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Abstract
Feeding external data to a blockchain, a.k.a. data feed, is
an essential task to enable blockchain interoperability and
support emerging cross-domain applications. Given the data-
intensive nature of real-life feeds (e.g., high-frequency price
updates) and the high cost of using blockchain, namely Gas,
it is imperative to reduce the Gas cost of data feeds. Moti-
vated by the constant-changing workloads in� nancial ap-
plications, this work aims at designing a dynamic, workload-
aware approach for Gas cost optimization. This design space
is understudied in existing blockchain research which has
so far focused on static data placement.
This work presents GRuB, a cost-e�ective data feed that

dynamically replicates data between the blockchain and o�-
chain cloud storage. GRuB monitors the current workload
and makes data-replication decisions in a workload-adaptive
fashion. Online algorithms are proposed to bound the worst-
case cost in Gas. GRuB’s decision-making components run
on the untrusted cloud o�-chain for lower Gas, and employs
a security protocol to authenticate the data transferred be-
tween the blockchain and cloud. We built a GRuB prototype
on Ethereum and supported real� nancial applications. Us-
ing the workloads reconstructed from Ethereum transaction
history, we evaluate GRuB’s cost and show a Gas saving by
10% ⇠ 74%, in comparison with the static baselines.
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1 Introduction
A smart contract is a user program that runs on a blockchain,
such as Ethereum [10] and EOS.IO [5]. It holds the promises
to expand the blockchain’s functionalities from the basic
cryptocurrency payments to broader applications in decen-
tralized� nance (DeFi), supply chains, online gaming, et al.
Feeding external data onto the blockchain, a.k.a. data feed,
is an essential task to enable these blockchain applications.
Today, data feeds are widely adopted, notably in DeFi. For
instance, stablecoins, a cryptocurrency with stable price that
sees an explosion of interest (as in Facebook’s Libra [11])
and deployment (as in the popular DAI [23] and Tether [24]
tokens on Ethereum) since 2019, require feeding real-world
asset prices to the blockchain, for instance the Ether-price
feed used in DAI [23]. For another instance, to enable asset
exchange across di�erent blockchains, say allowing a Bitcoin
owner to transact with an Ethereum token owner, it entails
a “side-chain” feed such as BtcRelay [2, 8, 69] to send the re-
cently found Bitcoin blocks onto Ethereum for verifying Bit-
coin deposit. There are many other blockchain applications
that have been or can be enabled by data feeds, including
decentralized insurance [71], tracing supply-chains [17, 65],
healthcare [51], transparency logging [14, 30, 66], trustless
information-security [15], et al.
Operating today’s data feeds can be an expensive busi-

ness. Speci�cally, many real-world data feeds generate an
intensive stream of data updates at a high frequency (e.g.,
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the price updates in seconds and microseconds). Under these
data-intensive streams, data feeds, if improperly designed,
could cause a heavy use of blockchain and lead to high mon-
etary cost, known as Gas [68]. The expense burdens not only
data-feed operators (e.g., ChainLink andMakerDAO) but also
the �nancial applications running on top of the data feeds
(e.g., decentralized exchanges such as AmpleForth and Syn-
theix [48]), eventually transferring to high fees for end users
(e.g., users of decentralized exchanges). It is thus impera-
tive to design cost-e�ective data feeds for scaling blockchain
applications to support real-world data-intensive scenarios.
The goal of this work is to explore how a dynamic,

workload-aware design of data feed can e�ectively save Gas.
The design goal is motivated by 1) the observation that real-
world �nancial applications exhibit highly dynamic work-
load patterns, which present opportunities to reduce costs
— Intuitively, if one can dynamically adjust the location of
the data feeds (w.r.t. the blockchain) according to the current
data supply-demand, the Gas cost caused by the repeated
use of blockchains could be avoided. See the next two para-
graphs for a detailed justi�cation. 2) Furthermore, the design
space of a workload-aware approach has not been studied
in the existing blockchain-systems research. While there
is a large body of research works on reducing blockchain
costs, notably the layer-two protocols exempli�ed by pay-
ment channels [16, 35, 52, 56] that aim to place application
logic o� the blockchain, all existing approaches are based
on static data placement. That is, the placement of data and
computation w.r.t. blockchains stays �xed once the system
starts running, and it does not re�ect the constant change
in the workloads. The design space of a dynamic, workload-
aware approach to optimize smart-contract costs for data
feeds is an uncharted territory.

This work presents GRuB, a workload-adaptive data repli-
cation framework for cost-e�ective data feeding. The system
model is a data pipeline involving three actors: As illustrated
in the left part of Figure 1, an o�-chain data producer (DO)
feeds a stream of data updates to multiple data-consumer
smart contracts (DUs) on the blockchain. The data �ow is
coordinated by an intermediarykey-value (KV) store between
the DO and DUs. A conventional design of data feed is to
realize the KV store in a smart contract that accepts DO’s
data updates in transactions and DU’s queries in contract
internal calls. An alternative design is to statically place the
KV store o� the blockchain (e.g., the static o�-chain feed,
TownCrier [71]). By contrast, GRuB is a KV store built on
hybrid storage media: By default, the data updates are per-
sisted on an o�-chain cloud storage provider (SP) such as
Amazon S3 [1] and upon DU’s queries, are brought to the
blockchain, bu�ered in a smart-contract memory. Optionally,
the bu�ered data can be persisted to the smart-contract stor-
age, as a data replica, to bene�t future read queries. GRuB’s
system model is illustrated by the right part of Figure 1. Note
that GRuB’s system model considering hybrid third-parties

(the trusted blockchain and untrusted cloud) should be di�er-
entiated from the existing work considering only untrusted
cloud services [57, 63] and one trusted cloud service out of
multiple clouds [29, 32].
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Figure 1. GRuB’s system models in comparison with the
model of conventional data feed. Green in this �gure illus-
trates smart contracts running on a blockchain, and red is
the cloud service provider SP who is the adversary.

The key decision to make in GRuB is whether and when a
data record in the feed should be replicated onto the smart-
contract storage on a blockchain. Always storing a replica
of the data being read, on the one hand, can bene�t future
data reads by avoiding loading data onto the blockchain re-
peatedly. On the other hand, if there are no future reads,
such a data replica would be wasted. Thus, GRuB chooses to
replicate data in a workload-adaptive manner: If the current
workload is dominated by the reads from DUs, the GRuB
would decide to store a data replica on the blockchain. Oth-
erwise, if the current workload is dominated by the updates
from the DO, the GRuB would decide to avoid replicating
data on chain. This design systematically avoids the two
most expensive operations in Gas. That is, replicating data
on chain under read-intensive workloads can avoid the ex-
pensive transactions otherwise needed to bring data onto the
blockchain, and evicting data replicas under write-intensive
workloads can prevent the expensive storage writes in smart
contracts. See Section 2.2 for details on Ethereum’s Gas-based
cost model and Section 2.3 for a basic measurement study
that corroborates our insight here.

Dynamic decision making w.r.t. data replication has been
a well-studied research topic in conventional distributed sys-
tems. Brie�y, a common approach [42] is to model the target
system by multiple “sites”, and run workload monitoring
and decision making distributedly on each site. These solu-
tions lay an important foundation for designing dynamic
data-replication in GRuB. However, simply using them as
they are in GRuB is insu�cient. Notably, existing dynamic
replication frameworks are not designed with blockchain’s
Gas cost model in mind or do not re�ect the GRuB’s cost to
enforce data security (e.g., on untrusted SP o�-chain). If used
improperly in GRuB, they may lead to excessive costs; for
instance, the Gas model charges higher unit cost (e.g., per
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word) for “local” operations in smart contract (e.g., on-chain
storage updates) than for data movement over the network
(by transactions). Such a unique cost characteristic may inval-
idate the existing design that collocates the decision making
with data replicas.

