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Résumé

Le domaine de l’intelligence artificielle vise à concevoir des agents autonomes
capables de percevoir, d’apprendre et d’agir sans aucune intervention humaine
pour accomplir des tâches complexes. Pour accomplir des tâches complexes,
l’agent autonome doit planifier les meilleures actions possibles et les exécuter.
Pour ce faire, l’agent autonome a besoin d’un modèle d’actions. Un modèle
d’actions est une représentation sémantique des actions qu’il peut exécuter.
Dans un modèle d’actions, une action est représentée à l’aide (1) d’un ensemble
de pré-conditions: l’ensemble des conditions qui doivent être satisfaites pour
que l’action puisse être exécutée et (2) d’un ensemble d’effets: l’ensemble des
propriétés du monde qui vont être modifiées par l’exécution de l’action. La
modélisation STRIPS est une méthode classique pour concevoir ces modèles
d’actions. Cependant, les modèles d’actions STRIPS sont généralement trop
restrictifs pour être utilisés dans des applications réelles. Il existe d’autres
formes de modèles d’actions: les modèles d’actions temporels permettant de
représenter des actions pouvant être exécutées en concurrence, les modèles
d’actions HTN permettant de représenter les actions sous formes de tâches et
de sous tâches, etc. Ces modèles sont moins restrictifs, mais moins les modèles
sont restrictifs plus ils sont difficiles à spécifier. Dans cette thèse, nous nous
intéressons aux méthodes facilitant l’acquisition de ces modèles d’actions basées
sur les techniques d’apprentissage automatique.

Dans cette thèse, nous présentons AMLSI (Action Model Learning with
State machine Interaction), une approche d’apprentissage de modèles d’actions
basée sur l’induction grammaticale régulière. Dans un premier temps nous
montrerons que l’approche AMLSI permet d’apprendre des modèles d’actions
STRIPS. Nous montrerons les différentes propriétés de l’approche prouvant son
efficacité: robustesse, convergence, requiert peu de données d’apprentissage,
qualité des modèles appris. Dans un second temps, nous proposerons deux
extensions pour l’apprentissage de modèles d’actions temporels et de modèles
d’actions HTN.

Mots clés : Planification automatique, Apprentissage de modèles d’actions,
Induction grammaticale régulière.
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Abstract

The field of Artificial Intelligence aims to design and build autonomous agents
able to perceive, learn and act without any human intervention to perform
complex tasks. To perform complex tasks, the autonomous agent must plan
the best possible actions and execute them. To do this, the autonomous agent
needs an action model. An action model is a semantic representation of the
actions it can execute. In an action model, an action is represented using (1)
a precondition: the set of conditions that must be satisfied for the action to
be executed and (2) the effects: the set of properties of the world that will be
modified by the execution of the action. STRIPS planning is a classical method
to design these action models. However, STRIPS action models are generally
too restrictive to be used in real-world applications. There are other forms of
action models: temporal action models allowing to represent actions that can
be executed concurrently, HTN action models allowing to represent actions as
tasks and subtasks, etc. These models are less restrictive, but the less restrictive
the models are the more difficult they are to design. In this thesis, we are
interested in approaches facilitating the acquisition of these action models based
on machine learning techniques.

In this thesis, we present AMLSI (Action Model Learning with State
machine Interaction), an approach for action model learning based on Regular
Grammatical Induction. First, we show that the AMLSI approach allows to
learn (STRIPS) action models. We will show the different properties of the
approach proving its efficiency: robustness, convergence, require few learning
data, quality of the learned models. In a second step, we propose two extensions
for temporal action model learning and HTN action model learning.

Keywords: Automated Planning, Action Model Learning, Regular Grammar
Induction.
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 AI Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The AMLSI Approach . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Document Organization . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Context

The field of Artificial Intelligence (AI) intends to design and build agents able
to perceive, learn and act without any human intervention to perform complex
tasks. As stated by Russell and Norvig (2021), an agent is an intelligent system
that can decide what to do and then do it. An agent perceives its environment,
plans the best possible actions corresponding to the task that it has to achieve,
and executes it. To plan best actions, the agent must therefore be able to make
decisions. There are several approaches allowing agents to make decisions. One
of them is automated planning (AI planning) (Fikes and Nilsson, 1971; Ghallab
et al., 2004). The main advantage of AI planning is its flexibility. Most of the
approaches allowing an agent to make decisions are domain-dependent, i.e. there
is an algorithm for a given task that the agent has to achieve. AI planning is
domain-independent, i.e. there is an algorithm to achieve a set of tasks. This thesis
focuses on this approach.

1.1.1 AI Planning

The objective of AI planning is the resolution of planning problems. The
description of a planning problem is done declaratively: a planning problem
specifies what to do rather than how to do it. The declaration of a planning
problem is composed of: (1) the initial state of the environment (the objects to

1



Initial State

Goal State

Action
Model

Planner PlanInput Output

Figure 1.1: Planning Problem resolution Architecture.

be considered and their properties), (2) a goal, and (3) the action set that can
be executed by the agent to achieve the specified goal. To solve the planning
problem, the agent searches for an action sequence, called plan, achieving the
goal state from the initial state. The resolution of planning problems is based
on descriptive models of actions. They describe which state or set of possible
states can result from the execution of an action. More precisely, action models
are generally used to model actions. Action models define actions in terms
of preconditions and effects. The preconditions express the properties of the
environment that must be satisfied in order to apply the action, and the effects
express the consequences of executing the action in the environment. In practice,
action models are hand-encoded using a declarative language such as PDDL
(Planning Domain Description Language) (Ghallab et al., 1998). Finally, Figure
1.1 gives the traditional architecture to solve a planning problem: a solver, called
Planner, takes as input the initial state, the goal state and the action model, and
returns the solution plan. This thesis focuses on action modeling using action
models, and more precisely on the acquisition of these action models.

As we mentioned it, action models allow to represent actions in terms of
preconditions and effects. A classical way to declare these preconditions and
effects is the propositional logic: an action precondition is a set of logical
propositions that must be satisfied in the current environment state and effects
are sets of logical propositions whose values change after the execution of
the action. Declaring preconditions and effects as sets of logical propositions
asks that the environment states are modeled using logical propositions, then
the initial state and the goal are also modeled as sets of logical propositions.
This is the classical STRIPS (STanford Research Institute Problem Solver) (Fikes
and Nilsson, 1971) planning formalism. Classical STRIPS planning is based on
several assumptions. Among these assumptions, we can cite:

• The environment is deterministic and fully observable. The agent knows
at any time the current state and can therefore predict the next state after
executing an action.

• The goal is specified using several properties, i.e. logical propositions, that
the final environment state reached by the agent has to satisfy.

• The environment is static. Only the actions executed by the agent changes
the environment state. The agent is alone and the environment has no

2
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internal dynamics.

• The execution of the actions is linear and atomic. Actions have no duration,
changes in the environment are instantaneous and concurrence between
actions is not taken into account.

• Preconditions and effects are sets of propositions.

Several extensions to STRIPS have been proposed to relax some assumptions.
For example, temporal planning problems (Fox and Long, 2003) allow to model
actions that can be concurrently executed. This can be useful for robots with
multiple arms which can handle several objects concurrently. Another example
is HTN planning problems (Erol et al., 1994) which declare tasks rather than
actions. There are two kinds of tasks. Simple tasks similar to classical actions
and complex tasks. Complex tasks are tasks that, when solving the planning
problem, are decomposed into sub-tasks (simple and/or complex). Another
example is ADL planning problems (Pednault, 1994) which allow to model more
complex preconditions and effects with logical quantifier, conditional effects
(effects applies when some conditions are satisfied) etc. A last example is multi-
agent planning problems (Brenner, 2003) which allow to represent planning
problems where several agents interact to achieve the goal. This can be useful if
we have several robots interacting in order to achieve a goal.

1.2 Problem Statement

As we have seen before, AI planning requires the declaration of an action
model. To declare an action model we use a declarative language such as PDDL.
We have briefly presented how declare an action model based on the STRIPS
formalism. As we have mentioned, STRIPS planning assumes several restrictive
assumptions. On the other hand, AI planning tools have been developed in a
wide range of real-world applications such as aerospace (Fisher et al., 2000;
Backes et al., 2004; Bresina et al., 2005), autonomous vehicles (Urmson and
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Whittaker, 2008), logistics (Cross and Walker, 1994), robotics (Dvorak et al.,
2014; Lallement et al., 2018; Liang et al., 2022), industry (Hoffmann et al., 2009),
cybersecurity (Edelkamp et al., 2009). Usually, action models used by these tools
are hand-encoded. Also, the assumptions assumed by STRIPS are too restrictive
for these tools. Modeling real-world applications therefore requires to relax
these assumptions. However, if we relax these assumptions the action models
will be more complex and therefore more difficult to hand-encode.

Hand-encoding these action models requires a planning expert.
Nevertheless, hand-encoding action models remains a difficult task even
for a planning expert and requires a lot of human effort (see Figure 1.2). Also,
users are generally not planning experts, and planning experts in charge
of modelling real-world applications generally have no knowledge of these
applications. This a classic issue of software and requirements engineering
(Sommerville, 2011) which increases the human effort required to hand-encode
real world applications. To facilitate the diffusion of AI planning techniques,
it is important to develop approaches that facilitate the acquisition of action
models.

Knowledge engineering tools facilitating action model writing have been
developed. These tools provide support for consistency and syntax error
checking, domain visualisation etc. However, these tools require a lot of
AI planning expertise and background in software engineering (Shah et al.,
2013). Also, machine learning approaches have been proposed to automatically
generate action models (Arora et al., 2018a; Celorrio et al., 2012; Jilani et al.,
2014). Generally, machine learning approaches are used for already existing
applications: either to automate processes, such as an industrial process for
example, or to benefit from the flexibility of AI planning, to facilitate the
maintenance of these applications for example. These approaches takes as input
a training datasets and learn an action model. A training dataset is a collection
of data allowing to learn a model. In the context of AI planning, the training
datasets are generally examples of agent executions. These approaches are
promising and some of them reduce human effort (Zhuo et al., 2010a). However,
these approaches are not efficient enough to be used in real-world applications.

First of all, most of these learning approaches learn classical STRIPS action
models, and as we have seen before, classical STRIPS action models are based
on assumptions too restrictive to be used in real-world applications. Then, the
acquisition of the learning datasets is a difficult and costly process. Indeed,
we have to generate the examples, execute them, store the results of the
execution. Moreover, some approaches also require to parse these examples to a
symbolic representation. There are mainly two kind of datasets: (1) goal oriented
execution traces and (2) random walks. Most of the learning approaches use goal
oriented execution traces as training datasets (Yang et al., 2007; Aineto et al.,
2019; Segura-Muros et al., 2018; Kucera and Barták, 2018) and few approaches
use randomly generated execution traces (Rodrigues et al., 2010a; Mourão et al.,
2012). Goal oriented execution traces are execution traces achieving a given
task. For example, for an autonomous vehicle, a goal oriented execution trace
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will be the action sequence allowing to the vehicle to travel from Grenoble
to Lyon. The main problem with this kind of execution traces is that they are
biased by the task to achieve, and if we have too little data there is a risk
of overfitting, i.e. the learned action models are not sufficiently general and
several tasks cannot be achieved by these action models. For example, for our
autonomous vehicle, if our training datasets contains only travels where the
two cities are connected by a highway, it is possible that the learned action
model is not able to be used for travels connecting two cities that are not
connected by a highway. To limit the risk of overfitting, we therefore need a large
number of execution traces acquired from a wide variety of tasks. However,
as we mentioned earlier, acquiring these traces is difficult and costly. Random
walks are randomly generated action sequences. The advantage of this kind
of trace is that it is not biased by a task. By randomly generating sequences,
we can cover a large number of execution examples while limiting the risk of
overfitting. Also, random walks allow to acquire unfeasible action sequences,
i.e. action sequences where one or several actions are not feasible. An action is
not feasible if one or several preconditions are not satisfied. Moreover, usually
in addition to the action sequences, the execution traces contains observations:
i.e. the different states of the environment observed during the execution of the
action sequences. These states are sets of logical propositions describing the
environment. In practice, obtaining complete and noiseless observations is a
difficult task and generally the observations will be partial and noisy. A partial
observed state is a state where the values of some propositions are unknown.
Also, a noisy observed state is a state where the values of some propositions
are erroneous. However, majority of learning approaches are only able to deal
with complete or partial and noiseless observations (Wang, 1995; Yang et al.,
2007; Aineto et al., 2019). Also, even if some approaches (Mourão et al., 2012;
Segura-Muros et al., 2018; Rodrigues et al., 2010a) are able to learn from partial
and noisy observations, few approaches are able to handle very high levels of
noise and high levels of partial observations as can be encountered in real world
applications. Finally, learning approaches are generally not able to learn action
models which are usable by planners. A proofreading step by an AI planning
expert is generally required.

In this thesis we argue that, to be efficient, a learning approach must tackle
the following triple issue:

1. Output: As mentioned earlier, STRIPS planning is too restrictive for real-
world applications. We therefore have to propose approaches learning less
restrictive action models.

2. Input: The acquisition of the training dataset must be as simple as possible
and requires the least amount of human effort.

3. Performance: The learned action model has to be accurate. An action
model is accurate if the action model can be used by planners to solve
planning problems without requiring a proofreading step. Also, even with
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inputs requiring not a lot of human effort, acquiring the training dataset is
difficult and costly. The learning approach has to require few data in the
training dataset to learn action model. Finally, the learning approach has
to be robust to partial and noisy observations, i.e. the learning approach
has to learn accurate action models even with high level of partiality and
noise in the observations.

In this thesis we tackle the following research challenge: How to automatically
learn accurate action models from partial and noisy observations?

1.3 The AMLSI Approach

This thesis contributes to the field of AI planning, and more specifically to the
field of action model acquisition.

In this thesis we propose AMLSI (Action Model Learning with State machine
Interaction), a learning approach for action model acquisition. Figure 1.3 gives
an overview of this approach. The key idea of the AMLSI approach is to interact
with the environment in which the agent will have to solve planning problems
to learn the action model: AMSLI tests different actions, observes how the
environment evolves when these actions are executed and learns the action
model from its observations. This approach is divided into two phases:

6



I. Querying Phase: AMLSI queries the environment with feasible and
unfeasible action sequences and perceives observations. These observation can
be partial and noisy. AMLSI tests both feasible and unfeasible action sequences
because unfeasible action sequences allow to minimize the amount of (feasible)
actions to be executed in the environment and thus minimize the cost of the
training dataset acquisition. Indeed, by reducing the number of feasible actions,
we reduce the number of actions to execute and therefore the number of
observations to acquire and store. Also, the action sequences will be generated
randomly to avoid the overfitting issue. This phase takes as input the set
of actions that the agent can execute and the set of observable propositions
describing the environment. This querying phase will allow AMLSI to build a
training dataset that will then be used as input of the learning phase.

II. Learning Phase: It is during this phase that AMLSI learns the action model.
To learn the action model, AMLSI will rely on Regular Grammar Induction. As
we will see in Chapter 4, planning problems are related to state machines and
these state machines are equivalent to regular grammars. Moreover, as we will
see in Chapter 3, Regular Grammar Induction is a well-defined problem (Gold,
1967; De La Higuera, 2010), and many algorithms has been proposed to solve it
like RPNI (Oncina and Garcia, 1992).

The main contribution of the AMLSI approach is to tackle the triple issue
presented before. First of all, we will show that AMLSI approach is able to learn
STRIPS action models from partial and noisy observations sufficiently accurate
to allow planners to solve new planning problems. We will see that using
random walks with unfeasible sequences allows to learn action models with few
data. Also, we will show that AMLSI outperforms state-of-the-art approaches.
Also, as mentioned above, training dataset acquisition is costly. Also, in practice,
the learning data arrives online. Our approach must therefore be able to learn
action models incrementally: each time new data is acquired AMLSI will update
the action model without starting the learning process from scratch. Then, as
STRIPS action models are too restrictive to be applied to real-world applications
we will extend AMLSI to learn temporal action models and HTN action models.

1.4 Document Organization

This thesis is organised into two parts (see Figure 1.4)).
The first part consists of theoretical background on AI planning and present

a state-of-the-art of action model acquisition techniques. First of all, we will
present some background on the AI planning field. Then, we will present a state-
of-the-art of action model learning approaches. Our approach being based on
regular grammar induction, we will introduce this field. We organised this part
into two chapters. In Chapter 2, we introduce the AI planning concepts used
in the development of this thesis and the literature related to these concepts.
First of all, we will define the classical concepts of AI planning. Next, we
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will present three AI planning frameworks: (1) classical STRIPS planning and
the PDDL language, (2) hierarchical planning and the HDDL language and
finally (3) temporal planning and the PDDL 2.1 language. Finally, we present
the state-of-the-art of the action model acquisition approaches. We will first
briefly discuss of the knowledge acquisition tools. Then, as this thesis focuses on
learning approaches, we will detail the approaches based on machine learning.
We will discuss their advantages, disadvantages and open issues. In Chapter
3, we introduce the regular grammar induction concepts used in this thesis.
We will start by giving some definitions and concepts of theory of languages
and automata. Then we will introduce the regular grammar induction field and
present some learning algorithms.

