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Abstract

Many non-coding RNAs (ncRNAs) can fold into alternate native structures and perform different

biological functions. The computational prediction of an ncRNA’s alternate native structures can

be conducted by analysing the ncRNA’s energy landscape. Previously, we have developed a

computational approach, RNASLOpt, to predict alternate native structures for a single RNA. In

this paper, in order to improve the accuracy of the prediction, we incorporate structural

conservation information among a family of related ncRNA sequences to the prediction. We

propose a comparative approach, RNAConSLOpt, to produce all possible consensus SLOpt stack

configurations that are conserved on the consensus energy landscape of a family of related

ncRNAs. Benchmarking tests show that RNAConSLOpt can reduce the number of candidate

structures compared with RNASLOpt, and can predict ncRNAs’ alternate native structures

accurately. Moreover, an application of the proposed pipeline to bacteria in Bacillus genus has

discovered several novel riboswitch candidates.
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1 Background

Non-coding RNAs (ncRNAs) play important roles in the biological regulatory system by

folding into specific structures. Many ncRNAs, such as riboswitches, can transit among

more than a single native structure in order to participate in different biological activities

(Schultes and Bartel, 2000). For example, the adenine riboswitch of ydhL gene of Bacillus

subtilis can selectively couple the adenine metabolites, causing a structural rearrangement

that can turn ‘off’ the formation of a transcription terminator and preclude the gene

transcription of its downstream genes (Mandal and Breaker, 2004). Determination of

ncRNAs’ alternate functional structures can provide deep insights into the regulatory
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mechanisms of ncRNAs in cellular life. Furthermore, analysis of putative RNAs’ potential

structure conformations can lead to discovery of novel riboswitches.

1.1 Stable local optimal structures and energy landscape of a single RNA

The alternate functional structures of an ncRNA can be determined by analysing its energy

landscape. The exact energy landscape of an RNA consists of all feasible suboptimal

structures within a certain energy range, where each suboptimal structure is directly

connected to its neighbouring structures (i.e. structures that differ from it by exactly one

base pair). We can use approaches, such as RNAsubopt (Wuchty et al., 1999), to enumerate

all possible suboptimal structures, and then use approaches, such as BARRIERS (Flamm et

al., 2002), to construct the exact energy landscape. However, the conformational space of

feasible suboptimal structures can be extremely large, rendering a lot of redundant

information (many suboptimal structures are similar to one another). For example, for the

adenine riboswitch, the number of suboptimal structures with free energies between the ‘on’

and ‘off’ state structural conformations exceeds 109.

Researchers have also developed approaches that only investigate a subset of suboptimal

structures. Zuker (1989) has developed mfold, an approach that is able to generate, for each

admissible base pair in an RNA, the minimum energy structure containing the base pair. The

approaches of Pipas and McMahon (1975) and Nakaya et al. (1996) consider structures

composed of co-existing stacks to reduce the number of candidates. Evers and Giegerich

(2001) have implemented an approach for enumerating all saturated suboptimal structures.

Giegerich et al. (2004) have also developed RNAShapes, which can cluster suboptimal

structures according to their shapes. Lorenz and Clote (2011) have developed RNALocopt,

which can sample a user-defined number of locally optimal structures. Also, Lou and Clote

(2011) have contributed RNAborMEA, which can compute the structure with maximum

expected accuracy over all k-neighbours for an RNA secondary structure S and a number k.

In our previous work (Li and Zhang, 2011), we have proposed a novel approach,

RNASLOpt, for predicting functional structural conformations of a single RNA by finding

stable local optimal (SLOpt) structures on the RNA’s energy landscape. Usually, ncRNAs’

functional structural conformations have some distinctive features. First, the functional

structures are energetically favourable and optimal on their local energy landscapes, which

we call local optimal (LOpt). They tend to reside at the bottom of energy basins to ensure

being favoured over an ensemble of other structural conformations (Russell et al., 2002).

This is because non-local optimal structures can progressively fold into their neighbouring

structures with lower free energies easily, like rolling down a hill until reaching an energy

basin (a LOpt structure). Second, the conformational transitions between any pair of

alternate functional structures may involve high energy barriers, such that the ncRNA can

become kinetically trapped on the energy landscape (i.e. if the energy barrier between two

structures is low, then conformational transition between the two structures may occur

easily).