To �ll the gap, GRuB presents a Gas-aware data-replication
system which places workload monitoring and decision mak-
ing o� the blockchain. We propose a security protocol to
guarantee the integrity of workload trace and replication
decisions that are transferred from untrusted o�-chain SP
to the blockchain. The decisions in GRuB are made by a
Gas-aware online algorithm that achieves the bounded “Gas
competitiveness” – Speci�cally, the worst-case Gas caused by
the data replication following the decision made by this on-
line algorithm is bounded by a small-constant multiplicative
factor (e.g., 2) to that caused by an optimal o�ine algorithm.
This work emphasizes building a data-replicationmechanism
supporting sample policies to bound competitiveness. A com-
prehensive study of policies to con�gure the mechanism is
out of the scope. Overall, GRuB can autonomously run in the
hybrid data feeds with changing workloads, while keeping
the Gas low.

GRuB’s system is generic: To support applications, GRuB
exposes an extensible KV store interface (API) that supports
Puts from the DO and Gets with callbacks to process queries
in a DU contract. GRuB can be built relying on generic in-
terfaces of the underlying systems (similar to an ABI); that
is, any blockchain supporting smart contracts and any o�-
chain storage services supporting KV storage. We have built
a GRuB prototype functional with Ethereum [10] and Google
LevelDB [13], and used it to enable two popular �nancial
application, namely stablecoin with price feeds and pegged
tokens with BtcRelay. Based on the real-world workloads col-
lected from Ethereum, we evaluate GRuB’s Gas cost, which
shows that GRuB can save up to 67% Gas compared to the
static-data-placement baselines. For more extensive evalua-
tion, we build a benchmark by mixing the YCSB workloads.
The evaluation under YCSB benchmark shows that compared
to the baselines, GRuB can save Gas by 10% ⇠ 74% depending
on speci�c read-write ratios. GRuB’s code is open source.1

The contributions of this paper are outline as following:
1. Propose a dynamic, workload-adaptive approach by

mixing on-chain and o�-chain data storage to optimize the
smart-contract costs. To the best of our knowledge, this iden-
ti�es an unexplored design space in the existing blockchain
research.

2. Present GRuB, a Gas-e�cient data feed by dynamically
replicating data between the hybrid data storage on and
o� the blockchain. GRuB employs new techniques, a Gas-
aware online algorithm for replication decision-making and
a security-centric protocol for running the decision compo-
nents o�-chain at a low cost.

1h�ps://github.com/syracuse-fullstacksecurity/GRuB

3. Validate the applicability of GRuB and evaluate its cost
in Gas extensively, by systematically studying real-world
applications, building a benchmark suite from real-world
traces, and evaluating the costs. The result shows that GRuB
can achieve a Gas saving by 10% ⇠ 74% when compared to
static data-placement baselines.

2 Design Motivations
2.1 Preliminary on Motivating Applications
Data feeding enables a blockchain to be able to interoperate
with external worlds (i.e., the blockchain interoperability),
which further enables a good number of deployed blockchain
applications in cross-domain scenarios.We describe two such
applications in detail, as an e�ort to motivate our work.

Stablecoins (on price feeds): Unlike Bitcoin, Ether and other
“native” cryptocurrencies, a stablecoin is a cryptocurrency
with stable prices. Price stability is the key requirement for
real-world adoption of today’s cryptocurrencies in realistic
applications (e.g., loans, derivatives, and prediction markets).
Recently, there is an explosion of stablecoins proposed (e.g.,
Facebook Libra) and deployed (e.g., DAI [23], Tether [24],
and the other 57 stablecoins operational on Ethereum, as of
May 2020 [27]).
There are di�erent approaches to realize price stabil-

ity [36]: A stablecoin can be either directly backed by a
stable asset (e.g., USD or gold) or indirectly backed via yet
another cryptocurrency. The latter design, named indirectly-
backed stablecoin, has the bene�t of not relying on a trusted
third-party vault o�-chain to keep collateral and is adopted
in popular stablecoins such as DAI [23] which is indirectly
backed by Ether. To manage the price instability of Ether
itself, the DAI runs a smart contract on Ethereum that con-
trols the issuance and redemption of DAI. To make each DAI
redeemable with one-USD worth of Ether, the DAI smart
contract needs to be aware of the current price of Ether (or
Ether-USD exchange rate). This is done by a price feed in
practice [12], which upload the stream of price updates from
a trusted source o�-chain, such as Coinbase.2
Cross-chain swaps (on side-chain feeds): Supporting as-

set swaps across multiple blockchains is an important �-
nancial application paradigm, enabling asset liquidity on
Blockchains. For instance, there are Bitcoin-pegged ERC20 to-
kens on Ethereum [25] which allow a Bitcoin owner to trans-
act with an asset owner on Ethereum. An e�cient approach
to enable such applications is the side-chain paradigm where
blockchain A feeds its produced blocks to smart contracts
running on blockchain B. For instance, BtcRelay [2, 8] is such
a side-chain feed connecting Bitcoin and Ethereum. BtcRe-
lay style side-chain feeds are widely used in Bitcoin-pegged

2The o�-chain party trusted by an indirectly-backed stablecoin performs a
much simpler task than that by the directly-backed stablecoin. The former is
a price feed, while the latter is a full-�edged vault storing the collateralized
asset, subject to the public auditing [36, 53].
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Figure 2. The workloads of ethPriceOracle [18] that feed
the MakerDAO stablecoin platform [19] on Ethereum.

ERC20 tokens (e.g., tBTC [4, 22, 28] and others [25, 69]),
Ethereum lottery games [3, 9], et al.
Other than the above two classes of data feeds, there are

many other uses of data feeds, either deployed or envisioned.
For instance, running �ight insurances on Ethereum requires
data feeds to provide �ight cancel/deploy information. Run-
ning stock exchanges may require an o�-chain order book to
feed stock/order prices. In other domains, blockchains are en-
visioned to support the auditing of transparency logs [14, 66],
where the smart contracts running auditing logic need data
feeds of log updates from o�-chain servers.
Table 1. Distribution of writes by the number of reads fol-
lowed in the ethPriceOracle trace (#r represents the number
of reads per write).

#r Percentage #r Percentage #r Percentage
0 70.4% 5 0.76% 10 0.13%
1 16.0% 6 0.63% 12 0.13%
2 6.46% 7 0.25% 13 0.25%
3 2.91% 8 0.13% 17 0.13%
4 1.52% 9 0.25% 20 0.13%

Workloads: In these applications, the workload a data-
feed serves consists of data reads from the consumer smart-
contracts and the updates from the data producer. One of the
motivating observations of this work is that many real-world
workloads in data feeds �uctuate widely in the read-write
ratio. Here, we present a measurement result as an exam-
ple. EthPriceOracle [18] is a price feed operational in the
Ethereum mainnet and in use to support indirectly-backed
stablecoin DAI, as part of the MakerDAO platform [19]. Eth-
PriceOracle allows 14 o�-chain accounts to update the price
feed and is implemented as a smart contract supporting a
price-update function (i.e., poke()) and a price-read function
(i.e., peek()). We collected a call trace of poke() and peek()
between April 25th, 2018 to April 30th, 2018; the collection
is done in two means, by running an Ethereum full node and
by querying a public Ethereum dataset hosted on Google
BigQuery [7]. Figure 2 plots the 5-day trace where each X
tick is a data-feed update (i.e., a poke() call) and the Y value

associated with a X value is the number of data-feed reads
(i.e., peek() calls) immediately following the write in the
call trace. The workload distribution is also summarized in
Table 1. It can be seen that the number of reads following a
write �uctuate; half of Y values are 0 and 1, but occasionally
it also reaches as high as 20 reads after a write.
While this is the case of one particular application, the

data-feed workloads being �uctuating commonly apply. Be-
cause in a typical data feed, the updates are produced con-
tinuously at a regular rate, while the reads from the data
consumer smart contract are by demand, which typically
come and go in an ad-hoc fashion.