The second part of this thesis presents our contributions, taking into account
the research challenge previously presented. We organise this part into four
chapters. In Chapter 4 we first show that AMLSI is an accurate STRIPS action
model learning algorithm robust to partial and noisy observations. Then, we will
show that AMSLI outperforms state-of-the-art approaches. Also, we will present
formal properties of AMLSI approach. Then, in Chapter 5 we will present
IncrAMLSI, an incremental extension of the AMLSI approach for STRIPS action
model learning. After presenting the STRIPS action model learning approach,
we will present approaches for less restrictive action models. In Chapter 6 we
present TempAMLSI, our temporal extension of AMLSI and show that it is
possible to learn temporal features with non-temporal learning techniques. In
Chapter 7 we present HierAMLSI, our HTN extension of AMLSI.
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Finally, we conclude this thesis in Chapter 8. More precisely, we review the
contributions of the thesis, we give concluding remarks and we propose possible
perspectives for this work.
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2.1 Introduction

The aim of the AI planning (Fikes and Nilsson, 1971; Ghallab et al., 2004) is to
develop solvers, called planners, able to generate action sequences at a symbolic
level from an initial state in order to achieve a defined goal. The specification
of the problem to be solved is generally based on a high-level language such
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as PDDL (Ghallab et al., 1998) (Planning Domain Description Language). The
description of a planning problem is done in a declarative way. The specification
of a planning problem, whatever the language used, requires the description
of three elements: (1) the initial state of the environment (the objects to be
considered and their properties), (2) a goal, and (3) the set of actions that can be
performed to achieve the goal. Actions are defined in terms of preconditions and
effects. The preconditions express the properties of the environment that must
be verified in order to apply the action, and the effects express the consequences
of executing the action in the environment. The solution of a planning problem
is in the general case an ordered sequence of actions, called a plan, which can be
executed from the initial state of the problem and which produces a state of the
environment entailing the goal.

Classical AI planning is based on several assumptions. Among these
assumptions, we can cite:

• The environment is deterministic and fully observable. The agent knows
at any time the current state and can therefore predict the next state after
executing an action.

• The goal is specified using several properties, i.e. logical propositions, that
the environment has to satisfy.

• The environment is static. Only the actions executed by the agent alter the
state of the environment. The agent is alone and the environment has no
internal dynamics.

• The execution of the actions is linear and atomic. Actions have no duration,
changes in the environment are instantaneous and concurrence between
actions is not taken into account.

• Preconditions and effects are sets of propositions.

These assumptions are too restrictive to model real-world applications.
However, relaxing some of these assumptions has two drawbacks: (1) the
models are more difficult to hand-encode and (2) the computational complexity
of solving these problems is higher. This thesis focuses on the first drawback.

This chapter is divided into two parts. First, we will see how to declare
the action models, we will start with classical AI planning and then we will
present several formalism relaxing some assumptions. Then, we will present
the methods used to facilitate the acquisition of these action models.

2.2 Action Model Declaration

As mentioned in the introduction, the aim of AI planning is the development
of planner solving planning problems. Formally, the solution of a planning
problem is expressed as the search for a path representing a plan of actions

14



in a finite state machine starting from an initial state and choosing which
actions should be applied to achieve a given task. The task can be formalized
as a goal state, represented by a set of logical propositions, a utility function
associated with the states, to be minimized or maximized, or a complex task to
be decomposed.

Definition 2.1 A finite state machine is a tuple (S, A, γ, so, G) such that4:

• S is a set of states.

• A is a set of actions.

• γ : S× A→ S is the transition function.

• s0 is the initial state.

• G is a set of goal states.

An action a ∈ A is applicable in a state s if and only if the transition
function γ(s, a) is defined. When we apply a in a state s, the state s′ = γ(s, a)
is produced. Finally, a plan is an action sequence ω = 〈a1, . . . , an〉 of size n. The
state produced by the application of ω in a state s is the state obtained by the
sequential application of each action of the plan ω. Formally, γ(s, ω) is defined
as follows:

γ(s, ω) =


s If n = 0.
γ(s, a1) If n = 1.
γ(γ(sa1), 〈a2 . . . an〉) If n > 1 and a1 is applicable in s.
Undefined Otherwise.

(2.1)

In the rest of this section, we start by presenting the STRIPS formalism (Fikes
and Nilsson, 1971) based on the assumptions mentioned above. We present a
formal framework and then introduce the PDDL language (Ghallab et al., 1998)
declaring STRIPS action models in the form of planning domains. Then, we
present two formalisms relaxing some of the assumptions: temporal planning
and hierarchical planning. As for STRIPS planning, we first present the formal
framework and then we present the language declaring these action models.

We illustrate this chapter using the classical AI planning example
Blocksworld. In this example an agent handles blocks: it can pick them up, drop
them on the table and stack them. The objective of the agent is to move the blocks
in order to reach a given arrangement. The agent perceives its environment
to know how the blocks are arranged and has to plan a certain number of
actions to achieve its goal. Figure 2.1 shows an example of planning problem
for Blocksworld. The initial state is the initial block arrangement: the green
block, the blue block and the red block are on the table. The goal is the block
arrangement that the agent has to reach: the red block on the green block, the
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Initial State Goal State

(1) (pick-up green)
(2) (stack green blue)
(3) (pick-up red)
(4) (stack red green)

A plan achieving the goal state

Figure 2.1: A first example of planning problem.

green block on the blue block and the blue block on the table. A plan solving
this problem is:

〈(pick-up green), (stack green blue), (pick-up red), (stack red green)〉

In natural language this plan means that, to solve its planning problem, the
agent begins by picking the green block (the (pick-up green) action) and stacks
it on the blue block (the (stack green blue) action). Then, the agent picks the red
block (the (pick-up red) action) and finally stacks it on the green block (the (stack
red green) action).

2.2.1 Classical Planning

2.2.1.1 Formal Framework

We will give a formal description of classical AI planning, and more precisely,
of STRIPS planning. Also, we chose a formal framework inspired by (Höller
et al., 2016) in order to define the STRIPS formalism as a propositional language
representing the state transition system.

Definition 2.2 A classical planning problem P is a tuple (L, A, S, s0, G, δ, τ) where:

• L is the set of logical propositions describing the environment.

• A is the set of action.

• S ∈ 2L is the set of state.

• s0 ∈ S is the initial state.

• G is the set of goal states.

• δ is the action model.

• τ : S× A→ {true, f alse} is the feasibility function.

Example 2.1 Consider the classical Blocksworld example. L is composed of the
following propositions:

16



• (handempty): the agent’s hand is empty.

• (holding red), (holding blue), (holding green): the agent holds the red (resp. blue,
green) block.

• (ontable red), (ontable blue), (ontable green): the red (resp. blue green) block is on
the table.

• (clear red), (clear blue), (clear green): the red (resp. blue green) block is clear. A
block is clear if there is no block on it and if it is not held by the agent.

• (on red green), (on green blue): the red (resp. green) block is on the green (resp.
blue) block.

A possible initial state s0 could be s0 = {(ontable red), (ontable blue), (ontable green),
(clear red), (clear blue), (clear green), (handempty)}. A is composed of the following
actions:

• (pick-up red), (pick-up blue), (pick-up green): the agent can pick the red (resp.
blue, green) block from the table.

• (put-down red), (put-down blue), (put-down green): the agent can drop the red
(resp. blue, green) block on the table.

• (stack red green), (stack green blue): the agent can stack the red (resp. green) block
on the green (resp. blue) block.

• (unstack red green), (unstack green blue): the agent can unstack the red (resp.
green) block from the green (resp. blue) block.

Actions can only be executed under certain conditions. These conditions are
called action preconditions and are described using logical propositions.

Example 2.2 The preconditions of the action (stack green blue) are {(holding green),
(clear blue)}. In natural language, this precondition means that the agent can execute
the action (stack green blue) if the agent holds the green block and if the blue block is
clear.

Then, once the agent executes an action, the state of the environment is altered.
These alterations are due to the action effects. As preconditions, action effects
can be described using logical propositions. Action effects are divided into two
subsets:

• Positive Effects: the set of logical propositions which are present in the state
after the execution of an action.

• Negative Effects: the set of logical propositions which are absent in the state
after the execution of an action.
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Example 2.3 The positive effects of the action (stack green blue) are {(clear green),
(on green blue), (handempty)}. In natural language, these positive effects mean that
the green block is now clear and on the blue block and the agent’s hand is now empty.
The negative effects of the action (stack green blue) are {(clear blue), (holding blue)}. In
natural language, these negative effects mean that the blue block is no longer clear and
the agent no longer holds the green block. Actions preconditions and effects are usually
encoded using an action model.

Formally, the action model is defined as follows:

Definition 2.3 An action model is a tuple δ = (prec, add, del) where:

• prec : A→ 2L is the function mapping a set of preconditions with a ∈ A.

• add : A→ 2L is the function mapping a set of positive effects with a ∈ A.

• del : A→ 2L is the function mapping a set of negative effects with a ∈ A.

The function τ : S × A → {true, f alse} returns whether an action is
applicable to a state, i.e. τ(s, a) ⇔ prec(a) ⊆ s. Whenever an action a is
applicable in state si, the state transition function γ : S × A → S returns the
resulting state si+1 = γ(si, a) such that

si+1 = {si ∪ add(a)} \ del(a). (2.2)

Example 2.4 If the agent applies the action (pick-up g) in s0, then

s1 = {s0 ∪ add(pick-up green)} \ del(pick-up green)
= {(ontable red), (ontable blue), (clear red), (clear blue), (holding green)}.

An action sequence ω = 〈a1, . . . , an〉 of actions is applicable to a state s0 when
each action ai with 1 ≤ i ≤ n is applicable to the state si−1. Given an applicable
sequence 〈a1, . . . , an〉 in state s0, γ(s0, 〈a1, . . . , an〉) = γ(γ(s0, a1), 〈a1, . . . , an〉) =
sn. It is important to note that this recursive definition of γ entails the generation
of a sequence of states 〈s0, s1, . . . , sn〉.

A goal state is a state g such that g ∈ G. An action sequence is a solution plan
to a planning problem P if and only if it is applicable to s0 and achieves a goal
state g.

Example 2.5 g = {(ontable blue), (clear red), (on red green), (on green blue), (handempty)}
is a goal state and the action sequence

〈(pick-up green), (stack green blue), (pick-up red), (stack red green)〉
is applicable in s0, produces the state sequence :

〈 {(ontable red), (ontable blue), (clear red), (clear blue), (holding green)},
{(ontable red), (ontable blue), (clear red), (clear green), (on green blue), (handempty)},
{(ontable blue), (clear green), (on green blue), (holding red)},
{(ontable blue), (clear red), (on red green), (on green blue), (handempty)} 〉

and achieves the goal state g.
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2.2.1.2 The PDDL Language

First proposed in 1998 (Ghallab et al., 1998), the PDDL language is mainly
inspired by the STRIPS language (Fikes and Nilsson, 1971) and the ADL
language (Pednault, 1994). It expresses planning problems in two files: (1) the
planning domain file describing the planning operators and (2) the planning
problem file describing the initial state and the goal. A planning operator is
an abstraction of an action. Indeed, as we have seen previously, actions are
declared using their preconditions and their effects. The preconditions and the
effects being a set of logical propositions. Nevertheless, the PDDL language is
based on predicate logic. The planning operators are therefore declared using
predicates, and these operators will then be instantiated into actions using the
objects present in the initial state declared in the problem file. We will see how
to define a planning domain and a planning problem using the PDDL language
through the Blocksworld example.

PDDL Planning Domain File We will now see how to specify a planning
domain using the PDDL language. To start with, let’s look at the file header.

1 ( define ( domain blocksworld )
2 ( : requirements : s t r i p s : typing )
3 ( : t y p e s block )

The domain description always begins with the declaration of its name preceded
by the domain keyword. Then, domain descriptions define its requirements
identified by the keyword :requirements and the list of objects types identified
by the keyword :types.

Then, the domain declaration contains the declaration of all the predicates
representing the environment.

1 ( : p r e d i c a t e s
2 ( on ?x − block ?y − block )
3 ( ontable ?x − block )
4 ( c l e a r ?x − block )
5 ( handempty )
6 ( holding ?x − block )
7 )

Finally, the domain declaration contains the declaration of all planning
operators. When solving the planning problem, these planning operators will be
instantiated in order to obtain the action model. Planning operators are defined
as follows:

1 ( : a c t i o n pick−up
2 :parameters ( ? x − block )
3 :precondit ion ( and
4 ( c l e a r ?x ) ( ontable ?x ) ( handempty ) )
5 : e f f e c t ( and
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6 ( not ( ontable ?x ) )
7 ( not ( c l e a r ?x ) )
8 ( not ( handempty ) )
9 ( holding ?x ) )

10 )

The declaration of a planning operator contains the name of the operator
preceded by the keyword :action, the set of parameters with types preceded
by the keyword :parameters and the precondition and the effects preceded by
keywords :precondition and :effect. In our example, the precondition means
that to pick up a block, the block has to be on the table and clear and the agent’s
hand has to be empty. Then, the effects mean that after having picked the block,
the block is no longer clear and on the table, and the agent now holds the block
and its hand is no longer empty.

PDDL Planning Problem File Let us now see how to describe a planning
problem. For the Blocksworld example we have:

1 ( define ( problem example )
2 ( :domain blocksworld )
3 ( : o b j e c t s red green blue − block )
4 ( : i n i t
5 ( c l e a r red ) ( c l e a r green ) ( c l e a r blue )
6 ( ontable red ) ( ontable green ) ( ontable blue )
7 ( handempty ) )
8 ( : g o a l
9 ( on red green ) ( on green blue ) ) )

The example problem starts by listing the different objects of the problem
(section identified by the keyword :objects) and the initial state (section
identified by the keyword :init). In this example, the problem has three blocks
red, green and blue put on the table. Finally the goal to reach is in the section
identified by the keyword :goal. In this example, the goal is to reach a state
where red is on green and green is on blue.

2.2.2 Temporal Planning

Now suppose that the agent has several hands: a right hand and a left hand.
And suppose that it can use both hands simultaneously. Then, the agent is able
to produce concurrent plans where several actions are executed simultaneously.
Moreover, suppose that each action has a given duration, then Figure 2.2 gives
a concurrent plan to solve the Blocksworld problem. Temporal planning allows
to model such planning problems where actions can be performed concurrently.
More precisely, temporal planning problems are problems allowing to represent
durative actions, i.e. actions that have a duration, and whose preconditions and
effects must be satisfied and applied at different times.
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Time

(pick-up green right)

(pick-up red left)

(stack green blue right) (stack red green left)

Figure 2.2: A concurrent plan to solve the Blocksworld problem.

2.2.2.1 Formal Framework

We will extends the classical formalization seen in Section 2.2.1.1 to fit with
temporal features.

Definition 2.4 A temporal planning problem P is a tuple (L, A, S, d, s0, g, δ, τ) where:

• L is the set of logical propositions describing the environment.

• A is the set of durative actions.

• S ∈ 2L is the set of states.

• d : A→ R is the duration function

• s0 ∈ S is the initial state.

• G is the set of goal states.

• δ is the temporal action model.

• τ : S× A→ {true, f alse} is the feasibility function.

As for STRIPS problems, L is a set of logical propositions, S is a set of states,
s0 ∈ S is the initial state, G is the set of goal states. A is a set of durative actions
and d : A→ R is the duration function. Unlike STRIPS planning problem, action
preconditions, positive and negative effects are labeled with time labels at-start,
at-end and overall. Formally, the temporal action model is defined as follows:

Definition 2.5 A temporal action model is a tuple δ = (prec, add, del) where:

• prec : A×{s, o, e} → 2L is the function mapping the set of at start (resp. overall,
at end) preconditions with a ∈ A.

• add : A× {s, e} → 2L is the function mapping the set of at start (resp. at end)
positive effects with a ∈ A.

• del : A× {s, e} → 2L is the function mapping the set of at start (resp. at end)
negative effects with a ∈ A.
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prec(a, s)

add(a, s)
del(a, s)

prec(a, o) prec(a, e)

add(a, e)
del(a, e)

d(a)

Figure 2.3: Structure of a durative action a.

The at-start label means that the precondition (resp. effect) has to be satisfied
(resp. applied) when the durative action starts. Then, the at-end label means
that the precondition (resp. effect) has to be satisfied (resp. applied) when the
durative action ends. Finally, the overall label means that the precondition has
to be satisfied during the whole execution of the durative action.

Example 2.6 For the action (stack green blue right) we have:

• Preconditions:

• prec((stack green blue right),o) = {(holding green right)}.

• prec((stack green blue right),s) = ∅.