Therefore, in order to predict ncRNAs’ native structures, we have proposed to exploit

ncRNAs’ underlying energy landscapes and search for SLOpt structures, that are not only

thermodynamically stable, but also involve high energy barriers during the folding pathways
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to any other SLOpt structures. That is, given an ncRNA sequence, how to enumerate all the

SLOpt structures such that (a) their free energies are within a certain energy range ΔE from

the Minimum Free Energy (MFE), (b) they are local optimal on the ncRNA’s energy

landscape and (c) they are kinetically stable such that the minimal energy barrier between

any two SLOpt structures is no less than a certain threshold Δ ?

We have employed stack configurations (each of which contains a set of compatible stacks)

to represent scaffolds of RNA secondary structures. And, we have used LOpt stack

configurations to approximate LOpt structures, where each LOpt stack configuration

consists of a maximal number of compatible stacks (i.e. no additional stack can be added

without forming pseudoknots). We have enumerated all the LOpt stack configurations

within an energy range ΔE from the MFE, and then used a fast heuristic to compute the

approximated pairwise energy barriers among these LOpt stack configurations, and finally

applied a clustering algorithm to obtain all the SLOpt stack configurations (among which all

the pairwise energy barriers are greater than or equal to Δ ). Based on the generated SLOpt

stack configurations, we can infer a compact representation of the RNA’s energy landscape

with a remarkably reduced conformational space. Moreover, from the reduced search space,

we can distinguish the ncRNA’s alternate native structural conformations more accurately.

1.2 Predicting the optimal consensus structure for a family of related RNAs

The biological functions of ncRNAs are usually determined by their structures. And,

ncRNAs that carry out similar biological functions are likely to share similar structural

conformations. Predicting secondary structures for a single RNA based on energy

minimisation alone typically has limited accuracy. More accurate prediction can be obtained

by using comparative approaches to compute consensus structures that are conserved among

related ncRNAs. Comparative approaches for predicting consensus structures can either (a)

conduct sequence alignment and thermodynamic-based folding simultaneously (e.g. the

Sankoff algorithm (Sankoff, 1985), Foldalign (Gorodkin et al., 1997), Dynalign (Mathews

and Turner, 2002)), or (b) rely on well-aligned sequence alignments and fold consensus

structures (e.g. RNAalifold (Hofacker, 2007; Hofacker et al., 2002), Pfold (Knudsen and

Hein, 2003), PETfold (Seemann et al., 2008), McCaskill-MEA (Kiryu et al., 2007),

CentroidAlifold (Hamada et al., 2011)), or (c) first fold each individual RNA separately and

then align all the predicted structures to obtain the consensus structure (e.g. RNACast

(Reeder and Giegerich, 2005), RADAR (Khaladkar et al., 2007)). One of the most popular

comparative approaches is RNAalifold, which takes into account thermodynamic stability,

covariant mutations and inconsistent base pairing into consensus folding.

1.3 Consensus stable local optimal structures and energy landscapes for a family of
related RNAs

Most of the comparative approaches can predict only the optimal consensus structure, while

ignoring consensus suboptimal structures. These approaches are not appropriate for

analysing ncRNAs with alternate functional structures. In order to predict ncRNAs’ alternate

functional structures more accurately and confidently, we want to study the consensus

suboptimal structures that are conserved in evolution among related ncRNAs on their

consensus energy landscapes. We assume that the consensus functional structures of
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ncRNAs should also be local optimal, residing at energy basins of the consensus energy

landscape. In addition, the consensus folding pathways between any two consensus

functional structures should involve high energy barriers such that the conformational

transitions cannot occur easily.

We propose the following problem: given a family of related ncRNAs, how to enumerate all

the consensus stable local optimal structures such that (a) they are conserved among the

family of related ncRNAs, (b) their consensus free energies are within a certain energy range

ΔE from the MFE, (c) they are local optimal on the consensus energy landscape, and (d)

they are dynamically stable such that the pairwise energy barrier between any two of them is

no less than Δ ? So far, to our knowledge, no specific method has been proposed to address

this problem. In this paper, we describe our comparative approach, RNAConSLOpt, for

finding consensus SLOpt (denoted by ConSLOpt) structures on the consensus energy

landscape of a family of related ncRNAs.

1.4 Novel riboswitch elements discovery

An application of our proposed approach, RNAConSLOpt, is to search for novel riboswitch

elements. Computational detection of novel riboswitches is a very challenging task.

