the point processes field from
which it is derived. The method is significantly faster
than counts-in-cells methods because the overhead of
evaluating the number of particles in a given sphere has
been removed. We are able to calculate 109 sample points
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Figure 5: Comparison of S3 calculated via CIC versus SFA
on an n=0 initial condition, with the theoretical result
shown for reference. SFA shows a good match out to 4
inter-particle spacings at which point it begins declining.
CIC appears accurate on small scales but rapidly diverges
away from the true signal. We have confirmed that as the
simulation evolves, and the effect of shot noise is reduced,
both methods converge to similar values.

on a 5123 data set in less than 2 CPU hours, which is
over 4x faster than the results reported for tree-optimized
counts-in-cells methods (Szapudi et al., 1999). We also
note that while tree methods also lead to very large speed
ups, they are still subject to noise from the point process
for low amplitude signals.

We are currently applying this new technique to exam-
ine the evolution of high order moments in cosmological
density fields at low amplitude levels and will present our
findings elsewhere (Thacker, Couchman and Scoccimarro
in prep). We also anticipate making the codes described
in this paper publically available in the near future.
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