Nothing Special   »   [go: up one dir, main page]

İçeriğe atla

Weibull dağılımı: Revizyonlar arasındaki fark

Vikipedi, özgür ansiklopedi
[kontrol edilmemiş revizyon][kontrol edilmemiş revizyon]
İçerik silindi İçerik eklendi
Khutuck Bot (mesaj | katkılar)
k Bot: Otomatik imlâ düzeltme
Khutuck Bot (mesaj | katkılar)
k Bot: Otomatik metin değişimi, Resim etiketleri düzenlendi
2. satır: 2. satır:
isim =Weibull (2-Parametreli)|
isim =Weibull (2-Parametreli)|
tip =yoğunluk|
tip =yoğunluk|
pdf_image =[[Resim:Weibull_PDF_2.PNG|325px|Probability distribution function]]<!--- NOT CORRECT (see discussion) [[Resim:Weibul pdf.png|325px|Probability distribution function]]--->|
pdf_image =[[Dosya:Weibull_PDF_2.PNG|325px|Probability distribution function]]<!--- NOT CORRECT (see discussion) [[Dosya:Weibul pdf.png|325px|Probability distribution function]]--->|
cdf_image =[[Resim:Weibull_CDF_2.PNG|325px|Cumulative distribution function]]<!--- NOT CORRECT (see discussion) [[Resim:Weibul cdf.png|325px|Cumulative distribution function]]--->|
cdf_image =[[Dosya:Weibull_CDF_2.PNG|325px|Cumulative distribution function]]<!--- NOT CORRECT (see discussion) [[Dosya:Weibul cdf.png|325px|Cumulative distribution function]]--->|
parametreler =<math>\lambda>0\,</math> [[olcek parametresi|olcek]] ([[reel sayi|reel]])<br/><math>k>0\,</math> [[sekil parametresi|sekil]] (reel)|
parametreler =<math>\lambda>0\,</math> [[olcek parametresi|olcek]] ([[reel sayi|reel]])<br/><math>k>0\,</math> [[sekil parametresi|sekil]] (reel)|
destek =<math>x \in [0; +\infty)\,</math>|
destek =<math>x \in [0; +\infty)\,</math>|

Sayfanın 21.14, 18 Nisan 2009 tarihindeki hâli

Weibull (2-Parametreli)
Olasılık yoğunluk fonksiyonu
Probability distribution function
Yığmalı dağılım fonksiyonu
Cumulative distribution function
Parametreler olcek (reel)
sekil (reel)
Destek
Olasılık yoğunluk fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
Medyan
Mod if
Varyans
Çarpıklık
Fazladan basıklık (metine bakın)
Entropi
Moment üreten fonksiyon (mf) bakin Weibull
Karakteristik fonksiyon

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı (Waloodi Weibull anısına isimlendirilmiş) [1] ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

Burada ve x < 0 için f(x; k, λ) = 0. şekil parametresi ve ölçek parametresi olurlar.

Weibull dağılımı için yığmalı olasılık fonksiyonu bir gerilmiş üstel (stretched) fonksiyondur.

Yaşama, hayatta kalım ve yetmezlikle yıkım süreçlerini inceleyen verilerin analizi alanında Weibull dağılımı çok elastik olup kolayca değiştirilebildiği için çok kullanılmaktadır. Değişik parametre değerleri kullanılarak normal dağılım, üstel dağılım gibi çok popüler diğer istatistiksel dağılımların davranışların Weibull dağılımı kullanarak aynen taklid etme imkânı bulunmaktadır.


Eğer k = 3.4 ise, Weibull dağılımı normal dağılımına benzerlik gösterir. Eğer k = 1 ise o zaman Weibull dağılımı üstel dağılımına dönüşür.

Özellikler

Weibull dağılımı için ninci ham momenti şu ifadeyle verilmiştir:

Burada bir Gamma fonksiyonu olur.

Weibull rassal değişkeni için beklenen değer ve standart sapma şöyle verilir:

ve

Çarpıklık şöyle verilir:

Fazla basıklık ifadesi şudur:

Burada . Fazla basıklık ifadesi şöyle de yazılabilir:

İstatistik kaynakları çok kere biraz değişik olan genelleştirilmiş 3-parametreli Weibull dağılımı bulunduğunu bildirmektedirler. Bu genelleştirilmis Weibull dağılımı için olasılık dağılım fonksiyonu şudur:

Burada ve f(x; k, λ, θ) = 0 eğer x < θ; şekil parametresi, ölçek parametresi ve dağılım için konum parametresisir. Limitte θ=0, olduğu zaman bu ifade 2-parametreli değişime dönüşür.

2-parametreli Weibull dağılımı için yığmalı dağılım fonksiyonu şöyle verilmiştir:

eğer x ≥ 0, ve F(x; k; λ) = 0 eğer x < 0.

3-parametreli Weibull dağılımı için ise yığmalı dağılım fonksiyonu şudur:


Burada x ≥ θ, ve F(x; k, λ, θ) = 0f eger x < θ.

Kritik yetmezlik hızı h (veya tehlike hızı) şöyle verilmiştir:

Weibull dağılımı gösteren rassal değişir üretilmesi

(0, 1) aralığında bulunan bir tekdüze dağılımından elde edilmiş bir rassal değişir olarak U ele alınsın. O zaman şu

parametreleri k ve λ olan bir Weibull dağılımı gösterir. Bu sonuç yığmalı dağılım fonksiyonunun şekilden hemen elde edilir. Ancak (0,1) aralığından rassal değişkenler üretilmekte iken ele geçirilmesi çok az olasılıklı olan 0 değeri bir şans eseri ele geçerse (bu değerin doğal logaritması sonsuz olacağı için) bu çekilimin bir kenara bırakılması ve yeni bir tane daha rassal sayı elde edilmesi gerekir.

İlişkili dağılımlar

  • Eger

ise,

ifadesi bir ustel dagilim olur.


  • Eger

ise

bir Rayleigh dagilimi olur.

  • Eger

ise

bir Weibull dagılımı olur.

  • Ters Weibull dağılımı için olasılık dağılım fonksiyonu

olur.

Kullanış alanları

Weibull dağılımı pratikte çok kere normal dağılım yerine kullanılmaktadır. Buna neden Weibull değisebiliri değerlerinin kolay matematik işlemlerle ortaya çıkan ters alma usulu ile üretilebilmekte ve buna karşılık normal değişebilir değerleri rettmek icin tipik olarak daha karmaşık işlemler gerektiren (her normal değer için iki tane tekdüze dağılım değişebilir değeri isteyen) Box-Muller yontemi ile elde etmek gerekmektedir.

Endüstriyel mühendislik dalında fabrikasyon ve mal teslim zamanlarını temsil etmek için modellemelerde Weibull dağılımı kullanılmaktadır. Ayni bilim ve teknoloji dalında [[ mühendisliği ve failure analizi için istatistiksel modellere baz olamaktadir.

Weibull dağılımı Lucasl deger teorisi ve meteorojide hava tahmin modellemesinde önemli rol oynamaktadir.

Radar sistemlerinin modelleme alanında

Weibull dağılımı çok popüler olarak rüzgar hızı dağılımını tanımlamak icin kullanılır çünkü doğasal pratik rüzgar hızı çizelgelerine teorik Weibull şekli çok uygun olmaktadır.


Referanslar

  1. ^ Weibull, W. (1951) "A statistical distribution function of wide applicability (Genis kullanim alani olan bir istatistiksel dagilim)" J. Appl. Mech.-Trans. ASME 18(3), 293-297

Kaynak


Dışsal bağlantılar