RNAConSLOpt is particularly suitable for addressing this problem, because riboswitches

can switch between allosteric structure conformations that are mutually exclusive, while

RNAConSLOpt can find evolutionarily conserved and thermodynamically stable structures.

Many researchers have developed a variety of methods for identifying new riboswitch

elements in bacterial genomes. Barrick et al. (2004) have proposed an approach that

integrates intergenic sequence search, pairwise sequence alignment, and structure-based

motif search for novel riboswitches detection. They have discovered and experimentally

verified several novel riboswitches in B. subtilis genome. Bengert and Dandekar (2004)

have developed RiboswitchFinder, a method that searches an input sequence for specific

riboswitch elements according to the sequence and structure patterns of the elements, and

the energy-based folding of the input sequence. Abreu-Goodger and Merino (2005) have

created RibEx, a web server that can search for known riboswitches and conserved

regulatory elements in bacteria. In addition, Yao et al. (2006) have contributed CMfinder, an

effective motif search tool that performs well in finding motifs that are present in a subset of

unaligned sequences. CMfinder integrates energy-based secondary structure prediction and

covariance models for characterising motifs. CMfinder can be applied to genome-wide

homolog search and is shown to have identified many homologous instances of known

ncRNA families. Moreover, Chang et al. (2009) have implemented RiboSW, a systematic

method that searches putative riboswitch elements through considering secondary structures

of known riboswitches, as well as sequence conservations of their functional regions.

However, although these approaches perform well in identifying homologous instances of

known riboswitch families, they cannot be used for de novo detecting novel riboswitches. In

this paper, we propose to make use of RNAConSLOpt to develop a pipeline for de novo

detecting riboswitch elements in bacteria 5′ Untranslated Regions (UTRs).

We arrange this paper as follows. In Section 2, we elucidate algorithms of RNAConSLOpt

in detail. In Section 3, we show benchmarking tests of RNAConSLOpt on known
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riboswitches, and compare RNAConSLOpt against RNASLOpt. In addition, we present the

pipeline utilising RNAConSLOpt to discover novel riboswitch elements within Bacillus

bacteria genomes. In Section 4, we discuss further applications of RNAConSLOpt and

finally conclude this paper in Section 4.

2 Methods

RNAConSLOpt incorporates not only free energies of structures, but also covariance and

conservation signals into enumerating ConSLOpt structures. RNAConSLOpt consists of

three algorithms: (a) the stack-based consensus folding algorithm, (b) the algorithm for

generating all possible ConSLOpt stack configurations and (c) and the algorithm for filtering

out unstable consensus LOpt stack configurations and obtaining ConSLOpt stack

configurations. In the following, we first review the covariance and conservation score of

aligned RNA sequences used in RNAalifold, and then define notations related to consensus

stack configurations, and finally describe the three algorithms.

2.1 Covariant mutations and structural conservation

We represent an alignment of n (n > 1) related RNAs, each containing exactly L bases, by 

= {a1, …, an}. By , we denote the i-th base of the k-th RNA. The alphabet includes

nucleotides {A, U, G, C} and a gap ‘–’. Complementary nucleotides (including {A·U, G·C

and G·U} can form base pairs. Following the idea of RNAalifold (Hofacker et al., 2002), we

consider the i-th and j-th columns of  to be complementary, if the covariance and

conservation score between the two columns, γij, is not less than a threshold value γ* (with a

default value −0.4). Recall that γij is composed of a covariance score Cij and an inconsistent

score qij. Note that Cij is the bonus to compensatory mutations that maintain the pairing

pattern between i-th and j-th columns; while qij is the penalty to RNAs, of which the i-th and

j-th columns cannot pair. The values of γij, Cij and qij are, respectively, computed using

equations (1)–(3),

(1)

where ϕ1 is the relative weight of the inconsistent score and its default value is 1.0;

(2)

where d(x, y) is the hamming distance between two nucleotides x and y (0, if x = y and 1, if x

≠ y);

(3)
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2.2 Notations of consensus stacks and structures

By computing γij for all possible i and j, where 1≤i<j≤L, we can determine the consensus

base-pairing pattern in . Following the convention of RNASLOpt (Li and Zhang, 2011),

we define the following notations. Let (i, j) represent a consensus base pair between the i-th

and j-th columns of . A consensus stack of  is a helical region consisting of a set of

consecutive consensus base pairs, which cannot extend on both ends. We use p = (pb, pe, pl)

to represent a consensus stack containing the following pl consecutive consensus base pairs,

{(pb, pe), (pb + 1, pe − 1), …, (pb + pl − 1, pe − pl+1)}. pb and pe are the 5′ and 3′ ends of the

outmost base pair in p. |p| is the sequence length covered by the stack p and is equal to pe −

pb + 1. We use γ(p) to denote the covariance and conservation score of p. γ(p) can be

computed by adding up the γ scores of all the consensus base pairs in p.