• prec((stack green blue right),e) = {(clear blue)}.

• Positive effects:

• add((stack green blue right),e) = {(on green blue), (clear green)}.

• add((stack green blue right),s) = ∅

• Negative effects:

• del((stack green blue right),e) = {(clear blue), (holding green right)}.

• del((stack green blue right),s) = ∅

The agent can execute the durative action (stack green blue right) if the agent holds the
green block with its right hand during the whole execution and if the blue block is clear
at the end of the execution. At the end of the execution the green block is now clear and
on the blue block and the agent no longer holds the green block and the blue block is no
longer clear.

The semantics of durative actions is defined in terms of two discrete events,
start-a and end-a, each of which is naturally expressed as a STRIPS action.
Starting a durative action a in state s is equivalent to applying the STRIPS action
start-a in s, first verifying that prec(start-a) holds in s. Ending a in state s′ is
equivalent to applying end-a in s′, first by verifying that prec(end-a) holds in s′.
start-a and end-a are defined as follows:

• start-a:

• prec(start-a) = prec(a,s).
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• add(start-a) = add(a, s).

• del(start-a) = del(a, s).

• end-a:

• prec(end-a) = prec(a,e).

• add(end-a) = add(e, s).

• del(end-a) = del(a, e).

Example 2.7 For the durative action (stack blue green right) we have:
add(end-stack green blue right) = add((stack green blue right),e) = { (on green blue),
(clear green)}

Actions start-a and end-a are constrained by the duration of a, denoted d(a) and
the overall precondition: end-a has to occur exactly d(a) time units after start-
a, and the over all precondition has to hold in all states between start-a and
end-a. Although a has a duration, its effects apply instantaneously at the start
and the end of a, respectively. The preconditions prec(a, s) and prec(a, e) are also
checked instantaneously, but prec(a, o) has to hold for the entire duration of a.
The structure of a durative action is summarized in Figure 2.3.

A temporal action sequence ω is a sequence of action-time pairs:

ω = 〈(a1, t1), . . . , (an, tn)〉

Each action-time pair (a, t) is composed of a durative action a ∈ A and a
scheduled start timestamp t ∈ R of a, and induces two events start-a and end-
a with associated timestamps t and t + d(a), respectively. Events start-a (resp.
end-a) is applied in the state st (resp. st+d(a)), st (resp. st+d(a)) being a state time-
stamped with t (resp. t + d(a)). Then, the temporal transition function γ can be
rewritten as: γ(s, a, t) = (γ(st, start-a), γ(st+d(a), end-a)). The transition function
γ(s, a, t) is defined if and only if: prec(a, s) ⊆ st, prec(a, e) ⊆ st+d(a) and ∀t′ such
that t ≤ t′ ≤ t + d(a) prec(a, o) ⊆ st′ .

Example 2.8 Let’s suppose that d(stack green blue right) = 1 and suppose that the
agent execute this durative action at t = 1, then the agent can execute (stack green blue
right) iff:

1. prec((stack green blue right), s) ⊆ s1.

2. prec((stack green blue right), e) ⊆ s2.

3. ∀1 ≤ t′ ≤ 2, prec((stack green blue right), o) ⊆ st′ .
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2.2.2.2 The PDDL 2.1 Language

Proposed by (Fox and Long, 2003), the PDDL 2.1 language is an extension of the
PDDL language modeling temporal features. As for PDDL, it expresses planning
problems in two files: (1) the planning domain file describing the operators and
(2) the planning problem file describing the initial state and the goal. We will see
how to define a planning domain and a planning problem using the PDDL 2.1
language through the Blocksworld example.

PDDL 2.1 Planning Domain File As for the PDDL, to declare a planning
domain we have to declare the name of the domain, the requirements, the types,
and predicates:

1 ( define ( domain blocksworld_temporal )
2 ( : requirements :dura t ive−ac t ions : typing )
3 ( : t y p e s block hand )
4 ( : p r e d i c a t e s
5 ( on ?x − block ?y − block )
6 ( ontable ?x − block )
7 ( c l e a r ?x − block )
8 ( handempty ?h − hand )
9 ( holding ?x − block ?h − hand )

10 )

Finally, the domain declaration contains the declaration of all planning
operators:

1 ( :durat ive−act ion s tack
2 :parameters ( ? x − block ?y − block ?h − hand )
3 :durat ion (= ? durat ion 1)
4 : condi t ion ( and
5 ( o v e r a l l ( holding ?x ?h ) )
6 ( a t end ( c l e a r ?y ) ) )
7 : e f f e c t ( and
8 ( a t end ( not ( holding ?x ?h ) ) )
9 ( a t end ( not ( c l e a r ?y ) ) )

10 ( a t end ( c l e a r ?x ) )
11 ( a t end ( handempty ? a ) )
12 ( a t end ( on ?x ?y ) ) ) )

The declaration of a planning operator contains the name of the operator
preceded by the keyword :durative-action, the duration preceded by the
keyword duration the set of parameters with types preceded by the keyword
:parameters and the precondition and the effects preceded by keywords
:condition and :effect. In our example, the condition means that to stack a block
x on a block y using the hand h, the agent has to hold the block x with its hand
h during the whole execution and the block y has to be clear at the end of the
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execution. At the end of the execution the block x is now clear and on the block
y and the agent no longer holds the block x and the block y is no longer clear.

PDDL 2.1 Planning Problem File Planning problems are declared in the same
way as for the PDDL language:

1 ( define ( problem example_temporal )
2 ( :domain blocksworld )
3 ( : o b j e c t s
4 red green blue − block
5 l e f t r i g h t − hand )
6 ( : i n i t
7 ( c l e a r red ) ( c l e a r green ) ( c l e a r blue )
8 ( ontable red ) ( ontable green ) ( ontable blue )
9 ( handempty r i g h t ) ( handempty l e f t ) )

10 ( : g o a l
11 ( on red green ) ( on green blue ) )

2.2.3 Hierarchical Planning

Until now, the goal of planning problems was declared using a set of
propositions. For example, for Blocksworld we had: {(on red green), (on green
blue)}. In addition, the agent could have a task to achieve. Unlike a goal defined
by a set of propositions, a task is defined by its name and its parameters. For
example, suppose there is a task "put the red block on the green block", then
the agent should find an action sequence to solve this task. One way to do
this would be to decompose this task into subtasks. It is HTN (Hierarchical Task
Network) planning that allows to declare these tasks and decompositions.

The HTN formalism is very expressive and used to express a wide variety
of planning problems. This formalism allows planners to exploit domain
knowledge to solve problems more efficiently (Nau et al., 2005) when planning
problems can be naturally decomposed hierarchically in terms of tasks and
task decompositions. In contrast to the classical STRIPS problem in which only
the action model needs to be specified, HTN problems require to specify the
task model. A task model can be primitive or compound. Primitive tasks are
described by classical actions. Compound tasks are described by HTN methods.
An HTN method describes the set of primitive and/or compound task required
to decompose a specific compound task.

2.2.3.1 Formal Framework

We will extends the classical formalization seen in Section 2.2.1.1 to fit with HTN
features. This extension is based on the notation of (Höller, 2021). Finally, we
consider only Totally Ordered task models.

25



Definition 2.6 An HTN planning problem P is a tuple
(L, C, A, S, M, s0, ωI , G, δ, σ, ζ) where:

• L is the set of logical propositions describing the environment.

• S ∈ 2L is the set of states.

• C is the set of compound tasks.

• A is the set of actions (or primitive tasks).

• M is the set of HTN methods.

• s0 ∈ S is the initial state.

• ωI ∈ {A ∪ C}∗ is the initial task network.

• G is the set of goal states.

• δ is the task model.

• σ : M→ C× {A ∪ C}∗ is the method decomposition function1.

• ζ : {A ∪ C}∗ × S→ {A ∪ C}∗ is the decomposition function.

As for STRIPS problems, L is a set of logical propositions describing the
environment states, S is a set of states, s0 ∈ S is the initial state, G ⊆ S is the
set of goal states, and preconditions, positive and negative effects are given by
the functions prec, add and del included in δ. A is the set of actions (or primitive
tasks) and C is a set of compound (or non primitive) tasks, with C ∩ A = ∅.

Example 2.9 For Blocksworld, A is composed of the following primitive tasks: {(pick-
up red),(pick-up green),(pick-up blue),(stack red green),. . . } and C is composed of the
following compound tasks:

• (do-clear red), (do-clear blue), (do-clear green): the agent has to clear the red (resp.
blue green) block.

• (do-on-table red), (do-on-table blue), (do-on-table green): the agent has to put on
the table the red (resp. blue green) block.

• . . .

Tasks are maintained in task networks. A task network is a sequence of
tasks. A task network is an element out of {A ∪ C}∗. Compound tasks can be
decomposed by methods. The set M contains all method labels. Methods are
defined by the function σ : M→ C× {A∪C}∗. A method m ∈ M is relevant for
a task c ∈ C if the method m allows to decompose the task c.

1* is the Kleene operator
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Figure 2.4: An example of HTN method decomposition.

Example 2.10 As example, Figure 2.4 gives the methods decomposition of the
task (do-put-on green blue). There are two relevant methods: (m0-do-put-on green
blue) and (m1-do-put-on green blue). The first one decomposes the task into an
empty task network: σ(m0-do-put-on green blue) = ((do-put-on green blue), ∅). The
second one decomposes the task into three subtasks: σ(m1-do-put-on green blue) =
((do-put-on green blue), 〈(do-clear green), (do-clear blue), (do-move green blue)〉).

A compound task c is decomposable in a state s if and only if there exists a
relevant method m ∈ M such that: σ(m) = (c, ω′) and prec(m) ∈ s. The function
ζ : {A ∪ C}∗ × S → {A ∪ C}∗ gives the decomposition function. For a totally
ordered task network ω = ω1tω2, ζ is defined as follows:

ζ(ω1tω2, s) =


ω1tω2 if t is a primitive task.
ω1ω′ω2 if t is a compound task and t is decomposable in γ(s, ω1).
∅ Otherwise.

Example 2.11 For Blocksworld, we have:

prec(m0-do-put-on green blue) = {(on green blue), (handempty)}
prec(m1-do-put-on green blue) = {(not(on green blue)), (handempty)}

Let’s take our initial state s0 and suppose the agent tries to decompose the compound
task (do-put-on green blue), we have prec(m0-do-put-on green blue) 6∈ s0 and
prec(m1-do-put-on green blue) ∈ s0, then ζ cannot decompose the task with the method
(m0-do-put-on green blue) but can decompose the task with the method (m1-do-put-on
green blue). Finally, we have:

ζ((do-put-on green blue), s0) = {(do-clear blue), (do-clear green), (do-move green blue)}
As ω1tω2 is a totally ordered task network, ω1 contains only primitive tasks.
Indeed, as the network is totally ordered, the compound tasks are decomposed
from left to right and therefore if we have to decompose t then ω1 contains only
primitive task.

We denote ω →∗ ω∗ that ω can be decomposed into ω∗ by 0 or more method
applications. Finally, ωI is the initial task network. More precisely, ωI is the
task network that must be decomposed to solve the planning problem. In our
example, ωI = {(do-put-on green blue), (do-put-on red green)}.

A solution to an HTN planning problem is a task network ω with:
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ωI

(do-put-on green blue)

(do-clear green) (do-clear blue) (do-move green blue)

∅ ∅ (pick-up green) (stack green blue)

(do-put-on red green)

(do-clear red) (do-clear green) (do-move red green)

∅ ∅ (pick-up red) (stack red green)

Figure 2.5: A solution task network for the Blocksworld example.

1. ωI →∗ ω, i.e. it can be reached by decomposing ωI .

2. ω ∈ A∗, i.e. all tasks are primitive.

3. γ(s0, ω) |= g, i.e. ω is applicable in so and results in a goal state.

Figure 2.5 gives a solution task network for our example.

2.2.3.2 The HDDL Language

Proposed by Höller et al. (2020), the HDDL language is an extension of the
PDDL language modeling HTN features. As for PDDL, it expresses planning
problems in two files: (1) the planning domain file describing the operators
and decomposition methods, and (2) the planning problem file describing the
initial state, the initial task network and the goal. We will see how to define a
planning domain and a planning problem using the HDDL language through
the Blocksworld example.

HDDL Planning Domain File As for PDDL, to declare a planning domain
we have to declare the name of the domain, the requirements, the types, and
predicates:

1 ( define ( domain blocksworld_htn )
2 ( : requirements : typing : h i e r a r c h y :method−preconditions )
3 ( : t y p e s block )
4 ( : p r e d i c a t e s
5 ( on ?x − block ?y − block )
6 ( ontable ?x − block )
7 ( c l e a r ?x − block )
8 ( handempty )
9 ( holding ?x − block )

10 )

Then, we declare all compound and primitive tasks with their parameters:

1 ( : t a s k do−put−on
2 :parameters ( ? x − block ?y − block ) )
3 ( : t a s k do−on−table
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4 :parameters ( ? x − block ) )
5 ( : t a s k do−move
6 :parameters ( ? x − block ?y − block ) )
7 ( : t a s k do−clear
8 :parameters ( ? x − block ) )
9 ( : t a s k pick−up

10 :parameters ( ? x − block ) )
11 ( : t a s k put−down
12 :parameters ( ? x − block ) )
13 ( : t a s k s tack
14 :parameters ( ? x − block ?y − blocks ) )
15 ( : t a s k unstack
16 :parameters ( ? x − block ?y − blocks ) )

Then, we declare HTN methods decomposing compound tasks:

1 ( :method m1−do−put−on
2 :parameters ( ? x − block ?y − block )
3 : t a s k ( do_put_on ?x ?y )
4 :precondit ion ( handempty )
5 :ordered−subtasks ( and
6 ( do−clear ?x )
7 ( do−clear ?y )
8 (do−move ?x ?y ) )
9 )

To declare an HTN method we declare its name preceded by the keyword
:method, its parameters preceded by the keyword :parameters, the task to
decompose preceded by the keyword :task, the precondition preceded by the
keyword :precondition and its subtasks preceded by the keyword :ordered-
subtasks.

Finally primitive tasks are declared as classical PDDL operators:

1 ( : a c t i o n pick−up
2 :parameters ( ? x − block )
3 :precondit ion ( and
4 ( c l e a r ?x ) ( ontable ?x ) ( handempty ) )
5 : e f f e c t ( and
6 ( not ( ontable ?x ) )
7 ( not ( c l e a r ?x ) )
8 ( not ( handempty ) )
9 ( holding ?x ) )

10 )

HDDL Planning Problem File Let’s now see how to describe a planning
problem. For the Blocksworld example we have:
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Figure 2.6: Human Effort for Action Model Acquisition.

1 ( define ( problem example_htn )
2 ( :domain blocksworld )
3 ( : o b j e c t s red green blue − block )
4 ( :h tn
5 :parameters ( )
6 :ordered−subtasks ( and
7 ( task1 (do−put−on green blue ) )
8 ( task2 (do−put−on red green ) ) )
9 )

10 ( : i n i t
11 ( c l e a r red ) ( c l e a r green ) ( c l e a r blue )
12 ( ontable red ) ( ontable green ) ( ontable blue )
13 ( handempty )
14 )
15 ( : g o a l
16 ( on red green ) ( on green blue )
17 )

As for PDDL, to declare the example problem we start by listing the different
objects of the problem (section identified by the keyword :objects). Then, we
declare the initial task network (section identified by the keyword :htn). Finally,
as for PDDL, we declare the initial state and the goal state.

2.3 Action Model Acquisition

As we have just seen, AI planning requires the declaration of an action model in
the form of a planning domain. To declare an action model we use a declarative
language such as PDDL. The classical way to declare action models is the
STRIPS formalism. As we have mentioned, STRIPS planning assumes several
assumptions. On the other hand, AI planning tools have been developed in
a wide range of real-world applications such as aerospace (Fisher et al., 2000;
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Backes et al., 2004; Bresina et al., 2005), autonomous vehicles (Urmson and
Whittaker, 2008), logistics (Cross and Walker, 1994), robotics (Dvorak et al., 2014;
Lallement et al., 2018; Liang et al., 2022), industry (Hoffmann et al., 2009). The
assumptions made by STRIPS are too restrictive for these tools. Modeling real-
world applications therefore requires to relax these assumptions and declare
action models with more expressive declarative language such as PDDL 2.1
or HDDL. However, the more expressive a declarative language is, the more
difficult it will be to hand-encode the planning domain. We must therefore
develop tools to facilitate action model acquisition (AMA). Figure 2.6 shows the
human efforts required for AMA.

A first approach to facilitate action model acquisition is the development of
knowledge engineering tools (KET). These tools provide support for consistency
and syntax error checking, domain visualization etc. Among them we can cite:
GIPO (Simpson, 2005), itSimple (Vaquero et al., 2007, 2013), JABBAH (González-
Ferrer et al., 2009), VIZ (Vodrázka and Chrpa, 2010), and EUROPA (Barreiro
et al., 2012). However, these tools require a lot of AI planning expertise and
background in software engineering (Shah et al., 2013).

