Facial Expression Recognition Using a Hybrid CNN-SIFT Aggregator
Abstract
Deriving an effective facial expression recognition component is important for a successful human-computer interaction system. Nonetheless, recognizing facial expression remains a challenging task. This paper describes a novel approach towards facial expression recognition task. The proposed method is motivated by the success of Convolutional Neural Networks (CNN) on the face recognition problem. Unlike other works, we focus on achieving good accuracy while requiring only a small sample data for training. Scale Invariant Feature Transform (SIFT) features are used to increase the performance on small data as SIFT does not require extensive training data to generate useful features. In this paper, both Dense SIFT and regular SIFT are studied and compared when merged with CNN features. Moreover, an aggregator of the models is developed. The proposed approach is tested on the FER-2013 and CK+ datasets. Results demonstrate the superiority of CNN with Dense SIFT over conventional CNN and CNN with SIFT. The accuracy even increased when all the models are aggregated which generates state-of-art results on FER-2013 and CK+ datasets, where it achieved 73.4% on FER-2013 and 99.1% on CK+.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2016
- DOI:
- 10.48550/arXiv.1608.02833
- arXiv:
- arXiv:1608.02833
- Bibcode:
- 2016arXiv160802833A
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence;
- Computer Science - Human-Computer Interaction
- E-Print:
- To be appear in LNAI