We use ( ) to denote a set of all possible consensus stacks of , which contains at least a

user-defined number of base pairs (the default value is 4). For any two stacks p and q in 

( ), if p is parallel to the 5′ of q (i.e. pe < qb), then p < P q; if p is enclosed by q (i.e. qb + ql

≤ pb and pe ≤ qe − ql), then p < I q; otherwise, p and q are incompatible. (The partial orders p

< P q and p < I q can be loosely defined, allowing p and q to overlap by a few columns.) In

case that p is enclosed by q, we use a stack lp,q = (qb + ql, pb −1, 0} or (rp,q = (pe + 1, qe −

ql, 0)) to represent the region that is enclosed by q and appears to the 5′ (or 3′) end of p. We

define (p) to be the set of all possible consensus stacks within p, and (p) to be a subset of

(p). A stack q ∈ (p) belongs to (p), if and only if there is no stack q′ in (p), such that

either q<P q′ (i.e. q′ appears to the 3′ of q), or q< I q′ (i.e. q is embedded in q′).

We use configurations of consensus stacks (containing a set of compatible consensus stacks

allowing no pseudoknots) to represent scaffolds of consensus structures. We also employ

consensus LOpt stack configurations (each of which contains a maximal number of

compatible consensus stacks) to approximate consensus LOpt structures. We use consensus

free energy for evaluating each generated consensus structure. The consensus free energy

contains both the covariance and conservation score, and the average free energy over all

single RNAs in the alignment, and is computed in a similar manner to RNAalifold.

We define the following terminal symbols. By S(p), we denote the normalised stabilising

consensus energy of all the stacking base pairs in a consensus stack p. H(p) is the normalised

destabilising consensus energy of hairpin loops enclosed by p, and I(p, q) is the normalised

consensus energy of an interior loop or a bulge between stacks p and q. In case that an RNA

in the alignment cannot form a base pair (or a loop or a bulge) which exists in the consensus

structure, the energy contribution of the particular base pair in the RNA will not be counted.

Mc is a constant offset penalty for closing a multi-loop. Mb and Mi are constant penalties for

each unpaired base and each helix in a multi-loop. We also define non-terminal symbols:

F(p), C(p), FM1(p) and FM(p), each represents the minimum consensus energy over all

stack configurations within p conforming to the following constraints:

• F(p): pb = 1 and pl = 0;

• C(p): pl ≠ 0 and p closes some structures within itself;

Li et al. Page 6

Int J Bioinform Res Appl. Author manuscript; available in PMC 2014 September 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



• FM1(p): p is within a multi-loop, and there exists at least a consensus stack q such

that ql ≠ 0 and then q < I p;

• FM(p): p is within a multi-loop.

2.3 Stack-based consensus folding algorithm

In the work of RNASLOpt (Li and Zhang, 2011), we have described a recursive formula for

computing the MFE for all possible LOpt stack configurations of a single RNA. Here, we

modify the formula in order to compute the minimum consensus energy for aligned

sequences of related ncRNAs, as in equation (4):

(4)

where ϕ2 is the weight of the covariance and conservation score and its default value is 0.5.

The major differences are that (a) we consider the consensus structures shared among related

ncRNAs, instead of structures of a single ncRNA and (b) we integrate the covariance and

conservation score in evaluating the generated structures.

2.4 Generating all possible consensus local optimal stack configurations

Next, we enumerate all possible consensus LOpt stack configurations of  within an energy

range of ΔE from the minimum consensus free energy. In the work of RNASLOpt (Li and

Zhang, 2011), we have proposed an approach for enumerating all possible LOpt stack

configurations for a single RNA. We modify it for aligned RNA sequences as follows.

We use p* (where p* = (1, L, 0)) to denote the stack that covers the overall alignment of .