The second approach for AMA consists in using machine learning (ML)
techniques. The rest of this section focuses on this approach.

2.3.1 Action Model Acquisition based on Machine Learning

Figure 2.7 shows the architecture of ML-based AMA approaches. A learning
algorithm takes as input a training dataset and returns an action model. This
training dataset can contain a set of execution traces, structured data, human
annotations and instructions, video etc. There are 3 main types of training
datasets (see Figure 2.8):

• Symbolic Execution Traces: Symbolic Execution Traces (SET) are action
sequences executed by the agent and are used by the majority of
approaches. Among them we can cite ARMS (Yang et al., 2007), FAMA
(Aineto et al., 2019), LSONIO (Mourão et al., 2012), OBSERVER (Wang,
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1995) etc. These traces are called symbolic because we have the name of the
action and its parameters, for example the following plan is a SET:

〈(pick-up green), (stack green blue), (pick-up red), (stack red green)〉
In addition to the action sequences, SET also contain the states of the
environment observed during the execution of the actions. Again we have
a symbolic representation of these states, usually in the form of a set of
logical propositions. Two reasons make the SET acquisition difficult: (1)
it is necessary to generate, execute the action sequences and store the
execution traces (2) it is necessary to parse the execution traces in order
to obtain SET.

• Action Model: Some approaches take as input an action model. Among
them, we can cite OpMaker (McCluskey et al., 2002), RIM (Zhuo et al.,
2013), LIVE (Shen, 1993), EXPO (Gil, 1994), PELA (Celorrio et al., 2008).
In addition to the action model, these approach takes as input symbolic
execution traces. For these approaches, the ML techniques aim to correct
and refine this action model. The input action model is usually obtained
in two different ways, (1) it is assumed that the action model has been
hand-encoded and the approach should only allow maintaining this action
model, this is for example the case for the RIM algorithm which refines the
action model, (2) it is assumed that the action model have been acquired
using KET, and then ML techniques are used to correct and improve the
action model. This is for example the case for the OpMaker approach: a
STRIPS action model is generated using GIPO, and then OpMaker corrects
the preconditions and effects and adds HTN methods.

• Raw Data: Raw data are execution traces which are not parsed into SET.
This data can be verbal instructions (Miglani and Yorke-Smith, 2020),
images (Asai, 2019), graph (Bonet and Geffner, 2020), human annotations
(Zhuo, 2015).

Although SET are not the easiest inputs to acquire, most of learning algorithms
take SET as input and we focus on these approaches.
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2.3.1.1 ML-based AMA approaches using Symbolic Execution Traces

We are interested in algorithms for learning action models. We start by
presenting the different criteria to categorize them.

Input There mainly exist two kinds of SET:

• Goal Oriented: Goal Oriented execution traces are plan traces, i.e. action
sequences solving a given task. The main drawback of this kind of
execution trace is that Goal Oriented execution traces are biased by the
task solved. As execution traces are biased, there is a significant risk of
overfitting.

• Random Walk: Random Walks are randomly generated action sequences.
Random walks are generally generated either by directly testing actions
in the environment or by querying an oracle. This approach has two
advantages: (1) it limits the learning bias since the learning set is randomly
generated, and (2) allows to exploit not only information about feasible
sequences of actions but also information about infeasible sequences of
actions.

In addition to the action sequences, execution traces usually contain
observations of the different states of the environment. As seen previously,
these states are sets of logical propositions. For example, the initial state of the
Blocksworld problem will be represented as follows:

{(ontable red), (ontable green), (ontable blue), (clear red),
(clear green), (clear blue), (handempty)}

These observations can be partial and noisy. A partial observation is an
observation where some propositions are missing:

{(ontable red), (clear green), (clear blue), (handempty)}
and a noisy observation is an observation where some propositions are
misjudged:

{(ontable red), (clear green), (clear blue), (handempty), (on green red)}
Finally, let us note that there are some algorithms having no state observation.

Machine Learning Techniques We will review the different ML techniques
used for the action models acquisition.

• Induction: The learning approach takes as input a hypothesis space H
and a training dataset Ω. The desired output is an hypothesis h from
the hypothesis space H compatible with the dataset. Inductive techniques
allow to identify patterns and generalize examples (Genesereth and
Nilsson, 1988).
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• Max-Sat: A weighted Max-Sat (maximum satisfiability) (Kautz and
Selman, 1996; Borchers and Furman, 1998) problem can be stated as
follows: given a collection of m clauses C: (C1, . . . , Cm) each clause
being a disjunction of logical variables, with a weight wi of each clause,
the learning approach tries to find the value of the logical variables
maximizing the total weight of the satisfied clauses in C.

• Probabilistic graphical models: Probabilistic graphical models (PGM)
(Pearl, 2014) are directed or undirected graphs. Each vertex represents
a random variable and each edge represents a dependency of these
variables.

• Markov Logical Network: A Markov Logical Network (MLN)
(Richardson and Domingos, 2006)) is a combination of first-order
logic and probabilistic graphical models. It is a first-order knowledge base
composed of weighted formulas. It can be assimilated to a model used to
build Markov networks.

• Kernel Trick: The kernel trick allows to use a linear classifier to solve a
nonlinear problem. The key idea is to transform the representation space
of the input data into a higher dimensional space, where a linear classifier
can be used (Boser et al., 1992).

• Genetic Algorithm: A genetic algorithm is an iterative algorithm that will
evolve a population of individuals, i.e. a set of candidates, until finding
the optimal individual, i.e. the individual maximizing the fitness score
(Mitchell, 1998).

• Recurrent Neural Network: Recurrent neural networks (RNN) (Jordan,
1997) allows to solve the sequence labeling problem efficiently. These
neural networks are trained to associate each term of a sequence with a
set of grammatical labels.

• AI Planning: The model to learn is represented by a planning problem
with conditional effects. This planning problem is then solved by a planner
and the model is built from the solution plan (Bonet et al., 2009).

• Reinforcement Learning: Reinforcement learning (RL) consists, for an
agent, to learn actions from experiences in order to optimize a reward. The
agent chooses the next action according to its current state. In return, the
environment provides a positive or negative reward. The agent’s goal is to
find the policy that maximizes the reward function (Sutton, 1988).

• Constraint Satisfaction Problems: Constraint Satisfaction Problems (CSP)
are optimization problems where we look for states satisfying several
given constraints (Tsang, 1993).
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Output The output is the action model. As we have seen in the previous
section, there are several planning frameworks. The classical framework
is STRIPS. STRIPS planning is based on restrictive assumptions. Some
assumptions assumed by STRIPS can be relaxed. For example, HTN planning
allows to declare, in addition to a goal state, a set of tasks to achieve. Temporal
planning allows to declare actions whose execution can be concurrent. Although
this thesis focuses on STRIPS, temporal and HTN planning, we can note that
other formalisms exist, such as ADL (Pednault, 1994), allowing to declare more
expressive action models: logical quantifier, conditional effects etc and multi-
agent planning (Brenner, 2003) allowing to declare models where several agents
interact.

Performances In practice, to learn action models, learning datasets are
generated using action models from the International Planning Competition
(IPC)2. This allows to test the approaches on a wide variety of actions models.
Moreover, this action model benchmark is also used to test the quality of the
learned action models. There are three main ways to measure the performance
of the learning approach (see Figure 2.9):

• Syntactical: A syntactical evaluation simply compares the "ground truth"
action model, i.e. the IPC action model with the learned action model.
Usually by comparing the preconditions and effects of these action models.

• Semantic: A semantic evaluation allows to check some properties of an
action model. Generally, a semantic evaluation is done using a testing
dataset and will allow to check that there is no extra precondition or effect,
that feasible (resp. infeasible) sequences with the ground truth action
model are also feasible (resp. infeasible) with the learned action model etc.

• Accuracy: The accuracy evaluates the ability of the learned action model
to be used by a planner to solve new planning problems, without a

2https://www.icaps-conference.org/competitions/
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Algorithm Input ML Techniques Eval
Traces Environment Noise Syn Sem Acc

OBSERVER Wang (1995) GO FO Induction •
OLAM Lamanna et al. (2021a) GO FO Induction •

AIA Verma et al. (2021a,b) GO FO Induction •
SRMLearn Arora et al. (2017) GO FO Max-Sat •
SLAF Shahaf and Amir (2006) GO PO Induction •

ARMS Yang et al. (2007) GO PO Max-Sat • •
AMAN Zhuo and Kambhampati (2013) GO PO PGM • •

PDeepLearn Arora et al. (2018b) GO PO RNN •
Louga Kucera and Barták (2018) GO PO Genetic •

FAMA Aineto et al. (2019) GO PO AI Planning •
Plan-Milner Segura-Muros et al. (2018) GO PO • Induction •

AMDN Zhuo et al. (2019) GO FO • Max-Sat • •
LOCM Cresswell et al. (2013) GO NO Induction •

LOCM2 Cresswell and Gregory (2011) GO NO Induction •
LOP Gregory and Cresswell (2015) GO NO Induction •

ERA Balac et al. (2000a) RW FO RL •
LOPE Garcia-Martinez and Borrajo (2000) RW FO RL •

MARLIE Croonenborghs et al. (2007) RW FO RL •
IRALe Rodrigues et al. (2010a,b) RW FO • RL • •

LSO-NIO Mourão et al. (2012) RW PO • Kernel •

(a) STRIPS learning algorithms
Algorithm Input ML Techniques Output Eval

Traces Environment Noise Prim Methods Prec Syn Sem Acc
HTN-Maker Hogg et al. (2008) GO FO Induction • •

HTN-MakerND Hogg et al. (2009) GO FO Induction • •
Xiaoa et al. (2019) GO FO Induction • •
Hogg et al. (2010) GO FO Induction • •

LHTNDT Nargesian and Ghassem-Sani (2008) GO FO Induction • •
CAMEL Ilghami et al. (2002, 2005) GO FO Induction • • •

HDL Ilghami et al. (2006) GO FO Induction • • •
Garland and Lesh (2003) GO PO Induction • •

HTN Learner Zhuo et al. (2009) GO PO Max-Sat • • • •

(b) HTN learning algorithms. This Table also present the output: Primitive Task Model,
the set of HTN Methods and the HTN Methods preconditions.

Table 2.1: State-of-the-art of ML-based PDA approaches. From left to right:
the kind of trace: Goal Oriented or Random Walk, the environment: Fully
Observable, Partially Observable or Non Observable, the robustness to noise in
observations, the ML techniques used, the evaluation method used: Syntactical,
Semantic or Accuracy.

proofreading step by a planning expert. In this thesis, we argue that the
accuracy is the most important evaluation method.

2.3.1.2 State-of-the-art of the ML based AMA approaches

We now present the different approaches according to their output, this section
is summarized by Table 2.1. Since this thesis focuses on the learning of STRIPS,
HTN and temporal action models, we focus on these action models.

STRIPS Action Model Learning A first group of approaches takes GO
execution traces as input. Most of them deals with partial observations (except
Observer (Wang, 1995) and OLAM (Lamanna et al., 2021b) that needs complete
observations). Among these approaches are ARMS (Yang et al., 2007), Louga
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(Kucera and Barták, 2018), SRMLearn (Arora et al., 2017), AIA (Verma et al.,
2021a,b) or FAMA (Aineto et al., 2019). Among these works, the ARMS
system is the most known. It gathers knowledge on the statistical distribution
of frequent sets of actions in the GO execution traces. Then, it forms a
weighted propositional satisfiability problem (weighted SAT) and solves it with
a weighted MAX-SAT solver. Unlike ARMS, SLAF is able to learn actions with
conditional effects, i.e. effects applied if several conditions are satisfied. To that
end, SLAF relies on building logical constraint formula based on a direct acyclic
graph representation. FAMA takes as input partial GO execution traces, i.e. GO
execution traces where some actions are missing, and observations are partial.
This algorithm turns the task of learning into a planning problem, and it resolves
it by using a classical planner. The AIA algorithm learns action models by
using a query system. It generates plans and queries a black-box AI system
with these plans to test them and updates its action model from the black-box
responses. Then, The SRMLearn algorithm uses an alternative representation of
input state-action relationships to learn an output action model. It represents a
set of dependencies, intra-action and inter action, in the form of constraints of
a weighted maximum satisfiability problem. These constraints are then solved
with a weighted MAX-SAT solver. Then, the PDeepLearn algorithm is divided
into three parts (1) PDeepLearn enumerates all possible candidate action
patterns, (2) PDeepLearn identifies frequent action pairs and (3) PDeepLearn
labels the action sequences in order to identify the ideal pattern. Then, the
Louga (Kucera and Barták, 2018) algorithm uses a genetic algorithm to learn the
effects, and an ad-hoc algorithm to learn the preconditions. Finally, the LOCM
family of action model learning approaches (Cresswell et al., 2013; Cresswell
and Gregory, 2011; Gregory and Cresswell, 2015) works without information
about initial, intermediate and final states. These algorithms extract, from GO
execution traces, parameterized automata representing the behaviour of each
object of the planning problems. Then, preconditions and effects are generated
from these automata.

The second group of approaches takes as input random walks, i.e. sets
of randomly generated action sequences. Random walk approaches like ERA
(Balac et al., 2000a,b) and MARLIE (Croonenborghs et al., 2007) deal with
complete and noiseless observations and use reinforcement learning techniques.
Also, approaches like IRALe (Rodrigues et al., 2010a) deal with complete but
noisy observations. IRALe is based on an online active algorithm to explore
and to learn incrementally the action model with noisy observations. Other
approaches such as LSONIO (Mourão et al., 2012) deal with both partial and
noisy observations. LSONIO uses a classifier based on a kernel trick method
to learn action models. It consists of two steps: (1) it learns a state transition
function as a set of classifiers, and (2) it derives the action model from the
parameters of the classifiers.

Temporal Action Model Learning Some approaches have been proposed to
learn temporal features (Gabel and Su, 2010; Neider and Gavran, 2018; Gaglione
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et al., 2021; Shah et al., 2018), only Garrido and Jiménez (2020) proposed an
approach learning temporal action models.

HTN Task Model Learning: These approaches can be classified according to
the output data of the learning process. The output can be the primitive task
model, the set of HTN Methods and HTN Methods preconditions. Also, all these
approaches take as input GO execution traces. A first group of approaches only
learns the set of HTN Methods. First of all, Xiaoa et al. (2019) take as input a set
of GO execution traces and HTN Methods and propose an algorithm to update
incomplete HTN Methods by task insertions. HTN-Maker (Hogg et al., 2008)
and HTN-MakerND (Hogg et al., 2009) takes as input plan trace generated from
STRIPS planner and annoted task provided by a planning expert. An annoted
task is a triplet (n, Pre, E f f ) where n is a task, Pre is a set of propositions known
as the preconditions and E f f is a set of atoms known as the effects. Then, Hogg
et al. (2010) proposed an algorithm based on reinforcement learning. Then, Li
et al. (2014) proposed an algorithm taking as input only GO execution traces.
This algorithm builds, from GO execution traces, a context free grammar (CFG)
allowing to regenerate all plans. Then, methods are generated using CFG: one
method for each production rule in the CFG. Then, Garland and Lesh (2003)
and Nargesian and Ghassem-Sani (2008) proposed to learn HTN Methods from
annotated plan. Annotated plans are plans segmented with the different tasks
solved. However, obtaining these annotated examples is difficult and needs a lot
of human effort.

A second group of approach learns HTN Methods preconditions. First of
all, the CAMEL algorithm (Ilghami et al., 2002) learns HTN Methods and
the preconditions of HTN Methods from observations of GO execution traces,
using the version space algorithm. This approach uses annotated task to build
incrementally HTN Methods with preconditions. Then, the HDL algorithm
(Ilghami et al., 2006) takes as input GO execution traces. For each decomposition
in GO execution traces, HDL checks if there exist a method responsible of this
decomposition. If not, HDL adds a new method and initializes a new version
space to capture its preconditions. Preconditions are learned in the same way as
in the CAMEL algorithm.

Only HTN-Learner proposes to learn both action model and HTN Methods
from decomposition trees. A decomposition tree is a tree corresponding to the
decomposition of a method.

Although we focus on algorithms learning STRIPS, HTN and temporal action
models, we can note that some approaches have also been proposed to learn ADL
action models (Shahaf and Amir, 2006; Zhuo et al., 2010a), numerical features
(Martínez et al., 2015; Gregory and Lindsay, 2016; Segura-Muros et al., 2018)
and multi-agent action models (Zhuo et al., 2011).
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2.4 Conclusion

In this chapter, we introduced the AI planning concepts used in the development
of this thesis and the literature related to these concepts. First of all, we presented
the classical concepts of AI planning. Next, we presented three AI planning
frameworks: (1) classical STRIPS planning and the PDDL language, (2) temporal
planning and the PDDL 2.1 language and finally (3) hierarchical planning and
the HDDL language. We have seen that these languages allow to declare the
action models in the form planning domains. We then showed how to obtain
these action models and we focused on ML-based approaches.