2.2 System Model and Trust Model
In this subsection, we formally describe the system model
introduced before. Recall Figure 1 that our system model
includes three parties: A data producers (DO), a key-value
(KV) store (i.e., the GRuB) and a number of data-consumer
smart contracts (DUs). The o�-chain DO sends data updates
to the KV store, by invoking its function, gPuts. A DU smart
contract queries the data feed stored in the KV store by
issuing a function call to gGet. The two functions exposed
by the KV store are described by Listing 1.

// external call by off -chain DO
bool gPuts(KV[] kvs);
// internal call by smart contract (DU)
KV[] gGet(Key k1, Callback cb);

Listing 1. GRuB APIs

Speci�cally, a single gPuts call by the data producer
batches multiple KV records in an epoch (e.g., every 1 min.)
to update the KV store. A gGet call issued by a DU smart
contract retrieves KV records by a speci�ed data key and
returns its control to an optional callback function in the
caller smart contract. The callback function often executes
query-processing logic based on the retrieved KV records.
Here, note that the caller of gPuts is the o�-chain data pro-
ducer and it can be implemented as a remote-procedure call,
for instance, in Python. The caller of gGet is a smart contract
and it can be implemented as a Solidity function.

GRuB is a KV store based on “hybrid” storage media both
on and o� the blockchain. On the blockchain, it runs a
storage-manager smart contract. O� the blockchain, it runs
a KV store instance on an untrusted cloud storage provider
(SP), such as Amazon S3.

GRuB can be used as a base to support di�erent domain
applications. To do so, an application developer writes a DU
smart contract encoding the application logic and embedding
a query-processor function to be called by gGet. GRuB can
enable a price feed: Recall Section 2.1 that a price feed sup-
ports a price-update function poke() and a price-read func-
tion peek(). These two functions can be mapped to GRuB’s
gPuts and gGet, respectively, by modeling the price of each
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collateral asset as a KV record (e.g., hEther, 150USDi). Sec-
tion 4 presents two end-to-end applications built on GRuB.

Trust model: In our system, the primary adversary is the
untrusted cloud storage provider who can forge, replay, omit
and fork [45] the data sent to the blockchain, in order to break
the data integrity. The “data” includes the KV records, proofs
and various protocol-speci�c metadata including collected
trace of workloads and replication decisions. We assume
high availability among all participating parties and exclude
denial-of-service attacks from the scope of this paper. All
smart contracts including the application smart contracts
and GRuB’s storage-manager contracts are trusted in terms
of program security (no exploitable security bugs), execution
non-stoppability, etc. We also make standard assumption
on blockchain security that the blockchain is immutable,
fork-consistent and Sybil-secure. The underlying security
assumption is that a deployed blockchain system runs among
a large number of peers where majority of them are honest
peers and compromising the majority is hard.
Table 2. Ethereum’s Gas cost w.r.t. di�erent operations [68]:
Operations related to data movement (transactions) and stor-
age updates are the most expensive in Gas.

Operation Gas cost (X is the number of 32-byte words)
Transaction Ctx (X ) = 21000 + 2176X (X < 1000)
Storage write (insert) Cinser t (X ) = 20000X
Storage write (update) Cupdate (X ) = 5000X
Storage read Cr ead (X ) = 200X
Hash computation Chash (X ) = 30 + 6X

Cost model: The primary cost considered in this work is
the cost in using blockchains and executing smart contracts.
This paper considers the use of Ethereum. Table 2 presents
the Ethereum cost model in Gas (the cost unit in Ethereum).
It can be seen the most expensive operations in Gas per word
are transactions and storage writes/updates. In our system
model, the use of cloud service (SP) may also lead to expenses,
which however is much cheaper than that of blockchains:
Consider storing one gigabytes in today’s cloud storage,
which falls under the free tier for all major providers (i.e.,
Amazon S3, Dropbox, et al), leading to zero-dollar spending,
whereas doing the same on Ethereum costs more than $231
million USD (with the Ether price as of Nov. 2019). Because
of this, the cloud-service fee in our target application is
negligible compared with the Gas cost from blockchains.

Also reducing the Gas of a blockchain application implies
improving the throughput of this application, because 1)
the transaction throughput of a blockchain is bounded by
the total Gas a block can take, such as 10 million gas per
Ethereum block; reducing the Gas per operation implies the
application can submitmore operations in a given time. 2)We
assume blockchain is the bottleneck of a target application,
which currently takes tens of transactions per second and
is much lower than that of conventional computer systems,
even for a single machine. Thus, the main goal of this work
is to reduce the Gas cost of a blockchain application.

2.3 Motivating Cost Observation
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Figure 3. Preliminary Gas measurements of static baselines.

Design Space: This work addresses the design of hy-
bridized data storage over blockchain and SP. We consider
the two design baselines: 1) data is only stored on the o�-
chain SP and is brought into the smart-contract memory
when serving gGet. This baseline is named BL1. Alterna-
tively, 2) data is stored both on the o�-chain SP and on
blockchain. The baseline is named BL2. Note that our cost
model only considers blockchain-induced cost, Gas, and ex-
cludes the o�-chain costs including cloud service fee (on SP).
Thus, BL2’s cost is equivalent to the design of placing data
storage only on the blockchain. Note that these two baselines
are based on static decisions regarding data replication.

Measurement observation: To motivate dynamic data
replication of this work, we conduct a rapid measurement
study: In this study, we consider the simplest data model
involving a single KV record. We implement a simple smart
contract on the Ethereum testnet that processes the single KV
record with optional on-chain storage. We use an o�-chain
machine running Ethereum client geth, to represent the SP.
The two static baselines, BL1 and BL2, are implemented. We
use a series of workloads with varying read-write ratios.
Each workload is a repeated sequence of X1 writes followed
by X2 reads (all of which are under the single data key). On
the one end, we use a write-only sequence , that is, X 2

X 1 = 0.
On the other end, we use a read-intensive sequence with
each write followed by 256 reads X 2

X 1 = 256. After driving
each workload to our system, we measure the average Gas
per operation on BL1 and BL2. We vary the read-to-write
ratio (X 2

X 1 ) and report the measured Gas in Figure 3.
It is clear that as the workload changes from thewrite-only

sequence to read-intensive ones, there is a tradeo� between
the two static baselines. When the workload is write-only,
BL1 achieves lower Gas per operation than BL2, with cost
saving more than 100⇥. When the workload becomes about
every 1.5 read per write (i.e., X 2

X 1 = 1.5), the two approaches
cost equal Gas. When the workload is more read intensive,
such as X 2

X 1 = 256, BL2’s Gas per operation is 1
7 of BL1’s.
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While having a data replica on the blockchain is expected
to shift the cost distributions between reads and writes, the
striking cost di�erence it makes (100⇥ and 7⇥) was sur-
prising to us. This can be attributed to Ethereum’s unique
cost model: When the workload is write-only, the always-
replicate baseline (BL2) incurs expensive operations to up-
date smart-contract storage, which costs 5, 000 ⇠ 20, 000
Gas per word; recall Table 2. When the workload is read in-
tensive, the never-replicate baseline (BL1) incurs expensive
transactions to move the latest value of KV record to the
blockchain, while BL2 avoids the expense by reading storage
data on chain; recall Table 2 that a read from smart-contract
storage costs 200 Gas per word while a transaction costs
a much higher 2176 per word; let alone the initial cost of
21, 000 of an empty transaction.