The minimum consensus free energy of  is F(p*), and the energy upper bound is ΔE +

F(p*). We use a partial stack configuration φ0 (where φ0 = {(p*, F)}) to represent all

possible consensus LOpt stack configurations on . A partial stack configuration φ is

composed of a set of compatible consensus stacks, where each consensus stack p is

associated with one of the five labels: finished, F, C, FM1 and FM. For each consensus stack

p in φ, we decompose the region covered by p into several separated sub-regions according

to the label of p, and then construct a set of new partial stack configurations accordingly.

The decomposition and construction are conducted through back tracking the recursive

formula of equation (4) (similar to the procedures described in Li and Zhang, 2011). We

repeatedly process each partial stack configuration φ, until either the consensus free energy
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of φ is greater than the energy upper bound, or all the consensus stacks in φ are labelled as

finished.

During the back tracking phase, at each step, we determine whether to include a consensus

stack. This procedure differs from those of RNASLOpt and RNAsubopt in that: at each step,

RNASLOpt decides whether to include a stack of a single RNA; and RNAsubopt chooses

whether to form a feasible base pair. RNASLOpt can greatly reduce the search space

compared with RNAsubopt, because it encounters far fewer branching points (as the number

of stacks is less than the number of feasible base pairs) (Li and Zhang, 2011). Similarly,

RNAConSLOpt is expected to explore a further reduced, yet evolutionarily conserved,

conformational space of consensus structures compared with RNASLOpt (as the number of

consensus stacks of aligned RNAs is usually less than the number of stacks in a single

RNA). Note that, although RNAConSLOpt still considers a search space that grows

exponentially with sequence length, it can further reduce the number of candidate structures,

and thus can be applied to longer sequences with a greater energy range.

2.5 Clustering consensus stable local optimal stack configurations

Finally, we select consensus stable local optimal structures from the consensus LOpt stack

configurations based on pairwise consensus energy barriers. To achieve this goal, we need to

compute the pairwise consensus energy barriers among LOpt structures. The problem of

determining the minimal energy barrier between two secondary structures, even for a single

RNA, is hard (Manuch et al., 2009). Although both exact solutions (Flamm et al., 2002;

Thachuk et al., 2010) and heuristic approaches (Morgan and Higgs, 1998; Dotu et al., 2010;

Flamm et al., 2001; Geis et al., 2008; Morgan and Higgs, 1998; Voss et al., 2004) have been

proposed to address this problem for single RNAs, they are not tailored for computing

consensus energy barriers for aligned RNAs and are not fast enough to apply to thousands of

pairs of conformational structures. Therefore, we use the fast heuristic described in our

previous work (Li and Zhang, 2011) to compute consensus energy barriers. Finally, we

obtain a set of ConSLOpt structures (among which all the pairwise consensus energy

barriers are greater than or equal to Δ ) using neighbour joining clustering (Li and Zhang,

2011).

3 Results and discussion

3.1 Benchmarking tests on known riboswitches

In order to test whether RNAConSLOpt is able to predict alternate functional structures for

riboswitches, we conducted benchmarking tests on the adenine riboswitch, the thiamine

pyrophosphate (TPP) riboswitch, the lysine riboswitch and the flavin mononucleotide

(FMN) riboswitch. First, we obtained primary sequences and native structural conformations

of the following riboswitches as the reference: adenine – ydhL gene of B. subtilis (Mandal

and Breaker, 2004), TPP – thiamine of B. subtilis (Mironov et al., 2002; Rentmeister et al.,

2007), lysine – lysC of B. subtilis (Blouin et al., 2011) and FMN – ribD of B. subtilis

(Winkler et al., 2002). Next, for each riboswitch, we constructed an alignment of

homologous sequences. We downloaded the seed alignment of each riboswitch from the

Rfam database (Griffiths-Jones et al., 2003). Note that we could not use the seed alignment
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directly, because it is an alignment of partial sequences that are too short when compared to

the full reference sequence. For each partial sequence in the seed alignment, we inferred the

genomic location of the full sequence accordingly. After extracting all the full sequences

from the EMBL Nucleotide Sequence Database (Kanz et al., 2005), we selected the

reference sequence and four other sequences which have lower than 90% sequence identity

with the reference, and aligned them using ClustalW2 (Larkin et al., 2007). We applied

RNAConSLOpt to the constructed riboswitch alignments in order to produce ConSLOpt

stack configurations. Finally, we evaluated the generated ConSLOpt structures using the

reference native structural conformations and compared RNAConSLOpt against

RNASLOpt.