The ML-based approaches presented in this chapter have several drawbacks.
The main drawback of these algorithms is that the learned action models are
usually not correct enough to be usable by planners. The majority of the learning
algorithms proposed so far do not provide any results on the ability of the
learned action models to solve new problems, and a proofreading step of the
learned action models is almost always required to correct errors. Moreover,
most of the presented algorithms require GO execution traces, while we have
seen that this kind of traces has the disadvantage to be biased. Finally, it is
important that the learning algorithms are able to learn action models with
partial and noisy observations. Indeed, in most cases these observations will
be obtained using sensors, it is therefore possible that these different sensors
cannot observe the environment in its entirety and it is also possible that there
is noise in the observations due to the imprecision of these sensors.

As we have mentioned in this chapter, a planning problem can be seen
as the search for a path in a state machine. Moreover, state machines are
equivalent to automata. As we will see in the next chapter, an automaton allows
to represent a grammar. We will see in the second part of this thesis that STRIPS
planning problems can be represented using regular grammars. It is therefore
possible to learn a regular grammar representing the state machine related to a
planning problem. This is the basis of our approach: learning the state machine
related to the planning problem using Regular Grammar Induction algorithms
(see Chapter 3) and inducing the action model from this grammar. Finally, as
planning problems are declared using a planning domain, our approach will
have to represent the action model in the form of a planning domain, and
more precisely, in the form of a set of planning operators. We will also see
that it is possible to extend this approach for planning problems relaxing some
assumptions made by STRIPS planning.

Before presenting our contributions in more details, we will give in the next
chapter an introduction to the regular grammar induction field.

39



40



Chapter 3

Regular Grammar Induction
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3.1 Introduction

We are interested in learning structural patterns that can be described by a
grammar. A grammar describes how to form strings, i.e. sequences of symbols,
belonging to a language. This problem belongs to the grammatical induction
field. Grammatical induction is the process of discovering an acceptable
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grammar for a language from a training dataset. This dataset consists of at least
one positive sample, i.e. a finite subset of a language. Grammatical induction is
therefore the process of discovering a grammar from a language containing
at least all the elements of the positive sample. We can also have a negative
sample, i.e. a finite set of sequences not belonging to the language. In this case,
grammatical induction is the process of discovering a grammar from a language
containing at least all the positive sample and containing no element of the
negative sample.

Grammatical induction has been studied since the development of the
theory of formal grammars. Besides its theoretical interest, it offers a set of
potential applications, in particular in the fields of Syntactic and Structural
Pattern Recognition, Natural Language Processing (Adriaans and van Zaanen, 2004;
Dupont et al., 2008; Boström, 1996; Boström, 1998; Cruz-Alcázar and Vidal,
1998; Bex et al., 2006; Cruz-Alcázar and Vidal, 2008; Stein et al., 2006; Bréhélin
et al., 2001; Raffelt and Steffen, 2006; Berg et al., 2006). We will limit ourselves
to regular induction, i.e. the learning of a grammar representing a regular
language. Indeed, as we will see in the next part, planning problems can be
represented by regular grammars.

In this chapter we present the different notions of automata theory useful
for grammatical induction. Once these notions are presented we give the formal
framework of grammatical induction. More precisely, we will present the notion
of identification in the limit and the search space explored by the regular grammar
induction algorithms. Finally we present several approaches to grammatical
induction. And more precisely, we are interested in regular grammar induction
algorithms using positive and negative examples, because they allow us to learn
regular languages in the limit.

Please note that for the sake of coherence and consistency with the rest of
this thesis, we will not use traditional notations.

3.2 Definitions and Notations

We start by introducing the basic notions of automata theory. These notions will
be useful to give the formal framework of grammatical induction.

3.2.1 Basic Notions of Automata Theory

We denote A a finite non-empty alphabet, i.e. the set of symbols present in the
language. Then, we denote u, v, w the elements of A∗, i.e. the sequences of finite
length on A. Finally, we denote |u| the length of the sequence u and ε the empty
sequence.

Definition 3.1 u is a prefix of v if there exists w such that uw = v.

Definition 3.2 u is a suffix of v if there exists w such that wu = v.
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Example 3.1 Let’s take the alphabet A = {a, b}, with the sequence v = aababbba. The
sequence u = aaba is a prefix of v and w = bbba is a suffix of v.

Definition 3.3 A language L is a subset of A∗.

Example 3.2 Let L = (a∗ba∗b)∗ be the language accepting an even number of b, all
sequences u such that u contains an even number of b belong to the language L (denoted
u ∈ L). Every sequence u such that u contains an odd number of b do not belong to the
language L (denoted u 6∈ L). In our example, we have abbbab ∈ L and abbab 6∈ L.

In the rest of this chapter, we denote Leven the language accepting an even
number of b.

Definition 3.4 Let Pr(L) = {u|∃v, uv ∈ L} be the prefix set of L and L/u =
{v|uv ∈ L} be the right quotient of L. We have L/u 6= ∅ if and only if u ∈ Pr(L).

Example 3.3 Let’s continue with our example, we have v = abbaaabba ∈ Leven, u =
ab is a prefix of v and w = ba is a suffix of v. Also, we have ab ∈ Pr(Leven) and the
right quotient is: Leven/ab = a∗b(a∗ba∗b)∗.

3.2.2 Regular Grammar

A regular grammar (RG) is a grammar describing regular language (Yu, 1997).
An RG can be right or left:

• A right RG has the form:

• S→ aS′

• S→ a

• S′ → a

• S′ → aS

• A left RG has the form:

• S→ S′a

• S→ a

• S′ → a

• S′ → Sa

where S and S′ are non-terminal symbols, and a is a terminal symbol. A terminal
symbol is a symbol belonging to the alphabet A and a non-terminal symbol is a
which can be replaced according to the above rules.

Property 3.1 An RG can be represented as a Deterministic Finite Automaton (DFA)
where states are non-terminal symbols and transitions are terminal symbols.
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Figure 3.1: A first example of automaton: Σeven accepting the even language
Leven.

The notion of DFA will be discussed in Section 3.2.3.

Example 3.4 Let’s take as example the following right RG:

• S0 → ε

• S0 → a

• S0 → aS0

• S0 → bS1

• S1 → bS0

• S1 → b

• S1 → aS1

This right RG accepts the even language Leven and can be represented by the DFA in
Figure 3.1.

In the rest of this chapter, we denote Σeven this DFA accepting the even language
Leven.

3.2.3 Automata and Partitions

3.2.3.1 Automata

Definition 3.5 An automaton is a tuple Σ = (S, A, γ, s0, G) where S is a finite state
set, A is a finite alphabet, γ is a transition function such that S× A→ S, s0 ∈ S is the
initial state and G ⊆ S∗ is the goal state set.

Informally, an automaton is a set of states, linked together by transitions
labeled by symbols. Given a sequence as input, the automaton reads the symbols
of the sequence one by one and goes from state to state according to the
transitions. The sequence read is either accepted by the automaton or rejected. A
sequence is accepted if the automaton can read all the symbols of the sequence,
and if the last state reached is a goal state.
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Definition 3.6 A DFA is a finite automaton whose transitions are deterministic, i.e.
for each state, there is a unique transition for a read symbol.

Definition 3.7 Let γ : S× A∗ → S be the transition function extended to sequences.
This function returns the last reached state by the automaton after reading the sequence
from a given state. This function is defined as follows:

∀s ∈ S, ∀u ∈ A∗, γ(s, u) =
{

s if u = ε.
γ(γ(s, u′), a) if u = u′a.

We can formally define the acceptation of a sequence u by an automaton Σ:
it accepts a sequence u if and only if γ(s0, u) ∈ G. Finally, the set of sequences
accepted by an automaton Σ is denoted L(Σ) and the language accepted by Σ is
defined as follows:

L(Σ) = {u ∈ A∗ s.t. γ(s0, u) ∈ G}.

Example 3.5 Let’s take the automaton in Figure 3.1. In this example, the automaton
states are S = {0, 1}. Then, the alphabet is A = {a, b}. Then, the transition function
is represented by arcs connecting two states. For example, we have γ(0, b) = 1. Then,
the goal state is: G = {0} and the initial state is s0 = 0. This automaton accepts
the sequence abba because γ(0, abba) = 0 ∈ G and rejects, i.e. does not accept, the
sequence abbaba because γ(0, abbaba) = 1 6∈ G. Finally, we have abba ∈ L(Σ),
abbaba 6∈ L(Σ).

A same language can be accepted by several automata. Nevertheless, in the
field of grammatical induction, there is a form of automaton of particular interest
to us: the minimal canonical automaton A(L)1. Informally, A(L) is the smallest
automaton accepting the language L. For example, let’s take the even language
Leven. The automaton in Figure 3.2a gives its minimal canonical automaton. And
Figure 3.2b shows another automaton, non canonical, accepting this language.
We note that if we merge states 1 and 2 of the automaton in Figure 3.2b we obtain
the automaton in Figure 3.2a. This merge is a derivation of the automaton3.2b.

3.2.3.2 Quotient Automata

Let’s go back to the automata in Figures 3.2a and 3.2b. Let’s assume that we
have S = {0, 1, 2}, we denote Πi = {{0}, {1, 2}} and Πj = {{0}, {1}, {2}}
two sets of subsets of S. We call these sets partitions. Πi is the partition of S for
the automaton in Figure 3.2a and Πj is the partition of S for the automaton in
Figure 3.2b. Both automata share the same state set S but Figure 3.2a considers
that states 1 and 2 are the same state, while Figure 3.2b considers them as distinct
states. The subsets of these partitions are called blocks. For Πi blocks are: {0} and
{1, 2}. And for Πj blocks are: {0}, {1} and {2}. We can note that Πi is smaller
than Πj. Indeed, Πi contains two blocks while Πj contains three blocks. This is

1We will give a formal definition in Section 3.2.3.3
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(a) The minimal canonical automaton
accepting an even number of b.
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(b) An automaton accepting an even
number of b.

Figure 3.2: Several automata accepting an even number of b.

due to Πi being finer than Πj. A partition Πi is finer than a partition Πj when
all blocks of Πi are either a block or the union of several blocks of Πj. Finally,
we can note that, when we merge the blocks {1} and {2} of Πj, we obtain the
automaton 3.2a. The automaton 3.2a is the quotient automaton of 3.2b w.r.t. the
partition Πi.

We will now formally define these different notions.

Definition 3.8 For any set S, a partition Π is a set of subsets of S, non-empty and
disjoint two by two whose union is S. If s ∈ S then B(s, Π) is the single block of Π
containing s.

Definition 3.9 A partition Πi is finer than a partition Πj if each block of Πj is either a
block of Πi or the union of several blocks of Πj.

Definition 3.10 Let Σ = (S, A, γ, s0, G) be an automaton. The automaton Σ/Π =
(S′, A, γ′, B(s0, Π), G′) is derived from Σ w.r.t. the partition Π, and is called the
quotient automaton Σ/Π. This automaton is defined as follows:

S′ = S/Π = {B(s, Π)|s ∈ S},
G′ = G/Π = {B(g, Π)|g ∈ G},
γ′ = S′ × A→ 2S′ : ∀s′i, s′j ∈ S′, ∀a ∈ A, s′j ∈ γ′(s′i, a) iff

∃si, sj ∈ S s.t. s′i ∈ B(si, Π) ∧ s′j ∈ B(sj, Π) ∧ sj ∈ γ(si, a).

3.2.3.3 Samples of a Language and Associated Automata

Before giving the formal framework of regular grammatical induction (RGI), we
will define what a sample is and give some remarkable automata used in the
RGI field.

Definition 3.11 A positive sample, denoted I+, is a finite subset of sequences of the
language L.
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Figure 3.3: The maximal canonical automaton with I+ = {a, abb, bab}.

Definition 3.12 A negative sample, denoted I−, is a finite subset of sequences of the
language L, the complement of L: L = A∗ \ L.

Example 3.6 Let’s go back to the even languageLeven. The complement of this language
is L = {a∗ba∗{a∗ba∗ba∗}∗}; the language accepting an odd number of b. A positive
sample of Leven could be I+ = {a, abb, abbabb, . . .} and a negative sample could be
I− = {b, babb, bbb, . . .}.

Definition 3.13 A positive sample I+ is structurally complete (Fu and Booth, 1975) to
the automaton Σ accepting the language L if there exists an acceptation of I+ such that
all automaton’s transitions are used and all goal states of G are used as goal states.

Example 3.7 Let’s go back to the automaton Σeven (see Figure 3.1) accepting the even
language Leven. The positive sample I+ = {ε, a, abb, abab} is structurally complete but
the positive sample I+ = {ε, a, abb} is not structurally complete because the transition
γ(1, a) is not used.

Now that we have given the definitions related to sampling, we will give
some remarkable automata used for regular grammar induction.

Definition 3.14 The maximal canonical automaton w.r.t I+, denoted MCA(I+), is
defined as follows:

S = {Si,j|1 ≤ i ≤ |I+|, 1 ≤ j ≤ |vi|, vi,j = ai,1, ai,2, . . . , ai,j} ∪ {ε},
s0 = ε,
G = I+,
γε, a = {ai,1|ai,1 = a, 1 ≤ i ≤ |I+|},
γ(vi,j, a) = {vi,j+1|vi,j+1 = vi,ja, 1 ≤ i ≤ |I+|, 1 ≤ j ≤ |vi| − 1}.

Example 3.8 Suppose we have I+ = {a, abb, bab}. The alphabet is A = {a, b}. The
state set is:

S = {Si,j|1 ≤ i ≤ |I+|, 1 ≤ j ≤ |vi|, vi,j = ai,1, ai,2, . . . , ai,j} ∪ {ε},
= {Si,j|1 ≤ i ≤ |{a, abb, bab}|, 1 ≤ j ≤ |vi|, vi,j = ai,1, ai,2, . . . , ai,j} ∪ {0},
= {1, 2, 3} ∪ {4, 5} ∪ {6, 7} ∪ {0} = {0, 1, 2, 3, 4, 5, 6, 7}.

Then, s0 = 0. Then, goal states are states defined by the last symbol of each example then
G = {1, 6, 7}. Then, we build transition starting from the initial state s0: γ(0, a) =
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Figure 3.4: The prefix tree acceptor with I+ = {a, abb, bab}.
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Figure 3.5: The universal automaton for A = {a, b}.

{1, 2}, γ(0, b) = {3}. Finally, we add all transitions : γ(2, b) = 4, γ(3, b) = 5
etc. Figure 3.3 gives the MCA({a, abb, bab}). Therefore, L(MCA(I+)) = I+ and
MCA(I+) is the bigger automaton (possibly non-deterministic), i.e. the automaton with
the maximal number of states, for which I+ is structurally complete. We can note that
MCA(I+) is possibly non-deterministic.

Definition 3.15 The prefix tree acceptor of I+, denoted PTA(I+) is the automaton
MCA(I+)/Π where the partition Π is defined as follow:

∀s, s′ ∈ S, B(s, Π) = B(s′, Π) i f f Pr(s) = Pr(s′).

Less formally, the PTA(I+) is the determinization of MCA(I+). Then, to build
PTA(I+) we merge all states sharing the same prefix. Therefore, L(PTA(I+)) =
I+ and PTA(I+) is the biggest DFA, i.e. the DFA with the maximal number of
states, for which I+ is structurally complete.

Example 3.9 Suppose we have I+ = {a, bab, abb}. The set state is
S = {0, 1, 2, 3, 4, 5, 6, 7} and the partition after merging is Π =
{{0}, {1, 2}, {3}, {4}, {5}, {6}, {7}}. Figure 3.4 gives the PTA({a, abb, bab}).

Definition 3.16 The universal automaton of the alphabet A, denoted UA, is the
automaton accepting the language A∗.

Example 3.10 Figure 3.5 gives the universal automaton for A = {a, b}.

Definition 3.17 The automaton A(L) is the smallest automaton for the language L.
A(L) is called the minimal canonical automaton of L and is defined as follows:

S = {L/u|u ∈ Pr(L)},
s0 = L/ε,
G = {L/u|u ∈ L},
γ(L/u, a) = L/ua, ua ∈ Pr(L).

Example 3.11 Let’s take the the even language Leven. The alphabet is A = {a, b}, the
state set is build using prefixes : S = {0, 1}, we have s0 = 0 and G = {0}. Finally, we
build the transition function: γ(0, a) = 0, γ(0, b) = 1 etc. Figure 3.6 gives Σeven, the
minimal canonical automaton accepting Leven.
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Figure 3.6: Σeven: The minimal canonical automaton accepting Leven.

3.3 Regular Grammatical Induction

Now that we have seen the different notions around the theory of automata used
for regular grammatical induction (RGI), we will give the formal framework of
RGI. First of all, we will describe the notion of identification in the limit (Gold,
1967). An RGI algorithm identifies a language L in the limit, if, from a finite
set of training data, this algorithm identifies L, and, if we add more data,
continues to identify L. We will show in this section that all regular languages
are identifiable in the limit when the training datasets contain both positive
and negative examples. Then, we will introduce the search space used by RGI
algorithms dealing with both positive and negative examples.