3 GRuB: System Design and Impl.
GRuB overview: Recall the system model in Section 2.2
that a trusted DO feeds data updates to the GRuB KV store,
which is queried by DU smart contracts. The internal sys-
tem of the GRuB consists of two “planes”, as depicted in
Figure 4a: 1) A secure-data plane where the DO securely
updates the KV store on GRuB by associating data updates
with proofs, and a DU smart contract querying the GRuB
retrieves query proofs to authenticate (non-replicated) KV
records stored on the untrusted cloud provider. The data
plane runs a security protocol known as authenticated data
structures (ADS; which will be introduced and described in
Section 3.3) across the DO, the SP and the blockchain. 2) A
control plane which monitors the workloads (data updates
and reads), makes replication decisions w.r.t. individual KV
records, and stores the decisions as auxiliary states in each
KV record, which instructs the data plane to materialize the
decisions. The control plane runs on the trusted DO and
federates the traces of data reads (from blockchain’s native
event log recording contract calls) and data updates. GRuB’s
key component is the online decision-making algorithms
running in the control plane.

In this section, we describe the control plane’s algorithm
design (Section 3.1), the control plane’s system design (Sec-
tion 3.2), the data-plane system design (Section 3.3), overall
system properties (Section 3.4) and implementation notes
(Section 3.5).

3.1 Online Decision-Making Algorithms
In this subsection, we describe the online decision-making al-
gorithm: Given a sequence of gPuts and gGet calls, GRuB’s
decision-making algorithm produces the replication deci-
sions on a�ected KV records. The replication decision will
be actuated as described in the next subsection. The design
goal of such algorithms is to reduce the Gas cost of future
data reads and writes based on the assumption that the read-
/write history will repeat. Intuitively, the algorithm needs to
predict the future reads/writes on the KV record, estimate

the cost of the two alternative decisions (R or NR) based on
the prediction, and pick the one with lower costs as the out-
put. Using the existing online algorithms [42] is insu�cient
as they are designed without awareness to GRuB’s cost in
Gas and the cost caused by security proofs. We propose algo-
rithm designs and con�gurations that are tailored to GRuB’s
unique costs and that can autonomously achieve bounded
worst-case Gas cost. In the following, we present the design
and analysis of two algorithms: a “memoryless” online algo-
rithm that resets its state/memory about past reads/writes
upon each run, and a “memorizing” online algorithm that
remembers the operation history across runs.

Memoryless Algorithm. The memoryless algorithm for
replication decision making is described in Algorithm 1. The
algorithm internally maintains a list of counters, each for a
NR record. The counter counts the number of consecutive
reads on the data record that are received since the last write.
The algorithm iterates through the read/write trace. Upon a
write on a record, say hk,�i, the algorithm resets the counter
of record hk,�i back to zero and updates the record’s NR.
Upon a read on a NR record, it increments its counter. When
the counter reaches a preset parameter, K , the algorithm
changes the record’s state from NR to R and removes the
data record from the list of counters.
Algorithm 1MemorylessRepl(ops , count , states)

Input: read/write operations ops , read count count , and the
replication states states

Output: updated replication states states
1: for all o 2 ops do
2: if o.isWrite() then
3: count[o.ke�] = 0; states[o.ke�].set(NR);
4: else
5: if count[o.ke�] < K then
6: count[o.ke�] + +;
7: end if
8: if count[o.key] � K then
9: states[o.ke�].set(R);
10: else
11: states[o.ke�].set(NR);
12: end if
13: end if
14: end for

Algorithm analysis: To begin with, the competitiveness
of online algorithms is the worst-case complexity compared
with that of an optimal o�-line algorithm. The memoryless
algorithm in Algorithm 1 has competitiveness bounded by
1 + K Cr ead_of f

Cupdate
. Here, Cupdate is the Gas to update a byte on

the blockchain storage, andCr ead_of f is the unit Gas to send
one byte data from o�-chain to the blockchain.

Parameter con�guration: Parameter K decides the per-
formance of memoryless algorithm. To bound the worst-case
Gas, we set K to make the algorithm 2-competitive:
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Figure 4. Overview of GRuB distributed system: Particularly in Figure 4a, the core system components are depicted by shaded
boxes in the �gure. In blue are data-plane components responsible for data movement and storage, running authenticated data
structures (ADS) and managing replicas. In pink are control-plane components that monitor workloads, make replication
decisions, and execute the decisions on the data plane.

K = Cupdate/Cr ead_of f (1)
More formally,

Theorem 3.1. Memoryless Algorithm 1 with parameters con-
�gured by Equation 1 is 2-competitive w.r.t. the Gas cost.

Due to the space limit, the theorem proof is in Appendix A.
Note that Equation 1 implies a static value for K . In a dy-

namic replication scheme, using static K , while seemingly
counter-intuitive, has the bene�t of bounded competitive-
ness and can also result in actual workload-adaptive cost
behavior (as will be evaluated in Section 5 and particularly
in Figure 9). There can be other policies to con�gure K , in-
cluding setting K dynamic and adaptive to the workload
for lower Gas. A comprehensive study of K con�guration
policies is out of scope of this work, the main goal of which
is providing a mechanism evaluated by selected policies.

Algorithm 2 MemorizingRepl(ops , rCount ,wCount , states)
Input: read/write operations ops , read counts rCount , write

countswCount and the replication states states
Output: updated replication states states

1: for all o 2 ops do
2: if o.isWrite() thenwCount[o.ke�] + +;
3: else rCount[o.ke�] + +;
4: end if
5: if wCount[o.ke�] ⇤ K 0 + D <= rCount[o.ke�] then
6: states[o.ke�].set(R);
7: end if
8: if wCount[o] ⇤ Y � K

0 > rCount[o.ke�] then
9: states[o.ke�].set(NR);
10: end if
11: end for

Memorizing Algorithm. In practice, workloads exhibit
temporal locality and can have repeated sequences of read-
/write operations. The memoryless algorithm does not cap-
ture the temporal locality in the workload by forgetting the

past operation history. We propose a memorizing algorithm
that exploits the temporal locality in workloads by memoriz-
ing the decisions made for similar operations in the past. The
memorizing algorithm takes as input the trace of reads and
writes. Unlike the memoryless algorithm, the memorizing
algorithm needs to take as input the on-chain data reads.
The algorithm, described in Algorithm 2, maintains two

counters for each data record, rCount andwCount . rCount
(wCount ) increments when the algorithm, iterating through
the read/write trace, encounters a read (write) operation.
The algorithm checks two conditions upon each read/write
operation: If the condition holds,wCount⇤K 0+D <= rCount ,
the record’s state is updated from NR to R. Here, D is a time
window in the past the algorithm looks into to characterize
the current workload and to predict the future one. It also
resets wCount to zero and reduces the value of rCount to
D. If the condition holds, wCount ⇤ K 0 � D >= rCount , the
record’s state is updated from R to NR. It also resets rCount
to zero and reduces the value ofwCount to D/K 0.