The native and predicted ‘on’ and ‘off’ structural conformations of the adenine riboswitch

are shown in Figure 1. We found that covariant mutations exist in both ‘on’ and ‘off’

structures and are informative for the prediction. In Table 1, we also compared ranks of the

best predicted structures corresponding to the native ‘on’ and ‘off’ structures produced by

RNAConSLOpt against the ranks by RNASLOpt. We can see that ranks of ‘on’ and ‘off’

structures predicted by RNAConSLOpt are better than those of RNASLOpt. This is due to

the power of comparative analysis in ncRNA structure prediction. RNAConSLOpt only

investigates consensus stable local optimal structures residing at energy basins of the

consensus energy landscape. It can further reduce the search space compared with

RNASLOpt, retaining the ability to predict both alternate native structures for riboswitches.

The running time for the four benchmarking tests (on a 32 bit, 2.4 GHz Quad-processor, 3.2

GB memory PC) are 1 second, 3 seconds, 8 seconds, and 14 seconds, respectively. This

indicates that RNAConSLOpt can be applied to alignments of length around 250 with great

efficiency.

In addition, we also compared the number of ConSLOpt structures of aligned riboswitches

(produced by RNAConSLOpt) against the number of SLOpt structures of the reference

sequence (produced by RNASLOpt). In general, the number of ConSLOpt structures of

aligned riboswitches is a small fraction of the number of SLOpt structures of the reference

sequence, as shown in Figure 2. The source code and benchmarking tests for

RNAConSLOpt (version 1.1) are available at http://genome.ucf.edu/RNAConSLOpt

3.2 A pipeline for de novo detection of riboswitch elements in bacterial genomes

We present a pipeline that utilises RNAConSLOpt in detecting novel riboswitch elements.

RNAConSLOpt can predict consensus stable local optimal structures for aligned

orthologous sequences, while putative riboswitches are likely to have allosteric structure

conformations. Therefore, by analysing covariant mutation patterns of the predicted

ConSLOpt structures, we can obtain additional information and then discover putative

riboswitch elements with more confidence. We have applied this riboswitch detection

pipeline to a set of bacteria in Bacillus genus, and carried out the following procedures.

First, we downloaded 82 complete genomes of 37 Bacillus bacteria, as well as their gene

annotations from the National Institutes of Health (NIH) National Center for Biotechnology

Information (NCBI) ftp server (ftp://ftp.ncbi.nih.gov/genomes/Bacteria). We selected B.

subtilis 168 (with GenBank accession number NC_000964) as the reference genome. B.
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subtilis is a well studied and annotated organism commonly used as a model in bacteria

research. B. subtilis has 4155 non-redundant genes annotated. For each gene, we collected

the upstream sequences of all orthologous genes from the 82 Bacillus bacteria genomes,

aiming at constructing an orthologous sequence alignment. Each sequence consists of up to

500 nucleotides in 5′-UTR of the specific gene and the starting 50 nucleotides of the gene’s

protein coding region. We kept the starting 50 nucleotides of the protein coding region so

that we can use them as an anchor to construct high-quality alignments. We also discarded

short orthologous sequences which have less than 100 nucleotides in 5′-UTR. After

collecting all the orthologous sequences for a specific gene, we then employed ClustalW2

(Larkin et al., 2007) to construct an alignment.

With the constructed orthologous sequence alignments, we then divided them into many

small overlapping windows. The window size can be 100, 120, 140 and 160 and the step

size is 20. We refined each alignment window using rnazSelectSeqs.pl in RNAz (Gruber et

al., 2010) package (version 2.1 with default parameters). Note that the refined alignments

produced by RNAz are usually shorter in length than the original alignments. We only chose

windows with lengths between 90 and 120. We also filtered out windows which contain less

than four sequences, as they cannot provide enough covariant mutation information. Further,

for each remaining alignment window, we used RNAz (with – no-shuffle option) to predict

whether the alignment is likely to be a real RNA. We removed windows which have less

than 50% probability of being classified as an RNA by RNAz, and finally obtained 10,577

high-quality alignment windows.

After selecting 10,577 alignment windows, we applied RNAConSLOpt to each of them with

the default parameters (ΔE = 15 kcal/mol, Δ  =12 kcal/mol). RNAConSLOpt produced

ConSLOpt structures for each window and ranked these structures by their associated

minimal energy barriers. We denoted the rank 1st and rank 2nd ConSLOpt structures by R1

and R2, respectively. E(R1) and E(R2) represent consensus energies with covariant scores for

R1 and R2, respectively. Among all the selected windows, 4037 of them were predicted with

putative allosteric consensus structures.