3.3.1 Identification in the limit

We will introduce the notion of identification in the limit.
Suppose we have an infinite ordered set of positive examples, including any

element of our language L, and an infinite set of negative examples including
any element of the complement language. And let us denote ωi the ith training
data, with ωi either a positive or a negative example. Let us also assume that
we have H the hypotheses space, i.e. the set of hypotheses. An hypothesis is a
possible concept or model for the training datasets. For example, in the context
of grammar induction, the set of hypotheses could the set of automata accepting
the positive sample. Also, we denote H(ωi) the set of correct hypotheses after
reading the first i training data, i.e. the set of hypotheses covering all the first i
training data.

Let’s step out of the RGI framework for a moment. Suppose we want
to identify a set of numbers with the following training dataset: Ω =
{{0, 1}, {1, 1}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 0}, {8, 1} . . .} with H =
{N, even, odd, Fibonacci} our hypotheses space.

• ω0 = 0 is a positive example: Several hypotheses can identify a set
beginning by 0, the set of natural integers N, the Fibonacci sequence, the
set of even integers. Only the odd hypothesis is incorrect.

• ω1 = 1 is a positive example: We have H(ω1) = {N, Fibonacci}. Both even
and odd hypotheses are incorrect.

• ω2 = 2 is a positive example: We have H(ω2) = {N, Fibonacci}. Both even
and odd hypotheses are incorrect.
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• ω3 = 3 is a positive example: We have H(ω3) = {N, Fibonacci}. Both even
and odd hypotheses are incorrect.

• ω4 = 4 is a negative example: We have H(ω4) = {Fibonacci}. The
Fibonacci sequence in the only correct hypothesis.

• ω5 = 5 is a positive example: We have H(ω5) = {Fibonacci}. The
Fibonacci sequence in the only correct hypothesis.

• ω6 = 6 is a negative example: We have H(ω6) = {Fibonacci}. The
Fibonacci sequence in the only correct hypothesis.

• ω7 = 7 is a negative example: We have H(ω7) = {Fibonacci}. The
Fibonacci sequence in the only correct hypothesis.

• ω8 = 8 is a positive example: We have H(ω8) = {Fibonacci}. The
Fibonacci sequence in the only correct hypothesis.

We notice that from ω4 only the Fibonacci hypothesis is correct, and this
hypothesis remains correct after adding all positive and negative examples. This
is the identification in the limit. Now that we have seen an introductory example
about the notion of identification in the limit, we will formally introduce this
notion.

Definition 3.18 A positive presentation of a language L is an infinite set of examples
with at least one occurrence of each element of L. These elements are the positive
examples of the language L.

Definition 3.19 A negative presentation of a language L is an infinite set of examples
with at least one occurrence of each element of the complement language L. These
elements are the negative examples (or counter examples) of the language L.

Definition 3.20 A complete presentation of a language L is an infinite and ordered set
Ω = {(ωi, di) : A∗ × {0, 1}} with:

d =

{
1 If ωi ∈ L.
0 Otherwise.

A positive sample is a finite set of elements of a language. We can therefore
consider a positive presentation as an infinite sequence of positive samples
whose size increases. Such a presentation is called admissible.

Notions of identification in the limit and class of languages have been
introduced by Gold (1967) and are defined as follows:

Definition 3.21 Let M be an inference method and Ω an admissible presentation of a
language L. We denote ωi the ith element of Ω. The inference method M has to propose
a new solution in the search space for each new example. Let H(ωi) be the hypotheses
proposed by M after reading the i first elements of Ω. A method M identifies in the limit
the language L if and only if there exists a finite index j such that:
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1. ∀i ≥ j, H(ωi) = H(ωj),

2. H(ωj) = {L}.

The first condition ensures that M converges and the second condition
ensures that M converges to a correct representation of L.

Definition 3.22 An inference method M identifies a class C of languages in the limit if
M identifies in the limit all languages L ∈ C.

Theorem 3.1 The class of regular languages is identifiable in the limit in a polynomial
time for an inference method M using an admissible presentation containing both
positive and negative samples.

In this chapter we focus on the notion of identification in the limit because
it is an exact identification criterion. Nevertheless, many other identification
criteria have been proposed. For example, the BC-identification (Behaviorally
Correct Identification) (Barzdinš, 1974; Case and Smith, 1983) does not require
that the inference method converge to a single hypothesis in the space of
hypotheses, but that, from the point of convergence, all the hypotheses proposed
constitute a possible description of the correct solution.

3.3.2 Search Space

We will now focus on the search space of RGI algorithms using both positive
and negative samples. First we will present, in a general framework, the notion
of lattice. Then, we will show how to use the lattice in the RGI field.

A lattice is a partially ordered set with a greatest upper and a smallest lower
bound. Each pair of elements of a lattice has a smallest lower bound and a
greatest upper bound. We can formally define a lattice as follows:

Definition 3.23 A lattice is a pair (S,≤) such that:

• ≤ is an ordering relation of S such that:

• ∀x ∈ S, x ≤ x,

• ∀x, y ∈ S, x ≤ y ∧ y ≤ x =⇒ x = y,

• ∀x, y, z ∈ S, x ≤ y ∧ y ≤ z =⇒ x ≤ z.

• All pairs {x, y} of S has a greatest upper and a smallest lower bound:

• the smallest lower bound of x and y, denoted x>y is the unique maximal
element of the set of predecessors of x and y,

• the greatest upper bound of x and y, denoted x⊥y is the unique maximal
element of the set of successors of x and y.
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Property 3.2 If a partition Πi is finer than a partition Πj, denoted Πi ≤ Πj,
then quotient automata follow the same relation: Σ/Πi ≤ Σ/Πj, and L(Σ/Πi) ⊆
L(Σ/Πj).

Definition 3.24 The set of quotient automata of Σ with the partial order ≤ is an
automata lattice, denoted Lat(Σ), for whom Σ and UA are, respectively, the smallest
lower and the greater upper bound.

Theorem 3.2 Let I+ be a positive sample of the language L and Σ an automaton such
that L(Σ) = L. If I+ is structurally complete w.r.t Σ, then Σ ∈ Lat(MCA(I+)).

Theorem 3.3 Let I+ be a positive sample of the language L and C(L) the canonical
automaton of L. If I+ is structurally complete w.r.t A(L), then we have A(L) ∈
Lat(PTA(I+)).

We can consider the grammatical induction by the search of an automaton
compatible with I+ and I−. Formally, we search an automaton Σ such that (1)
I+ ⊆ L(Σ) and (2) I− ∩ L(Σ) = ∅. There exist several automata checking
both conditions. For example, MCA(I+) checks both conditions. However, this
automaton does not generalize the positive sample. So, we have to search the
most general solution w.r.t the negative sample I−. If we choose the simplicity
of the inferred automaton as a generality criterion and restrict the search to DFA,
then the solution we are looking for is the compatible DFA with the minimum
number of states. This is the so-called minimal DFA consistency problem which is
NP-hard (Angluin, 1978; Gold, 1978). We are therefore looking for an element
of the border set of our automata lattice. The border set (Dupont et al., 1994) is
the limit of the possible generalization from a positive sample and a negative
sample.

Example 3.12 Suppose we have I+ = {a, bab} and I− = {ababb, b, baa}. Figure
3.7 shows the automata lattice whose smallest lower bound is MCA(I+) and greatest
upper bound is UA. Automata in the green area are automata compatible with I− and
automata in the red area are automata incompatible with I−. The border set, denoted
BSMCA(I+, I−), is the border between the green area and the red area.

3.4 Regular Grammar Induction Algorithms

We focus on RGI algorithms taking as input both positive and negative
samples. Unlike algorithms using only a positive sample, algorithms that take
both positive and negative samples as input can identify the class of regular
languages in the limit. Also, this identification is done in a polynomial time
with samples of polynomial size w.r.t the number of states. These properties are
particularly interesting in applications where the dataset acquisition is a difficult
and costly task. Let us note however that there are several inference algorithms
using only positive samples e.g. ID (Angluin, 1981), IID (Parekh et al., 1998),
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Figure 3.7: The automata lattice with I+ = {a, bab} and I− = {ababb, b, baa}.

k-TSSI (Garcia and Vidal, 1990), MGGI (Garcia et al., 1990), ECGI (Kudo and
Shimbo, 1988) etc.

A first method of inference is the use of genetic algorithm (Goldberg,
1989; Mitchell, 1998). For example, the GIG algorithm evolves in the lattice
Lat(MCA(I+)) a population obtained by deriving MCA(I+) using structural
mutation and crossover.

Then, another approach is to build the border set and returns the smallest
automaton belonging to the border set. For example, the RIG algorithm
(Regular Inference of Grammar) (Miclet and de Gentile, 1994) builds the
border set BSMCA(I+, I−). It proceeds by enumerating the automata derived
from MCA(I+). This is a breadth-first search of Lat(MCA(I+)) keeping only
compatible automata at each depth in the lattice. At each step, the algorithm
performs a hierarchical pruning, i.e. it eliminates all automata at depth i+1
that derive from at least one incompatible automaton. Finally, the border set
is obtained by storing all the compatible automata that have no compatible
derivatives.

The last approach is to test block merging until there are no more possible
merge. The EDSM algorithm (Evidence Driven State Merging) (Lang, 1998)
begins by building the prefix tree acceptor PTA(I+). Then, the algorithm tests
all block mergings compatible with I−. To find blocks to merge, EDSM uses a
heuristic that computes a score for each state of the automaton. Then, it tests
the pairs of blocks with the highest score. Then, the RPNI algorithm (Regular
Positive and Negative Inference) (Oncina and Garcia, 1992) performs a deep

53



Algorithm 1: The RPNI Algorithm.
input : I+, I−: Positive and Negative samples
output : Σ: A DFA

1 Π← {{0}, {1}, . . . , {N − 1}};
2 Σ← PTA(I+);
3 for i← 1 : |Π| − 1 do
4 for j← 0 : i− 1 do
5 Π

′ ← Π/{Bj, Bi} ∪ {Bi ∪ Bj};
6 Σ/Π

′ ← derive(Σ/Π
′
);

7 Σ/Π
′′ ← deterministic_merge(Σ/Π

′′
);

8 if compatible(Σ/Π
′′
, I−) then

9 Σ← Σ/Π
′′
;

10 Π← Π
′′
;

11 break;

12 return Σ, Π

search in Lat(PTA(I+)) and finds a locally optimal solution to the minimal
DFA consistency problem. This algorithm relies on the structur completeness
of the positive sample I+. RPNI starts by creating a partition of the set of
states of PTA(I+). RPNI then proceeds to merge the blocks that do not cause
compatibility problems with I− according to the partial order induced by the
lattice.

3.4.1 Focus on the RPNI Algorithm

Among all RGI algorithms, RPNI is very efficient and has all the right properties:
(1) it is able to identify in the limit the class of the regular languages; (2) RPNI is
locally optimal.

3.4.1.1 The RPNI Algorithm

The RPNI algorithm is described by Algorithm 1 and Figure 3.8 gives an
example of execution. RPNI takes as input a positive sample I+ and a negative
sample I−.

Example 3.13 For example, consider the following sample:

I+ = {ε, a, baaaba, bab, bb, bba},
I− = {ba, b, ab}.

RPNI starts by initializing the partition (line 1) where each block contains a
single state: Π = {{0}, {1}, . . . , {10}}. Then, RPNI builds the prefix tree acceptor
and initializes the automaton Σ (line 2). Then, RPNI tests all state merges and
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Figure 3.8: RPNI Execution with I+ = {ε, a, baaaba, bab, bb, bba} and I− =
{ba, b, ab}.

retains only merges which do not cause the acceptation of a negative example (line
3-11). RPNI begins by testing the merge between states 0 and 1. RPNI updates
the partition by merging blocks where states 0 and 1 appear (line 5): Π′ =
{{0, 1}, {2}, {3}, . . . , {10}}. Then, RPNI computes the quotient automaton Σ′/Π′

(line 6). As the quotient automaton is deterministic and rejects all negative examples,
the merge is retained (line 8-10). Now, RPNI tries to merge states 0 and 2. We
can observe that the automaton is non-deterministic. Indeed, state 0 has now two
outgoing transitions a. To remove the non-deterministic transitions, RPNI performs
a deterministic merge (line 7). Figure 3.9 shows an execution of the deterministic
merge. RPNI begins by merging states 0 and 3. As the automaton is always non-
deterministic (the automaton has two outgoing transitions a and b in the state 0),
RPNI merges states 0 and 4, and states 0 and 5. The automaton obtained after these
mergings is now deterministic. However, it accepts all negative examples, then RPNI
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Figure 3.9: Deterministic Merge.

goes back to the previous successful merge and tries to merge the next pair of sates
0 and 3. As automaton is non-deterministic, RPNI performs the deterministic merge.
After determinization, the automaton accepts the negative example ba, the merge is
therefore not retained. After having testes all state merges, the final partition is Π =
{{0, 1, 4, 6, 8, 9, 10}, {2, 3, 5, 7}}.

We can now study the complexity of the RPNI algorithm. We have |I+| the
number of states in PTA(I+), and we denote |I−| = ∑

∀u∈I−
|u| the size of the

negative sample. The complexity of the deterministic merge of the quotient
automaton is O(|I+|) because the quotient automaton contains at most |I+|
states, therefore, at most O(|I+|) merges are necessary. Then, the complexity
to test the compatibility with I− is O(|I−|). Finally, we have:

CRPNI(I+, I−) = O(|I+|2.(|I+|+ |I−|))

3.4.1.2 Identification in the Limit and Characteristic Sample Specification

The RPNI algorithm identifies in the limit the class of regular languages. In other
words, when the sample is characteristic of a language L, then RPNI learns the
minimal canonical automaton of A(L). We will define notion of characteristic
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sample in this section. The notion of characteristic sample Ωc = (Ic
+, Ic
−) was

introduced by Dupont (1996).
The RPNI algorithm identifies the class of regular languages in the limit.

Then, for each regular language L there exists a sample Ωc = {Ic
+, Ic
−} such that:

• RPNI(Ic
+, Ic
−)→ Σ with Σ = A(L).

• ∀I′+, I′− such that ∀ω ∈ I′+, ω ∈ L and ∀ω ∈ I′−, ω 6∈ L(P) then
RPNI(Ic

+, Ic
−) = RPNI({Ic

+ ∪ I′+}, {Ic
− ∪ I′−}).

The sample Ωc is the characteristic sample of L(P). We give the conditions that
the samples must satisfy to be characteristic for the language L and the RPNI
algorithm. To this end, we shall present the notions of the set of short prefixes and
the kernel of a language (Oncina and Garcia, 1992).

Definition 3.25 The set of short prefixes SP(L) for a language L is defined as follows:

SP(L) = {x ∈ Pr(L)|¬∃u ∈ A∗ s.t. L/u = L/x ∧ u < x}.

Less formally, the set of short prefixes SP(L) is the set of prefixes reaching to a
state of the canonical automaton of L.

Definition 3.26 The kernel N(L) for a language L is defined as follows:

N(L) = {ε} ∪ {xa|x ∈ SP(L) ∧ a ∈ A ∧ xa ∈ Pr(L)}.

Example 3.14 For example, consider the DFA Σeven, the minimal canonical automaton
of the even language Leven. For this DFA SP(L) = {ε, b}. And the kernel of a language
is the set of elements of SP(L) to which each transition of the minimal canonical
automaton has been added. Let us take again the DFA Σeven, for this DFA we have
N(L) = {ε, a, b, ba, bb}.

Finally, we can build the characteristic sample for the language L:

Definition 3.27 The sample Ωc = (Ic
+, Ic
−) is characteristic for the language L if and

only if:

1. ∀x ∈ N(L) if x ∈ L then x ∈ Ic
+ ∨ ∃u ∈ A∗|xu ∈ Ic

+,

2. ∀x ∈ SP(L), ∀y ∈ N(L) if L/x 6= L/y then ∃u ∈ A∗|(xu ∈ Ic
+ ∧ yu ∈

Ic
−) ∨ (xu ∈ Ic

− ∧ yu ∈ Ic
+).

The first condition requires that all the kernel elements are present in our
positive sample. When an element of the kernel belongs to L, then it belongs
to our positive sample, but when it does not belong to L then this element is the
prefix of an element of the positive sample. And the second condition requires
that for each pair of elements of SP(L) and N(L) leading to distinct states, there
exists a suffix u which distinguishes the two states reached in our sampling.
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(x, y) u Ic
+ Ic

−
(ε, a) - − −
(ε, b) a a ba
(ε, ba) b bab b
(ε, bb) − − −
(b, ε) a a ba
(b, a) b bb ab
(b, ba) − − −
(b, bb) a bba ba

Table 3.1: Characteristic sample specification for the even language

Example 3.15 Let’s take again the DFA Σeven, we have:

SP(L) = {ε, b},
N(L) = {ε, a, b, ba, bb}.