Parameter con�guration: Similar to the memoryless
algorithm, parameter K 0 is set to the ratio of on-chain write
cost to o�-chain read cost. K 0 = Cwrite/Cr ead_of f . The other
parameter D determines how sensitive the replication state
is to the workload. A small D leads to frequent changes of
replication state, while a large D leads to a stable setting of
replication state.

Theorem 3.2. Memorizing Algorithm 2 is 4D+2
K 0 -competitive.

Due to the space limit, the theorem proof is in technical
report [46].

3.2 System Control Plane
The previous subsection describes the online decision-
making algorithms and their analysis. This subsection de-
scribes how to execute the algorithm in the control plane of
GRuB. The control plane runs on the DO and is depicted in

7

377



Middleware’20, DEC 2020, DELFT Kai Li, Yuzhe Tang, Jiaqi Chen, Zhehu Yuan, Cheng Xu, and Jianliang Xu

Figure 4a. It consists of three essential components: a work-
load monitor that collects the trace of data reads and writes,
the algorithm executor that executes the online algorithm
with the monitored trace, and a decision actuator that stores
the decisions along with the records in the KV store.

Concretely, the workload monitor running on the DO fed-
erates the trace of data updates that occur locally and the
trace of data reads from the blockchain history. Here, we con-
sider that the blockchain has a builtin support to log smart-
contract invocations, as is the case in Ethereum. The DO
runs a blockchain client in full synchronization with other
blockchain nodes; the client stores the contract-invocation
history, from which the call sequence of gGet’es can be ac-
cessed. In practice, the DO can run a light blockchain client
such as Simpli�ed Payment Veri�cation (SPV) client without
downloading the transaction history.
The algorithm output, namely replication decisions, is

stored as an auxiliary state in each data record in the KV
store. Given a KV record, say hk,�i, its key is pre�xed with
an extra bit that indicates whether the record has a replica
on the blockchain (i.e., state R) or not (i.e., state NR). The
state bit will instruct the data-plane of the system to execute
the replication decisions, accordingly (See Section 3.3).
This design assumes a trusted blockchain client whose

synchronization with a remote blockchain network is se-
cured by external mechanisms; the client can increase the
number of neighbor peers to guarantee the integrity of in-
formation synchronized (including blocks and transactions)
in the case of compromised blockchain nodes. We dismissed
the alternative design by receiving the trace of gGet from
the untrusted SP which is incentivized to forge the trace and
mislead the DO to make a NR decision. Speci�cally, a NR

decision implies more use of the cloud service and the SP
can charge higher service fee.

3.3 System Data Plane
This subsection describes the system data plane, in terms of
write and read paths. That is, how GRuB handles batched
data updates and replication-state transitions from the DO
(write path) and data reads from a DU under the current
replication states (read path). To guarantee the data authen-
ticity against an adversarial SP, a security protocol, ADS, is
adopted in the data plane of GRuB. We begin with a back-
ground introduction to ADS.

Preliminary onADS: An ADS protocol, or authenticated
data structure, is a security protocol running among a data
owner (ADS_DO), an untrusted service provider (ADS_SP)
and multiple data users (ADS_DU). In its most basic form,
the ADS_SP accepts data updates (individual KV records)
from the ADS_DO and serves exact-match queries (by data
keys) issued by ADS_DU. The security properties an ADS
guarantee is the authenticity of KV records including record

integrity, query completeness and freshness against an ad-
versarial ADS_SP who can forge, replay and omit a query
result.

An ADS protocol can be constructed in di�erent ways [44,
50, 50, 54, 55, 62, 72] and GRuB can be easily adapted to these
constructions. In our current prototype implementation, we
use the common construction based on a Merkle tree. That is,
the ADS_SP constructs a Merkle tree on the dataset, each leaf
storing the hash of a data record, sorted by their keys. When
the ADS_DO wants to update the dataset, she �rst retrieves
the authentication proof of the data key to be updated from
the ADS_SP, veri�es the data integrity, computes the new
leaf hash, and then computes the new root hash based on the
proof. The ADS_DO can then safely send the updated data
record to the ADS_SP. For data freshness, the ADS_DO can
periodically publish the signed root hash to the SP. When a
data user, ADS_DU, queries the dataset by a queried key, SP
can serve the query by returning the matched KV record and
its associated proof. The proof including the latest signed
root hash from the trusted ADS_DO can be used to verify the
integrity, completeness, and freshness of the query result.
In GRuB, the KV records are sorted by their data keys

on SP. Recall that each GRuB record’s data key is extended
with a pre�x of replication state (R or NR). The Merkle tree
on ADS_SP is constructed on the key-sorted data layout
of records. An example Merkle tree in GRuB is depicted in
Figure 4b where the four KV records are �rst ordered by
their NR/R states and then by their actual data keys.
Write path: Given a stream of data updates, DO sends a
gPuts call every epoch. To prepare the call, DO locally
batches the data updates and include them in the single
gPuts call to be sent by the end of the epoch. Internally, the
gPuts �rst noti�es the control plane on DO of the latest data
updates. Then, for each data update, DO and SP jointly run
the ADS protocol to securely update matching KV records.
If all KV records in this batch are in non-replicated state

(NR) and there is no update on the replication state, the DO
sends only the digest of this batch to call the update() func-
tion in the storage-manager smart contract. Note that the
blockchain node on DO receiving the update() call would
propagate it to other blockchain nodes. If there are any KV
records with replicated state (R), they are included in the
update() call. If there is any state transition, either from
R to NR or from NR to R, such transitions are included in
the update() call. Receiving the call, the storage-manager
contract would insert a new replica to on-chain storage if
there is a transition from NR to R. It would evict an existing
replica if there is a transition from R to NR.
Read path: Given a gGet call from a DU smart contract,
all blockchain nodes would execute the storage-manager
contract to handle the call. If the requested data key can
be matched to a R KV record replicated on the blockchain,
the storage manager simply returns the record into the call-
back function. Otherwise, it emits an event recorded in the
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Ethereum log via calling our request function. The event
can be captured externally by a watchdog service on SP.
Speci�cally, the request event is recorded on all Ethereum
nodes including the client running on SP. The SP runs an
external daemon process (watchdog) that spins on the log to
wait for a request event. The event triggers the SP to query
its local KV store for the requested record before sending it
back to the storage-manager contract via calling the deliver
function. The deliver function veri�es the integrity of the
KV records from o�-chain before invoking the callback with
the veri�ed KV record.
contract GRuB.StorageManager {

bytes32 rootHash;
mapping(uint256=>uint256) KVReplicas;
function gGet(uint256 key , uint256 callback){

uint256 value = KVReplicas[key];
if(value != null) callback(key , value);
// request () emits an EVM log event
request(key , deliver , callback);}

function deliver(uint256 key , uint256 value , bool
replicate , uint256 proof , uint256 callback){
if(! verify(key ,value ,proof ,rootHash)) return false;
if(replicate) KVReplicas[key] = value;
callback(key ,value);}

function update(uint256 [] keys , uint256 [] values ,
uint256 digest){
if(msg.sender = DO) rootHash = digest;
for(int i = 0; i < keys.length; i++){

if(values[i]. replicate) KVReplicas[keys[i]]= values[
i];
else delete KVReplicas[keys[i]]; }}}

Listing 2. GRuB’s storage-manager smart contract.