Since many of the remaining 4037 windows may overlap with one another, for each group

of overlapping windows, we selected the one with the lowest E(R2) as the representative.

After trimming redundant information from the results, we obtained 630 non-overlapping

windows. To make the prediction more conservative, we only analysed 506 windows for

which the average distance to the starting codons of their downstream genes is less than 100.

With E(R2) less than −10 (kcal/mol) and −20 (kcal/mol), we obtained 161 and 38 putative

riboswitch candidates, respectively.

In order to check whether the putative riboswitches have already been studied or not, we

searched their orthologous sequences in the alignments against known riboswitch families.

First, we used BLAST (Altschul et al., 1990) (with option megablast) to compare each

orthologous sequence against the full sequence alignments of RNA families in the Rfam

database (Griffiths-Jones et al., 2003). We considered a riboswitch candidate belonging to a

known RNA family if one of its orthologous sequences ‘hit’ an Rfam RNA family with an

e-value less than 10−5. The Rfam RNA family would be denoted as the best matching RNA
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family for the putative riboswitch. In addition, we also conducted homolog search against

covariance models of known ncRNAs in Rfam using Infernal’s cmsearch (Nawrocki et al.,

2009) with a significant e-value cut-off (E < 10−10).

Finally, we sorted all the windows based on their E(R2) values (i.e. the consensus energy

with covariance for the rank 2nd ConSLOpt structure R2). Table 2 shows all the predictions

with E(R2) less than −20 (kcal/mol). Supplementary information of the list of genomes used

in this pipeline, the riboswitch candidates with E(R2) value less than −10 (kcal/mol), and the

predicted ConSLOpt structures for all the riboswitch candidates is available at http://

genome.ucf.edu/RNAConSLOpt.

3.3 Discovery of novel riboswitch elements in Bacillus bacteria genomes

Genome-wide discovery of riboswitch elements in Bacillus bacteria genomes using the

pipeline results in 38 hits with E(R2) less than −20 (kcal/mol). These 38 potential riboswitch

elements are sorted based on E(R2) and are listed in Table 2. Among the 38 genes whose 5′-

UTR contain potential riboswitch elements, 28 of them are recognised by the KEGG

pathway analysis (Kanehisa et al., 2004). Of these recognised genes, 60.7% (17/28) of them

are involved in metabolic pathways. The major pathways consist of aminoacyl-tRNA

biosynthesis, biosynthesis of secondary metabolites, microbial metabolism in diverse

environments, thiamine metabolism, pyrimidine metabolism, purine metabolism, methane

metabolism and histidine metabolism.

BLAST (Altschul et al., 1990) search of the 38 regions against Rfam database reveals that

34.2% (13/38) of them are annotated riboswitches or mRNA leader elements (see Table 2).

In addition, we further use Infernal’s cmsearch to annotate the other 25 regions that are not

registered in Rfam. The cmsearch results indicate another 7 potential riboswitch elements

with significant e-values. An example of this category resides in the 5′-UTR of cysE, which

codes serine acetyltransferase. This enzyme, together with acetyl-coA, catalyses the reaction

of producing O-acetylserine from serine. O-acetylserine participates in the sulphur metabolic

pathway, which synthesises organic sulphur metabolites such as cysteine, methionine and S-

adenosyl-methionine (Andre et al., 2008). Although experimental evidence suggests that

many steps of this pathway are regulated by T-box and S-box riboswitches, whether cysE is

also regulated by riboswitch is still unclear (Andre et al., 2008). The discovery of an

allosteric structure of this element, and its sequence and structural resemblance to T-box

riboswitch, supports the hypothesis that these genes are regulated by T-box riboswitch.

The other 18 genes whose 5′-UTR do not contain known riboswitch elements are likely to

be regulated by novel riboswitch elements. We selected two elements as examples for

detailed discussion. The first gene greA codes for the transcription elongation factor GreA. It

has been recently experimentally verified that this gene is regulated by the greA attenuator

(Potrykus et al., 2010) in E. coli. The presence of such an attenuator indicates that this gene

is under certain transcriptional regulation by its 5′-UTR. However, the mechanism of this

regulation is still unclear (Naville and Gautheret, 2010). Our results indicate that the

attenuator may act like a riboswitch, which regulates the transcription of the gene by

alternating its structure. Interestingly, homolog search (using cmsearch) of the greA

attenuator profile against B. subtilis does not return any significant hits. This implies that the
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greA attenuator adopts its own structures in B. subtilis, which in turn suggests that the gene

may participate in different biological pathways and under the different regulation in B.

subtilis. The predicted allosteric structures R1 and R2 of greA are shown in Figure 3.