To build a characteristic sample for this DFA we have to build a sample respecting the
two conditions seen previously. The first condition requires that all the elements of the
kernel are either positive examples or are prefixes of positive examples. We start by
recovering the elements of the kernel which are sequences accepted by the automaton.
So we have: N(L) ∩ L = {ε, a, bb}. Now we have to find positive examples whose
suffixes would be b and ba. We can use bb whose prefix is b, and baaaba whose prefix is
ba. So the first condition gives us the following positive sample:

Ic
+ = {ε, a, bb, baaaba}.

We must now build the negative sample, and complete the positive sample to satisfy the
second condition. The second condition requires that for each pair of elements of N(L)
and SP(L) leading to two distinct states, there is a positive example, and a negative
example distinguishing them. For example, if we take the pair (ε, a), both sequences
reach the same state. On the other hand if we take (ε, b), ε reaches the state 0, while b
reaches the state 1, so we have to add a positive and a negative example for this pair. We
can use u = a, which implies that we have a ∈ Ic

+ and ba ∈ Ic
−. Table 3.1 gives in detail

the whole specification of the positive and negative samples. Finally, the characteristic
sample for the even language is:

Ic
+ = {ε, a, baaaba, bab, bb, bba}.

Ic
− = {ab, b, ba}.

Please note that a characteristic sample is not unique, indeed, several suffix
u can be used to satisfy the first or the second condition. Finally, we can now
compute the size of the characteristic sample:

|SP(L)| = |S|.
|N(L)| = O(1 + |S|+ |A|).
|Ic
+| = O(|S|2.|A|).
|Ic
−| = O(|S|2.|A|).
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3.5 Conclusion

To conclude, we have seen in this chapter the theoretical framework of RGI as
well as a state of the art on RGI using both positive and negative samples. Note
that grammatical induction techniques have been proposed to learn other forms
of grammars such as transducers (Oncina et al., 1993; Vilar, 2000), probabilistic
grammars (Angluin, 1988; Stolcke and Omohundro, 1994; Carrasco and Oncina,
1994; Guttman et al., 2006), context-free grammars (Sakakibara, 1992; Nevill-
Manning and Witten, 1997; Koshiba et al., 2000; Eyraud et al., 2007) etc. We
focused on RGI techniques because, as we will see later, planning problems are
related to state machines that represent regular languages.

We have focused on algorithms using both positive and negative samples
because these algorithms can identify in the limit the class of regular languages
in a polynomial time. In addition, we specified the sampling characterization
for the RPNI algorithm. Although there are other identification criteria,
identification in the limit is an exact identification criterion. This is of interest
to us because we will use RGI techniques to learn action models. As we will
see next, we will use RGI techniques, and more precisely the RPNI algorithm,
to learn a language representing a planning problem and then we will induce
the action model from the language. Using RGI techniques with an exact
identification criterion will allow us to avoid learning errors in the learned action
model.
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Chapter 4

STRIPS Action Model Learning
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4.1 Introduction

As mentioned in Chapter 2, a planning problem can be seen as the search for a
path in a state machine. Moreover, state machines are equivalent to automata.
As we have seen in Chapter 3, an automaton allows to represent a grammar. As
we will see in this chapter, these grammars are regular. It is therefore possible to
identify in the limit the regular grammar related to a given planning problem
using algorithm taking as input both positive and negative samples such as
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RPNI (Oncina and Garcia, 1992). In this chapter, we will exploit this property
to learn action models.

As mentioned in Chapter 2, hand-encoding action models is a difficult
task which makes it difficult to use AI planning techniques in real-world
applications. To mitigate this difficulty, the AI planning community have
proposed approaches using machine learning techniques to compute action
models from execution traces such as, for example, ARMS (Yang et al., 2007),
SLAF (Shahaf and Amir, 2006), LSONIO (Mourão et al., 2012), LOCM (Cresswell
et al., 2013). These approaches have three main drawbacks:

1. Most of these approaches require a lot of data to perform the learning of
action models and in many real world applications, acquiring training
datasets is difficult and costly, e.g., Mars Exploration Rover operations
(Bresina et al., 2005) or fleet of Autonomous Underwater Vehicles for
offshore missions (Carreno et al., 2020; Lesire et al., 2016)).

2. The learned domains are not enough accurate to be used "as is" in a planner:
a step of expert proofreading is still necessary to correct them. Even small
syntactical errors can make sometime the learned domains useless for
planning.

3. Even if some approaches, e.g., (Mourão et al., 2012; Segura-Muros et al.,
2018; Rodrigues et al., 2010a) are able to learn from noisy and/or partially
observable data, few approaches are able to handle very high levels of
noise and high levels of partial observations as can be encountered in real
world applications.

In this chapter, we present AMLSI (Action Model Learning with State machine
Interaction) (Grand et al., 2020b,a), a novel approach learning STRIPS action
models based on grammar induction techniques (see Chapter 3). The idea is
to learn the state machine related to the planning problem using RGI algorithms
and inducing the action model from this state machine. Also, as planning
problems are declared using a planning domain, our approach will have to
represent the action model in the form of a planning domain.

The key idea of the AMLSI approach is to interact with the environment in
which the agent will have to solve planning problems to learn the action model.
AMLSI tests different randomly choosen actions, observes how the environment
evolves when these actions are executed, learns the DFA and induces the action
model from its observations. AMLSI does not require any prior knowledge
regarding the feasibility of actions in a given state, and state observations can be
partial and noisy. AMLSI is highly accurate even with highly partial and noisy
state observations. Our contribution is threefold:

1. AMLSI maximizes data usability by exploiting both feasible and infeasible
sequences of actions. Also, as action sequences are randomly generated,
the AMLSI approach avoid the overfitting issue.
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2. AMLSI is highly accurate and requires few data.

3. AMLSI is robust to partial and noisy observations.

In the rest of this chapter, we start by giving the problem statement of
the STRIPS Action Model Learning. More precisely, we extend the formal
framework proposed in Chapter 2 to the learning problem. Then, we detail the
AMLSI approach. We present the different steps of our approach, and we give
the formal properties of our approach. Finally, we propose an evaluation of our
approach. We compare AMLSI with state-of-the-art approaches and show that
AMLSI outperforms these approaches.

4.2 Problem statement

Without loss of generality, we propose a formal framework inspired by (Höller
et al., 2016) in order to define the STRIPS learning problem as the lifting of a state
transition system into a propositional language. This formal framework extends
the formal framework proposed in Chapter 2 to the learning problem.

Definition 4.1 A classical planning problem P extended to the learning problem is a
tuple (L, A, S, s0, G, δ, τ, λ) where:

• L is the set of logical propositions describing the environment.

• A is the set of actions.

• S is the set of state labels.

• s0 ∈ S is the initial state label.

• G ∈ S is the set of goal state labels.

• δ is the action model.

• τ : S× A→ {true, f alse} is the feasibility function.

• λ : S→ 2L is the observation function.

Example 4.1 Consider the Blocksworld example. L is composed of the following
propositions: {(ontable red),(ontable green),(ontable blue),(on green blue),. . . }. A
possible observed initial state s0 could be λ(s0) = {(ontable red), (ontable green),
(ontable blue), (clear red), (clear green), (clear blue), (handempty)}.

We assume that an observation could be partial and/or noisy. A partial
observation is a state where some logical propositions are missing and a noisy
observation is a state where the truth value of some propositions is erroneous.
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Example 4.2 For example, let take the following noiseless and complete observation:

λ(s0) = {(ontable red), (ontable green), (ontable blue), (clear red),
(clear green), (clear blue), (handempty)}

A partial observation could be:

λ(s0) = {(ontable green), (ontable blue), (clear green), (handempty)}

And a noisy observation could be:

λ(s0) = {(ontable green), (ontable blue), (clear green), (handempty), (on red green)}

A is a set of action labels. Action preconditions, positive and negative effects are
given by the functions prec, add and del that are included in δ = (prec, add, del).
prec is defined as prec : A → 2L. The functions add and del are defined in the
same way.

Example 4.3 As example, consider the action (pick-up red):

• prec(pick-up red) = {(handempty), (ontable red), (clear red)}

• add(pick-up red) = {(holding red)}

• del(pick-up red) = {(handempty), (ontable red), (clear red)}

The function τ : S × A → {true, f alse} returns whether an action is
applicable to a state, i.e. τ(s, a) ⇔ prec(a) ⊆ λ(s). Whenever an action a is
applicable in state si, the state transition function γ : S × A → S returns the
resulting state si+1 = γ(si, a) such that λ(si+1) = [λ(si) \ del(a)] ∪ add(a). A
sequence 〈a1 . . . an〉 of actions is applicable to a state s0 when each action ai with
1 ≤ i ≤ n is applicable to the state si−1. Given an applicable sequence 〈a1 . . . an〉
in state s0, γ(s0, 〈a1 . . . an〉) = γ(γ(s0, a1), 〈a2 . . . an〉) = sn. It is important to note
that this recursive definition of γ entails the generation of a sequence of states
〈s0s1 . . . sn〉. A goal state is a state g such that g ∈ G. An action sequence is a
solution plan to a planning problem P if and only if it is applicable to s0 and
entails a goal state.

As we have seen in Chapter 3 a formal language is, for a given alphabet
A, a subset of A∗, i.e. a possibly infinite set of sequences of elements of A.
It is therefore possible to represent a STRIPS planning problem as a language
such that all the elements of this language is a solution plan. More precisely, we
denote L(P) the language generated by the STRIPS planning problem P, this
language is defined as follows:

L(P) = {ω = 〈a1 . . . an〉|ai ∈ A, γ(s0, ω) |= g}.

We know that the set of languages generated by STRIPS planning problems
are regular languages (Höller et al., 2016). In other words, a STRIPS planning
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Figure 4.1: An example of DFA with pre-states and post-states.

problem P generates a language L(P) that is equivalent to a DFA Σ =
(S, A, γ, s0, G). S and A are respectively the states and the arcs of the DFA, γ
is the transition function, s0 is the initial state and G is the set of goal state labels.
Figure 4.1 gives the DFA for the Blocksworld example.

For any arc a ∈ A, we call pre-set of a the set preset(a) = {s ∈ S | γ(s, a) = s′}
and post-set of a the set postset(a) = {s′ ∈ S | γ(s, a) = s′}. In our example we
have {s0, s7, s9} ∈ preset(pick-up red) and {s1, s13, s15} ∈ postset(pick-up red) (see
Figure 4.1).

A STRIPS learning problem is defined as follows: given a set of observations
Ω ⊆ L(P), is it possible to learn the DFA Σ, and then infer the action model δ
and generalize it into a planning domain ∆ from the learned DFA Σ?

For instance, suppose

Ω = { 〈(pick-up red), (put-down red), (pick-up red), (stack red green), (unstack red green),
(stack red green)〉
〈(pick-up blue), (put-down blue), (pick-up red), (stack res blue), (unstack red blue),
(put-down red)〉
. . .}

The key idea of our approach is to learn Σ with the action sequences and
infers the action model

δ : prec(pick-up red) = {(ontable red), (clear red), (handempty)}
prec(pick-up blue) = {(ontable blue), (clear blue), (handempty)}
. . .

from Σ and the partial and noisy observation function λ and generalizes it into
the following PDDL planning domain:
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( : a c t i o n pick−up
:parameters ( ? x − block )
:precondit ion ( and ( c l e a r ?x ) ( ontable ?x ) ( handempty ) )
: e f f e c t
( and ( not ( ontable ?x ) )

( not ( c l e a r ?x ) )
( not ( handempty ) )
( holding ?x ) ) )

4.3 STRIPS Learning

The main idea of AMLSI is that it is possible to learn a state machine by testing
these transitions and by observing the states resulting from the action executions
and to represent it as an action model. AMLSI assumes that it knows the names
of the actions, i.e., the names of the transition of the state machine, it can test and
it is able to observe the state resulting from their application as a set of logical
propositions whose predicates are also known.

Based on these assumptions, AMLSI produces a set of observations Ω by
using a random walk and learns as output an action model modeling these
observations. The action model learned is expressed as a classical planning
domain using the PDDL language. To perform this learning, AMLSI learns first
the transition function expressed as a set of actions δ of a particular planning
problem P and then, it generalizes δ as a set of planning operators ∆. AMLSI
assumes that L, A, S, and s0 are known, and the observation function λ is
possibly partial and noisy. No knowledge of the goal states G is required. As
we have no knowledge on G, we consider that the language L(P) is defined for
all feasible action sequences ω, even if ω is not a solution plan. Formally,

L(P) = {ω = 〈a1 . . . an〉|ai ∈ A, γ(s0, ω) is defined.}
AMLSI algorithm consists of 4 steps (see Figure 4.2):

1. Observation Generation. AMLSI produces a set of observations Ω by using
a random walk. In Section 4.3.1, we will present how AMLSI is able to
efficiently exploit these observations by taking into account not only the
fact that some actions are applicable in certain states but also that others
are not.

2. DFA Learning. AMLSI learns the DFA Σ representing the observed state
transition function γ using an alternative version of the RPNI algorithm
(Oncina and Garcia, 1992) (see Section 4.3.2).

3. PDDL Operator Generation. Once the DFA Σ is learned, AMLSI infers the
action precondition, positive and negative effect functions in δ from the
DFA Σ and the observation function λ. Finally, the set of PDDL Operators
∆ are induced from δ (see Section 4.3.3).
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Input:
Initial State

Action Names
Observable Predicates

Step I: Observation Generation

Step II: DFA Learning

Step III: PDDL Operator Generation

Step IV: PDDL Operator Refinement

Output:
PDDL Planning Domain

Observation Set

DFA

PDDL Operators

Figure 4.2: STRIPS learning process.

4. PDDL Operator Refinement. AMLSI refines PDDL operators in order to deal
with partial and noisy observations (see Section 4.3.4).

4.3.1 Observation Generation

Figure 4.3 gives an overview of this step. To generate the observations in Ω,
AMLSI uses random walks by applying a randomly selected action to the initial
state of the problem. If this action is feasible, it is appended to the current action
sequence. Otherwise, the feasible prefix plus the infeasible action are added to
the set of negative samples I−. The procedure is repeated until the feasible prefix
achieves an arbitrary size and added to the set of positive samples I+. Random
walks are repeated until I+ and I− achieve an arbitrary size. As an example,
consider below the sets of feasible sequences I+ and not feasible sequences I−
in the Blocksworld domain.
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AMLSIStates Machine Environnement

Randomly generated
action a feasability?

Yes/no

Generation of the positive and
negative action sequences

Apply feasible action a

Observed state s

Observation of the positive
action sequences execution

Figure 4.3: Observation Generation Overview.

I+ = { 〈(pick-up red), (put-down red), (pick-up red), (stack red blue),
(unstack red blue), (stack red blue)〉
〈(pick-up blue), (put-down blue), (pick-up red), (stack red blue),
(unstack red blue), (put-down reed)〉
〈(pick-up red), (put-down red), (pick-up blue), (stack blue red),
(unstack blue red), (stack blue red)〉
〈(pick-up blue), (put-down blue), (pick-up blue), (stack blue red),
(unstack blue red), (put-down blue)〉}

I− = { 〈(pick-up red), (put-down red), (pick-up red), (stack red blue),
(unstack red blue), (pick-up blue)
〈(pick-up red), (put-down red), (pick-up red), (stack red blue),
(pick-up blue)〉
〈(pick-up red), (stack red blue), (put-down red)〉
〈(pick-up blue), (pick-up red)〉}

4.3.2 DFA Learning

The goal of this step is to learn the state machine related to the planning
problem. As we have seen in Section 4.2, this state machine can be represented
by a regular grammar. Moreover, since we have both positive and negative
samples, it is possible to identify this grammar in the limit using RGI algorithms.
Among RGI algorithms, we will use the RPNI1 algorithm (Oncina and Garcia,
1992). RPNI is very efficient and has all the right properties: (1) it is able to
identify in the limit the class of the regular languages; (2) RPNI is locally
optimal.

As we have seen before, to identify a regular grammar, we need our sample
to be characteristic. It is not possible to construct such a sample a priori.
However, if we have a very large sample size, then it is likely that our sample
is characteristic; however, one of the conditions for our approach to be effective
and to be used in practice is that it requires little training data. We are confronted

1We give a complete presentation of this algorithm in Chapter 3.
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Figure 4.4: Comparison of RPNI execution without and with pairwise
sequences.
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with a contradiction. To overcome this contraction, we propose to extend the
RPNI algorithm using a heuristic. The goal of this heuristic is to allow us
to reduce the amount of negative examples. This will allow us to bias the
learning of the DFA and to prevent that the DFA from being too general.
Indeed, we assume that it is better to have a restrictive DFA, i.e. a DFA that
does not recognize all feasible action sequences but limits the recognition of
infeasible action sequences, allowing to decrease the risk to learn an action
model generating incorrect plans.