The pseudo code of storage-manager smart contract is de-
scribed in Listing 2. The more detailed data-plane work�ow
is described in the technical report [46].

3.4 Protocol Consistency
In this section, we present the consistency of GRuB protocol
and leave more formal proofs to technical report [46].
To describe the protocol consistency, we assume a hy-

pothetical global clock synchronized across the DO and all
blockchain nodes. Note that this clock is used as a tool for
protocol analysis and is not required in the actual implemen-
tation of GRuB.

Blockchain & GRuB model: In a vanilla blockchain, it
takes Pt time units to propagate a transaction to all nodes in
the blockchain network. It takes an average of B time units
to produce a block. Only after F blocks are produced, a trans-
action is considered �nalized in the blockchain network. For
instance, in Ethereum, F is 250 and B is 10 ⇠ 19 seconds [68].

In GRuB, an epoch E is the time interval in which the DO
waits and batches data updates in a transaction.

Consistency between gPut and gGet: Suppose at time
t1 the DO submits a gPut(k,v) and at time t2 a blockchain
node Ni executes gGet(k). After t2 + Pt + B · F , assume the
execution of gGet(k) is �nalized on the blockchain.

Particularly, when the record gGet(k) accesses is not repli-
cated (NR), time t2 refers towhen the internal call of gGet(k)
is being entered and returned by the blockchain node (the
synchronous execution �nishes instantly). When the record
gGet(k) accesses is not replicated (NR), gGet(k) is executed
asynchronously and is called back by a deliver transaction.
In this case t2 refers to when the deliver transaction is
executed on node Ni .

Theorem 3.3 (Non-deterministic ordering of concurrent
gPut/gGet). gPut(k,v) occurs concurrently with gGet(k), if
t1 < t2 < t1 +E + Pt +B · F . With GRuB, the ordering between
concurrent gPut(k,v) and gGet(k) is non-deterministic and
converges to be the same across all blockchain nodes after
t2 + Pt + B · F .

Suppose a gGet(k) issued by a DU smart contract at local
time t on blockchain node Ni returns a set of KV records
qs . Query result qs is fresh, w.r.t. delay d , if all KV records
matching key k and updated on data owner DO before t � d

are included in qs . Here, it assumes a global clock synchro-
nized across the DO and any blockchain nodes Ni . Note that
query freshness also implies query completeness here.

Theorem 3.4 (Epoch-bounded query freshness between se-
quential gPut/gGet). If t2 > t1 + E + Pt + B · F , gPut(k,v) is
said to occur sequentially after gGet(k). Given a gGet sequen-
tially after a gPut, GRuB guarantees the gGet query freshness.
Here, the parameters are epoch E, block time B, propagation
delay Pt and the number of blocks needed for �nality F .

Supporting delay-sensitive applications: GRuB in-
curs a maximum delay of E to feed data to the blockchain.
Recall that in baseline BL2, data updates are sent directly,
without batching, to the blockchain. BL2 guarantees the gGet
query freshness w.r.t. delay Pt + F · B. Applications with the
urgent need to feed data can be supported by BL2 where an
individual data update is fed to the blockchain immediately
after the DO produces it. Note that one can retro�t BL2 to
GRuB for supporting these applications where data updates
are selected to opt for BL2.

3.5 Implementation Notes
We have built a prototype of GRuB with Ethereum and a
Google LevelDB [13] instance. Note that GRuB’s design
is generally applicable to any storage service exposing a
KV store interface (e.g., Amazon S3), an IaaS cloud service
allowing user-deployed code (e.g., Amazon EC2) and any
blockchains supporting smart contracts. In the prototype,
the storage-manager smart contract is implemented in solid-
ity [21]. The o�-chain code is written in Python. In particular,
the replica manager and ADS protocol relies on a Python
binding to interact with the underlying LevelDB [13]. In
practice, we use the suggested transaction fee (e.g., 21000
Gas) and Gas price (i.e., 2 GWei) in the evaluation (Section 4
and Section 5), which are su�cient for Ethereum Ropsten
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testnet [20] to accept our transactions. How to set Gas price
under more adversarial settings such as DoS attacks is out
of the scope of this paper.

4 Case Studies
We have built two real applications on GRuB. One is an
Ether-backed stablecoin based on a price feed by GRuB and
the other is a cross-chain token exchange between Ethereum
and Bitcoin based on a BtcRelay style side-chain feed.

4.1 Stablecoins based on Price Feeds
Recall that indirectly-backed stablecoins require feeding the
price of the asset that backs the stablecoin. For instance,
in stablecoin platform MakerDAO, each currency unit, a
DAI, is pegged and redeemable to one-USD worth of Ether.
Issuing and redeeming DAI requires Ether price feeds. We
build a GRuB-based price feed and use it to support a custom
stablecoin SCoin that simulates a simpler DAI.
Speci�cally, we build a price feed based on GRuB where

the KV records store the prices of di�erent assets includ-
ing Ether. SCoin is implemented as a custom ERC20 token
whose supply (in terms of token issuance and redemption)
is controlled by a smart contract we build, listed as SCoinIs-
suer. The smart contract issues SCoins upon receiving Ether
payments from an external buyer (i.e., issue function), and
upon a seller’s request to redeem an SCoin, transferring one-
USD worth of Ether to the seller before destroying the SCoin
(i.e., redeem function). To make sure SCoin is pegged and
redeemable to one USD, the smart contract needs to read the
Ether price at the time of issuance and redemption, as well
as requiring over-collateralization and locking up remaining
Ether. This implements a minimalist MakerDAO based on
the working example in [36].

Cost evaluation: For Gas evaluation, we implemented
three price feeds, including GRuB and the two static baselines
(BL1 and BL2). We used the call trace of a real price feed,
ethPriceOracle [18]. Recall Section 2.1 that this trace records
the Ether-price updates and reads from April 25th, 2018
to April 30th, 2018. In our experiment, we set up multiple
assets in the price feed: In practice, there are many assets
that can be used to back a stablecoin, such as more than
2500 tokens [6] just on Ethereum, �at currencies (e.g.,USD,
Japanese Yen, Euro) and various commodities (gold). We
thus set up a KV store of 4096 records in the price feed, each
presenting an asset and its price (hasset_name,pricei). In
this setup, a gPuts batches price updates of 10 assets, which
we use duplicates of the Ether price updates. Each peek()
call in the trace issues a gGet invocation with with a callback
to SCoinIssuer’s issue() or refund(), at the equal chance.
By this means, we drive the call trace into GRuBPriceFeed
and SCoinIssuer.
The result illustrated in Figure 5 shows that GRuB con-

sistently achieves the lowest Gas per operation among the
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Figure 5. Gas under the 5-day trace (ethPriceOracle).

Table 3. Gas at the data-feed layer and Gas of the end appli-
cation:M denotes million of Gas.

Price feed SCoinIssuer
BL1 83M (+64%) 86M (+67%)
BL2 55M (+11%) 56M (+8.7%)
GRuB 50.6M 51.7M

three. Most of the time, BL1 and GRuB achieve lower Gas
than BL2. The exception is around epoch 11 when it involves
more data reads that put BL1 at disadvantage. Even in this
case, GRuB achieves lower Gas than BL2.
Table 3 shows the Gas cost at the data-feed layer and

in the end application (SCoinIssuer). It can be seen while
SCoinIssuer adds Gas due to application-speci�c logic, the
Gas saving at the data feeding layer is still quite signi�cant.