The second gene nadD codes nicotinate mononucleotide adenylyl transferase (NMNAT),

which catalyses the adenylation of nicotinate mononucleotide to nicotinate adenine

dinucleotide (NAD). The biochemical function of the enzyme NMNAT resembles that of

FMN adenylyl transferase (FMNAT), which also catalyses adenylation as an enzyme, but

produces flavin adenine dinucleotide (FAD) from flavin mononucleotide (FMN). The

interaction catalysed by FMNAT is a critical step of FMN biosynthesis pathway, and the

expression of FMNAT is considered to be regulated by the FMN riboswitch (Nudler and

Mironov, 2004; Gusarov et al., 1997; Mack et al., 1998). As a result, it is highly possible

that the enzyme NMNAT, which is coded by nadD gene, is also regulated by riboswitch

elements in the 5′-UTR. Using RNAConSLOpt, we are able to identify a potential allosteric

RNA element in the 5′-UTR (see Figure 4), which further implies the existence of such a

riboswitch element. Homolog search with cmsearch against this region does not result in any

significant matches with known riboswitch families, suggesting that the riboswitch element

that regulates nadD is novel. The sequences of this region are relatively diverse (79.8%

mean pairwise identity), yet most of the mutations are covariant. More importantly, we

identified a covariant mutation that is compatible for both structures that the riboswitch-like

element can adopt. Therefore, nadD is likely to be regulated by a riboswitch-like element,

and its predicted allosteric structures R1 and R2 are shown in Figure 4.

4 Conclusion

We have proposed the first comparative approach, RNAConSLOpt, for producing all

possible ConSLOpt (i.e. consensus stable local optimal) stack configurations given an

alignment of related ncRNAs. Based on these ConSLOpt structures, we can distinguish

alternate functional structures for ncRNA families more accurately and confidently.

Moreover, we can construct a compact representation of the consensus energy landscape of

an ncRNA family. The benchmarking tests on four riboswitch families show that

RNAConSLOpt outperforms RNASLOpt in reducing the number of candidate structures and

improving the ranks of both predicted alternate functional structures.

In addition, we have built a pipeline making use of RNAConSLOpt to discover novel

riboswitch elements genome wide. The advantage of this pipeline is that it requires no

preliminary knowledge about sequences and structures of known riboswitches. Therefore, it

can be used not only for identifying homologous instances of known riboswitches, but also

for de novo riboswitch detection. An application of this pipeline to a set of bacteria in

Bacillus genus results in the recovering of many known riboswitches and the detection of

many novel riboswitch candidates. The KEGG pathway analysis and biological function

annotation of proteins associated with several riboswitch candidates, together with studies of

their putative allosteric structures, provide strong evidence that they are likely to be real

riboswitches. Our future work involves applying the proposed pipeline to systematically

detect riboswitch elements in more bacterial genomes.
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Figure 1.
Aligned sequences of the adenine riboswitches and the corresponding native and predicted

consensus ‘on’ and ‘off’ conformational structures. Pairing columns with covariant

mutations in the predicted consensus structures are coloured red
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Figure 2.
Comparison of the number of ConSLOpt structures and that of SLOpt structures.

ConSLOpts and SLOpts represent the consensus SLOpt stack configurations of aligned

RNA sequences, and the SLOpt stack configuration of the reference RNA, respectively
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Figure 3.
The predicted rank 1st and 2nd ConSLOpt structures for a putative riboswitch element

upstream of greA. An alignment of orthologous sequences located in 5′-UTR of greA,

together with its rank 1st and 2nd ConSLOpt structures produced by RNAConSLOpt are

shown. Pairing columns with covariant mutations are coloured red
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Figure 4.
The predicted rank 1st and 2nd ConSLOpt structures for a riboswitch element upstream of

nadD. An alignment of orthologous sequences located in 5′-UTR of nadD, together with its

rank 1st and 2nd ConSLOpt structures produced by RNAConSLOpt are shown. Pairing

columns with covariant mutations are coloured red
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