4.2 BtcRelay Side-chains and Pegged Tokens
BtcRelay feeds Bitcoin blocks to Ethereum and is an impor-
tant building block for Bitcoin-pegged tokens on Ethereum.
We use GRuB to enable BtcRelay by storing the mappings
of block hash and Bitcoin block header in the KV store. The
DO runs a trusted o�-chain Bitcoin client that gets noti�ed
every time a Bitcoin block is found.

Based on this data feed, we build a Bitcoin-pegged ERC20
token as an application. The DU smart contract is a simple
ERC20 token that supports the operations of mint and burn
that consume Bitcoin blocks from the feed: A token-mint
(token-burn) operation requires verifying the inclusion of a
Bitcoin-deposit (Bitcoin-redeem) transaction against recent
Bitcoin blocks from the feed.

Building benchmarks: We collected the trace of trans-
actions to mint/burn eight Bitcoin-pegged tokens known
from etherscan.io [26]. The transactions are obtained from
Ethereum ETL service on Google BigQuery [7]. We then
build a token-contract workload benchmark via joining Bit-
coin blocks with Ethereum transactions; the detailed method-
ology is described in the technical report [46]. The built
benchmark contains the read/write sequence to a smart-
contract variable storing a stream of Bitcoin block headers.
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Figure 6. GRuB under the BtcRelay trace.

Experiment results: We measure the Gas cost by GRuB
under the workload. We set up an epoch that contains four
transactions and drive the established benchmark to our ex-
periments. Particularly, unlike the ethPriceOracle, the BtcRe-
lay workload does not overwrite existing records, but instead
appends updates to them. We con�gure GRuB with reusable
storage upon replicating a record. To make the room, previ-
ously replicated records unaccessed for a period are evicted.

The result of Gas cost per operation is reported in Figure 6.
The trace of the �rst 25 epochs is write-intensive. In this
phase, BL1 outperforms BL2, and GRuB converges to BL1.
From epoch 26 to epoch 50, the trace becomes more read-
intensive. And BL2 outperforms BL1, and GRuB gradually
converges to BL2 (at epoch 34). Overall, GRuB’s Gas saving
is 56.7%/14.5% compared with BL1/BL2.

5 Cost Evaluation
This section presents the experiments for evaluating the
Gas of GRuB. Speci�cally, our experiments are designed to
answer the following questions:

1. How fast will GRuB converge to changing workloads?
2. How sensitive is GRuB’s cost to the various parameters

that GRuB exposes?
We perform experiments under microbenchmarks (Sec-

tion 5.1) and macro-benchmarks with YCSB [37] (Section 5.2).

5.1 Microbenchmarks: Converged Gas under
Repeating Workloads

In this subsection, we evaluate GRuB’s Gas under repeat-
ing workloads. We generate the workload that consists of
repeated reads and writes under a �xed ratio. Under such
workloads, GRuB makes the same decisions, and the Gas
becomes converged. Our goal is to evaluate the converged
Gas under di�erent factors.
Read-to-write ratio: In this experiment, we evaluate the
Gas with di�erent read-to-write ratios. For comparison to
GRuB, we consider both baselines of static data replication
(i.e., BL1 and BL2). Also, we consider the two baseline designs
for dynamic data replication that respectively store on the
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Figure 7. GRuB’s Gas with varying read-write ratios.

Blockchain, the trace of reads and writes, and the trace of
reads. In each experiment, we drive the synthetic workload
of a speci�c read-to-write ratio to the system and measure
the total Gas. We report the average Gas per operation.

In the results reported in Figure 7, baseline BL1 (BL2) has
its Gas increased (decreased) as the workload shifts from
write-intensive to read-intensive. There is a crossover be-
tween BL1 and BL2 when the workload’s read-to-write ratio
is around 2. GRuB’s Gas is slightly higher than BL1 for the
read-to-write ratio smaller than 2 and is slightly higher than
BL2 for the ratio larger than 2. Note that choosing the one be-
tween BL1 and BL2 with lower Gas constitutes an ideal, Gas-
optimal dynamic-replication scheme. In this sense, GRuB’s
(converged) Gas is close to the optimal case. Comparing with
the two dynamic-replication baselines, GRuB saves Gas sig-
ni�cantly: Especially in read-intensive workloads, GRuB’s
Gas savings can reach an order of magnitude.
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Figure 8. Gas of GRuB under memoryless and memorizing
algorithms (with repeating workloads).

Choice of the algorithm: In this experiment, we evaluate
how the choice of algorithms a�ect GRuB’s Gas. Recall that
we proposed two decision-making algorithms, and they dif-
fer in that the memoryless (memorizing) algorithm decides
without (with) remembering the historical operations. To
contrast the two algorithms to the maximal degree, we use
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the following experimental setting: We set parameterK = K

0

and use the workload of read-to-write ratio K + 1. We drive
the workload to GRuB with the two di�erent algorithms. Fig-
ure 8 reports the Gas per operation along with the timeline
(indexed by transactions, each encoding 32 operations). It
can be seen GRuB with the memoryless algorithm incurs
constant Gas, which is about 5 times higher than the optimal
o�ine decision-making (whose Gas is calculated in a simi-
lar way with the previous experiment in Section 5.1). GRuB,
with a memorizing algorithm, con�gured withK 0 = 8,D = 1,
initially has a similar level of Gas consumption with mem-
oryless GRuB, and then gradually reduces the Gas close to
the optimal algorithm.

5.2 Macro-benchmarks on YCSB

Figure 9. GRuB under mixed YCSB workloads (A and B).
Table 4. Aggregated Gas for mixed YCSB workloads.
Workload BL1 BL2 GRuB
A, B 1438,130,508 (+31.6%) 1588,684,289 (+45.4%) 1092,576,982
A, E 1400,290,302 (+25.7%) 1936,114,585 (+73.8%) 1114,217,927
A, F 1746,854,231 (+54.1%) 1252,009,322 (+10.4%) 1133,858,720

This set of experiments are designed to evaluate the Gas
of GRuB under mixed YCSB workloads. YCSB [37] is an
industrial-strength benchmark providing six KV-store work-
loads, codenamed from A to F, that model some real work-
loads in Yahoo cloud services. We use YCSB workloads to
evaluate GRuB, because of the following reason: GRuB ex-
poses the same KV-store API with most cloud-storage ser-
vices and brings trustworthiness to these services. Thus,
GRuB can and should be a secure alternative to host cloud
workloads, especially for security-sensitive applications. In
preparing GRuB macro-benchmarks, we mix multiple YCSB
workloads, for instance, Workload A and E.

In our experiments, we used three combinations: mixing
Workload A and B, mixing Workload A and E, and mixing
Workload A and F. Workload A/B/E/F respectively feature
50% reads/95% reads/95% scans/75% reads as well as di�er-
ent key-distribution strategies. In each mixed workload, we
pre-load 216 KV records to the GRuB. In Workloads A,B and

Workloads A,E, each KV record is set to be 1024-bytes long.
In Workload A,F, each KV record is 32-byte long. Each exper-
iment consists of four phases, in each of which one workload
generator (i.e., A/B/E/F) is chosen to produce 4096 opera-
tions. We report the average Gas per operation for every
four transactions (or an epoch).
We report the experiments results by time-series data in

Figure 9 and by aggregate results in Table 4. It can be seen
that in the �rst phase P1 (Workload A of 50% reads), the non-
replication baseline, BL1, performs better than replication
baseline BL2. In Phase P1, GRuB’s Gas is close to that of BL1.
In the second phase, when the workload switches to Work-
load B (of 95% reads), the replication baseline BL2 achieves
lower Gas than BL1. In Phase P2, GRuB’s Gas is lower than
BL1 but higher than BL2: Especially at the beginning of P2,
GRuB incurs high Gas because of the decision to replicate a
KV record being read. Phase P3 is similar to P1. In Phase P4,
GRuB’s Gas is much lower than P2 because records being
read in this phase may already be replicated in Phase P2. The
aggregated result, the Gas per operation averaged overall
operations, is reported in Table 4, where GRuB saves 32%Gas
of BL2 and 46% Gas of BL1. Note that Figure 9 shows a lower
rate of saving than Figure 7, because the YCSB workloads
tested here are with more restrictive read-write rates than
the synthetic workloads used in Figure 7.

6 Related Work
In this section, we describe two research bodies most rele-
vant to our work: cost-e�ective blockchain applications and
workload-aware data replication schemes.

Cost-e�ective blockchain applications: It is well
known that blockchain has limited throughput in han-
dling transactions [38] and incurs high unit cost to execute
smart contracts. To reduce the blockchain costs, general
approaches are developed by focusing on a permissioned
setting [33, 40, 59, 61], or by sharding the blockchain and
other layer-one designs [43, 49, 59]. Unfortunately, these new
blockchain designs cannot be integrated with an operational
blockchain and are known to be di�cult to deploy at scale.
A more practical design paradigm, also more relevant to

our work, is the layer-two approaches that aim at reduc-
ing the use of blockchain in a domain application, without
changing the underlying blockchain mechanisms. Notably,
payment channels and networks [16, 35, 52] process multiple
micro-payments o�-chain with issuing two Bitcoin trans-
actions. There are payment networks adopted in practice,
such as Lightning Networks in the Bitcoin mainnet [16].
Teechain [47] is a payment network that o�oads the detec-
tion of participant misbehavior to trusted hardware o�-chain,
further reducing the involvement of blockchain and improv-
ing the application throughput. Similarly, Tesseract [31] em-
ploys o�-chain trusted hardware to facilitate the payments
and exchanges with lower-level involvement of blockchains,
to achieve real-timeness and higher throughput. Beyond the
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simple application of payments, there are authenticated data
structures proposed, such as TPAD [64] andGEM2 trees [70],
to enable the secure handling of database queries o�-chain.
These layer-two protocols and systems have their o�-chain
component statically �xed and are not aware of the changing
workloads. By contrast, GRuB is the �rst work that dynami-
cally replicates data onto blockchain.
Testimonium [60] is a Gas-e�ective blockchain relay (or

in our terminology, side-chain feed) which achieves low Gas
by lazily validating blocks from a remote blockchain. Our
GRuB di�ers from Testimonium in two senses: First, our
focus on data feeding makes GRuB more generally appli-
cable. GRuB supports applications that rely on real-world
data feed (e.g., price-feed based stablecoins) that Testimo-
nium cannot support. Second, Testimonium can be thought
of as a static data-replication scheme, as it optimistically
stores blocks from the remote blockchain without validation.
TownCrier [71] is a provable-secure data feed service built
on o�-chain trusted hardware that connects TLS-certi�ed
websites to blockchains. The data-feed storage in TownCrier
is always o�-chain and it does not address the dynamic data
replication as in GRuB. Gasper [34] is a compiler-based opti-
mization pass that detects Gas-ine�ciency anti-pattern in
the generated contract bytecode. The cost optimization in
Gasper occurs at the syntactic level while GRuB is aware of
application semantics and is speci�c to data feeds.

Workload-aware data replication: In distributed
databases, adaptive data replication [41, 42, 67] has been
studied: A framework has been proposed by dynamically
monitoring the workload and making replication decisions
based on the current workload. Many web applications ex-
hibit skewed data-access patterns. MET [39] is a KV store
management system that adapts the system con�guration
and cloud-resource provisioning to the current workload. In
designing P2P-based DNS services, Beehive [58] is a proac-
tive data replication scheme that is tailored for Zipf query
distribution and achieves the constant look-up cost. GRuB’s
dynamic replication scheme is inspired by these classic tech-
niques and addresses the technical challenges when combin-
ing these classic techniques with blockchains’ cost model.

7 Conclusion
This work presents GRuB, a dynamic data replication scheme
that achieves low Gas under changing data-access workloads.
GRuB runs a Gas-aware, security-centric control framework
o� the Blockchain. Evaluation shows GRuB saves Gas by up
to 70% compared with existing approaches.
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A Appendix: Algorithm Analysis
Proof of Theorem 3.1. We �rst set up the stage by consider-
ing an ideal o�ine algorithm with optimal cost. This o�ine
algorithm can know the entire sequence of reads and writes
in advance, and learn the cost-optimal decision. For instance,
it can check given a write, if there are more than K consecu-
tive reads that occur after it (before the next write). If so, it
can replicate the record at the time of the write, instead of
waiting until K reads as in the online algorithm.

For our online algorithm, the worst-case sequence of reads
and writes is that every write is followed by exactly K reads.
This is the worst-case for our online algorithm because every
data replica made by the algorithm is never read, in other
words, the cost of replication is totally wasted without saving
any cost (of follow-up reads). In this worst case, the cost of
our algorithm isK ⇤Cr ead_of f +Cupdate . In this case, the cost
of the ideal o�ine algorithm is Cupdate . Thus, the competi-
tiveness of our online algorithm is 1+K ⇤ Cr ead_of f

Cupdate
. Plugging

Equation 1 in, we have a competitiveness is bounded by
1 + Cupdate

Cr ead_of f
⇤ Cr ead_of f

Cupdate
, which is equal to 2. ⇤

Proof of Theorem 3.2. We use the same o�ine algorithm as in
proving Theorem 3.1. We consider the following sequence of
reads/writes for analyzing the worst-case of our memorizing
algorithm. The read-write sequence consists of a series of
sub-sequences, where the i-th subsequence is of Ai reads
and Bi writes. We will set Ai and Bi such that the algorithm
will make “wrong” decisions about data replication: It will
decide to replicate the data record when it seesAi reads, and
then not to replicate after seeing the next Bi writes. Because
each replication decision is followed by writes, the replica is
not being read. In other words, the cost of replication is paid
without any cost bene�t in serving reads by replica. Each
no-replication decision is followed by reads, so the follow-
up reads are served at the high cost without data replica. In
summary, every decision made by the algorithm does not
save the cost of serving the following operations, but still
incurs replication cost. Hence, this sequence is the worst
case of our algorithm.

In the i-th sequence, when the algorithm sees Ai reads, it
satis�es the in-equation (B1+B2+ ...Bi�1)⇤K 0 <= (A1+A2+
...+Ai )�D; When it sees Bi writes, it satis�es the in-equation
(B1+B2+...+Bi )⇤K 0 > (A1+A2+...+Ai )+D; Combining the
two in-equations, we conclude that Ai > 2D, Bi >= Ai/K 0.
Finally, the general formula for the i-th sequence is: Ai = D

when 4i = 1; Ai = 2D + 1 when i > 1; Bi = (2D + 1)/K 0.
The cost of the i-th sequence in our algorithm is Ai ⇤

Cr ead_of f +Cupdate + (Bi � 1) ⇤Cupdate , and the cost of the
ideal o�ine algorithm is Cupdate ; thus the competitiveness
of the memorizing algorithm is Ai ⇤Cr ead_of f /Cupdate + Bi ,
since Cr ead_of f /Cupdate equals 1/K 0, the competitiveness is
(4D + 2)/K 0. ⇤
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