Let’s consider the definition of an action model. An action is defined using
preconditions and effects. These preconditions and effects are defined using a
set of logical propositions. These preconditions and effects can be contradictory,
i.e. the preconditions of one action will be inconsistent with the effects of another
action and vice versa.

Example 4.4 For example, we have (clear red) ∈ prec(pick-up red) and (clear red) ∈
del(stack green red), so after executing (stack green red), the logical proposition (clear
red) will always be absent and the action (pick-up red) will never be feasible, no matter
what action precedes action (stack green red). In practice, very few actions follow each
other. For our Blocksworld problem, the action (stack green red) can only be followed by
the actions (unstack green red) and (pick-up blue).

We will use this property to reduce our negative sample size. More precisely, we
propose to force the DFA learned to accept only the sequences defined in I+ and
reject all other unobserved sequences. A simple way to achieve this result is to
compute all unobserved pairwise sequences (PS) (aiaj) and add them to the set
of negative examples I−. The computation of the set of unobserved PS consists
in computing all the possible action pairs from the actions A of the DFA and to
subtract the paris present in I+. Formally, the set of unobserved PS added to I−
is defined as follows:

{(ai, aj) | (ai, aj) ∈ A2 and @ω ∈ I+ s.t. ω = 〈ω1, ai, aj, ω2〉} (4.1)

Example 4.5 For example, the pairwise sequence ((pick-up red), (pick-up blue)) will be
added to I− because ((pick-up red), (pick-up b)) is not a subsequence contained in I+. In
contrast, the pairwise sequence ((pick-up red), (put-down red)) will not be added to I−
because ((pick-up red), (put-down red)) is a subsequence of the sequence 〈(pick-up red),
(put-down red), (pick-up red), (stack red blue), (unstack red blue), (stack red blue)〉
contained in I+.

Example 4.6 Figure 4.4 compares the execution of the vanilla RPNI algorithm and
RPNI improved with PS. We can note that the unobserved sequences prevent the
merging of some states. For instance, the merge between states 0 and 1 is no more
possible because the sequence 〈(pick-up red), (pick-up blue)〉 have been added to I−
based on Equation 4.1. Therefore, the DFA learned with this improvement accepts only
observed sequences decreasing the risk to learn an action model generating incorrect
plans.
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Proposition 4.1 AMLSI adds a polynomial number of sequences.

Proof 4.1 In the worst case, |A|2 pairwise sequences are unobserved. Then, AMLSI
adds O(|A|2.|I+|) sequences in I−.

Note that the unobserved sequences are only used for improving the DFA
learning step. For the next steps, we assume that I− contains only infeasible
observed sequences.

4.3.3 Operator generation

Operator generation consists in generating δ = (prec, add, del) from the learned
DFA and generalizes it into a set of PDDL operators ∆. Operator generation is
based on three steps:

Precondition generation To learn the preconditions prec(a) of the action a,
AMLSI computes the logical propositions that appear in all the states preceding
a in Σ:

prec(a) = ∩s∈preset(a)λ(s) (4.2)

Example 4.7 Let take the DFA in Figure 4.1. We have {s0, s7, s9} ∈
preset(pick-up red). Suppose we have the following, possibly partial and/or noisy,
observations:

• λ(s0) = {(ontable red), (clear red), (handempty) }

• λ(s7) = {(ontable red), (clear red) }

• λ(s9) = {(ontable red), (handempty) }

Then, the precondition is computed as follows: prec(pick-up red) = {(ontable red)}.

Effect generation To learn the positive effects add(a) and the negative effects
del(a) of an action a, AMLSI computes the logical propositions that never appear
in states before the execution of a, and always present after a execution:

add(a) = ∩s∈postset(a)λ(s) \ prec(a) (4.3)

Symmetrically,
del(a) = prec(a) \ ∩s 6∈postset(a)λ(s) (4.4)

Example 4.8 Let take the DFA in Figure 4.1. We have {s1, s13, s15} ∈
postset(pick-up red). Suppose we have the following, possibly partial and/or noisy,
observations:

• λ(s1) = {(holding red) }

• λ(s13) = {(holding red) }

• λ(s15) = {(holding red) }

Then, the effects is computed as follows: add(pick-up red) = {(holding red)} and
del(pick-up red) = {(ontable red)}.
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Action generalization Once actions’ preconditions and effects have been
learned, AMLSI generalizes actions to operators. To do this, AMLSI breaks down
the DFA actions into sets of actions that have the same name, number and type
of parameters. Each of these sets of actions can be generalized into an operator.

Example 4.9 For example, assumes that we have two actions (pick-up red) and (pick-
up green) that have the same name, number and type of parameters in the learned DFA.
The action (pick-up red) is defined as follows:

prec(pick-up red) = {(ontable red)}.
add(pick-up red) = {(holding red)}.
del(pick-up red) = {(ontable red)}.

(4.5)

and the action (pick-up green) is defined as follows:

prec(pick-up green) = {(ontable green), (clear green)}.
add(pick-up green) = {(holding green)}.
del(pick-up green) = {(ontable green), (clear green)}.

(4.6)

These two actions can be generalized into one operator (pick-up ?x) by using the OI-
subsumption (subsumption under Object Identity) (Esposito et al., 2000). The OI-
subsumption consists in substituting constants in preconditions and effects by variables
by respecting the type of the parameters. In our example, the subsumption of the
preconditions of (pick-up red) is {(ontable ?x)} and the subsumption of the preconditions
of (pick-up green) is {(clear ?x), (ontable ?x)}.

Then, to compute operators preconditions and effects AMLSI computes the
less general preconditions and effects satisfied for all subsumptions. In the end,
the operator (pick-up ?x) obtained is :

( : a c t i o n pick−up
:parameters ( ? x − block )
:precondit ion ( and ( ontable ?x ) )
: e f f e c t ( and ( holding ?x )

( not ( ontable ?x ) ) )

This generalization method applied for each set of actions that have the
same name, number and type of parameters in the learned DFA allows us to
ensure that all the necessary preconditions, i.e., the preconditions allowing to
differentiate the states where an action is feasible from a state where an action is
infeasible, to be all encoded.

We can note that the learned operator is not correct. Indeed, some
preconditions and effects are missing. This due to some observations being
partial. To deal with it, we perform a refinement step.

4.3.4 Operator refinement

Due to the partial and noisy observations, AMLSI performs a refinement step.
This refinement is carried out in three substeps. The first two substeps are
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to refine the preconditions and effects to deal with the partial observations
and ensure that the learned operators are able to regenerate the induced
DFA. Specifically, these two steps ensure that operators can regenerate each
DFA transition. The last substep is to refine the operators to deal with noisy
observations using a Tabu Search.

Effect refinement This step ensures that the generated operators allow to
regenerate the induced regular grammar. We use the observation function to
check that for each pair of consecutive actions a and a′ in the DFA, the effects of
action a applied in the state s satisfy the preconditions of action a′. If it is not the
case, we add in the effects of a the propositions satisfying the preconditions of
a′.

Example 4.10 For example, let take the action (stack red green) is an outcoming edge of
the state s1 (see Figure 4.1) and an incoming edge of the state s4, and the action (unstack
red green) is an outcoming edge of the state s1. Likewise suppose (on red green) 6∈ λ(s1)
and (on red green) ∈ prec(unstack red green), we put (on ?x ?y) ∈ add(stack ?x ?y) to
ensure that the action (unstack red green) is feasible in state s4 after applying (stack red
green) in state s1.

Precondition refinement In this step, we assume like (Yang et al., 2007)
that the propositions of the negative effects of an operator must be in its
preconditions. Thus, for each negative effect in an operator, we add the
corresponding predicate in its preconditions.

Example 4.11 For example, if (holding ?x) ∈ del(stack ?x ?y) then we put
(holding ?x) ∈ prec(stack ?x ?y).

Moreover, since effect refinements depend on preconditions and
precondition refinements depend on effects, we repeat these two steps
until convergence, i.e., no more precondition or effect is added. The refinement
process converges because (1) the preconditions and the effects can be added
only once during the whole refinement process of an operator and (2) the
number of preconditions and effects that could be added is limited by the
number of effects and preconditions of the next action in the DFA.

Proposition 4.2 Effects and preconditions refinement steps converge in a polynomial
number of iterations.

Proof 4.2 These two steps add effects and preconditions without removing any. In the
worst case, all possible preconditions and effects are added. Then, these steps converge
in O(|A|.|S|) iterations.
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Tabu Search The refinement step previously described is able to find most of
the preconditions and the effects of the operators even with partial observations.
However, this refinement does not prevent to remove relevant or add irrelevant
preconditions and effects when observations are noisy. For example, suppose
that the action (stack green blue) is applicable in two states s and s′ in the DFA, i.e.,
s and s′ ∈ preset(stack green blue). Now, suppose that the observation function
λ(s) returns (clear blue) as true and λ(s′) returns (clear blue) as f alse due to the
noise. In that case, (clear blue) is not included in the preconditions of (stack green
blue) even if it has to. Thus, after generalisation, the operator (stack ?x ?y) will
not have as precondition (clear ?y).

To deal with this problem, we propose to use Tabu Search (Glover
and Laguna, 1997). Tabu Search is a classical meta-heuristic search method
employing local search methods used for mathematical optimization. The idea
is to explore variants of the operators set learned in the previous step by
adding and removing preconditions and effects. At each steps only variants
improving the set of learned operators are kept until a local minimum is
found. To determine whether one variant is better than another it is necessary
to define an evaluation function. This evaluation function is called a fitness
function. In practice, a variant ∆ of an operators set is better than an other
one given a positive and a negative set of observations if : (1) ∆ accepts more
positive observations, (2) ∆ rejects more negative observations and (3) the state
sequences produced by applying the transition function γ∆ on the positive
actions sequences observed in I+ violate fewer preconditions and effects than
the sequences produced with the other. Formally, the fitness function used by
AMLSI to evaluate a candidate variant ∆ given the observations sets I+ and I−
is defined as follows:

f (∆, I+, I−) = ∑
ω∈I+

accept(∆, w) + ∑
ω∈I−

reject(∆, w) + ∑
w∈I+

∑
s∈γ∆(s0,ω)

|s ∩ λ(s)| − |s\λ(s)| (4.7)

where:
accept(∆, w) = 1 if ∀s ∈ γ∆(s0, w) s ∈ λ(s) 0 otherwise. (4.8)

reject(∆, w) = 1 if ∃s ∈ γ∆(s0, w) s 6∈ λ(s) 0 otherwise. (4.9)

Proposition 4.3 The complexity to compute the fitness score for all candidate variants
∆ is polynomial.

Proof 4.3 First of all, at each step of the Tabu Search, AMLSI tests O(|A|.|S|)
candidates. Then, the complexity to compute the acceptation (resp. rejection) of positive
(resp. negative) samples I+ (resp. I−) is O(|I+|.|S|) (resp. O(|I−|.|S|)). Finally, the
complexity to compute the number of preconditions and effects violated is O(|I+|.|S|).
To conclude, the complexity to compute the fitness score for all candidate variants ∆ is
O(|A|.|S|2.(|I+|+ |I−|)).

Once the Tabu Search is done, i.e. a local optimum of the fitness score
f (∆, I+, I−) is reached, we repeat all the three refinement steps (effect and
precondition refinement plus Tabu Search) until convergence (see Figure 4.5).
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Figure 4.5: Refinement Steps.

4.4 Formal properties

In this section we will give the formal properties of the AMLSI algorithm. First,
we will show that the DFA Learning algorithm identifies the language L(P) in
the limit.

Then, we will show that STRIPS Domain Learning is sound. STRIPS domain
learning is sound means that, for a given observation set Ω, AMLSI learns a
STRIPS Domain generating the given observation set. We will prove the STRIPS
Domain Learning soundness when observations are complete and noiseless.
When observations are partial and/or noisy it is possible that the learning is
not sound. However, we will show experimentally in Section 4.5 that AMLSI
keeps high performances when observations are partial and/or noisy despite
the lack of soundness.

4.4.1 DFA Learning Formal Properties

We know that the RPNI algorithm identifies the class of regular language in the
limit (Dupont, 1996). As the language L(P) is regular, RPNI algorithm identifies
this language. So, there exists a sample Ωc = {Ic

+, Ic
−} such that:

• RPNI(Ic
+, Ic
−)→ Σ with L(Σ) ≡ L(P).

• ∀I′+, I′− such that ∀ω ∈ I′+ω ∈ L(P) and ∀ω ∈ I′−ω 6∈ L(P) then
RPNI(Ic

+, Ic
−) ≡ RPNI({Ic

+ ∪ I′+}, {Ic
− ∪ I′−}).

The sample Ωc is the characteristic sample of L(P). See Chapter 3 for more
details.

As we have seen in Section 4.3.2, the RPNI algorithm is improved with
unobserved sequences. More precisely, AMLSI adds in the negative sample
I− all unobserved pairwise sequences (aiaj). Let IPS

− be the set of unobserved
pairwise sequences.

Property 4.1 RPNI(Ic
+, Ic
−) ≡ RPNI(Ic

+, {Ic
− ∪ IPS

− }) if and only if ∀ω ∈ IPS
− ω 6∈

L(P)

IPS
− contains all pairwise sequences (aiaj) such that: (ai, aj) ∈ A2 and @ω ∈

Ic
+ s.t. ω = (ω1, ai, aj, ω2)}. So, to ensure that the property 4.1 is checked we
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need that all pairwise sequences present in the language L(P) are present in the
positive sample Ic

+. Formally:

∀(ai, aj) ∈ A2 s.t. ∃ω = (ω1, ai, aj, ω2) ∈ L(P) =⇒ ∃ω′ = (ω′1, ai, aj, ω′2) ∈ Ic
+ (4.10)

Theorem 4.1 DFA Learning algorithm identifies the language L(P) in the limit.

Proof 4.4 AMLSI learns Σ using the RPNI algorithm improved with unobserved
sequence. We know that RPNI identifies int the limit L(P). Also, thanks the property
4.1, we know that RPNI improved with unobserved sequence identifies in the limit L(P)
if and only if the positive sample satisfies the constraint given by Equation 4.10. As there
exists a characteristic sample for the language L(P) then the DFA Learning algorithm
identifies the language L(P) in the limit.

4.4.2 Domain Learning Soundness

We will now show that the PDDL domain learned by AMLSI, when L(Σ) ≡
L(P) and when observations are complete and noiseless, is a PDDL domain ∆P
able to generate L(P) and the observations function λ. AMLSI returns the PDDL
domain refined by the refinement steps (see Section 4.3.4). We must therefore
show that the different refinement steps allow to learn a PDDL Domain ∆ such
that ∆ is able to generate L(P) and the observations function λ. More precisely,
we will prove that when the Tabu Search reaches the global maxima, AMLSI
refinement stops and returns a PDDL domain able to generate L(P) and the
observations function λ.

Let’s us assume there exists a PDDL Domain ∆P such that ∆P is able to
generate the regular language L(P) and the observation function λ.

Lemma 4.1 If L(Σ) ≡ L(P), when observations are complete and noiseless, ∆P
maximizes the fitness function f (∆, I+, I−) of the Tabu Search.

Proof 4.5 First of all, as ∆P generates the regular language L(P) we have:

∆P = argmax∆( ∑
ω∈I+

accept(∆, w)) (4.11)

∆P = argmax∆( ∑
ω∈I−

reject(∆, w)) (4.12)

Indeed, if ∆P generates the regular language L(P) then ∀ω ∈ I+, ∆P can generate
ω. So, ∑

ω∈I+
accept(∆, w) = |I+| = Max∆( ∑

ω∈I+
accept(∆, w)). In the same way, if

∆P generates the regular language L(P) then ∀ω ∈ I−, ∆P cannot generate ω. So,
∑

ω∈I−
reject(∆, w) = |I−| = Max∆( ∑

ω∈I−
reject(∆, w)).

Then, as ∆P generates the observation function λ we have:

∆P = argmax∆( ∑
w∈I+

∑
s∈γ∆(s0,ω)

|s ∩ λ(s)| − |s\λ(s)|) (4.13)
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Indeed, if ∆P generates the observation function λ then ∑
w∈I+

∑
s∈γ∆P (s0,ω)

|s ∩ λ(s)| −

|s\λ(s)| = ∑
w∈I+

∑
s∈γ∆P (s0,ω)

|λ(s)| − 0 = Max∆( ∑
w∈I+

∑
s∈γ∆(s0,ω)

|s∩λ(s)| − |s\λ(s)|)

Finally, we have

Max∆( f (∆, I+, I−)) = Max∆( ∑
ω∈I+

accept(∆, w) + ∑
ω∈I−

reject(∆, w) + ∑
w∈I+

∑
s∈γ∆(s0,ω)

|s ∩ λ(s)| − |s\λ(s)|)

= Max∆( ∑
ω∈I+

accept(∆, w)) + Max∆( ∑
ω∈I−

reject(∆, w)) + Max∆( ∑
w∈I+

∑
s∈γ∆(s0,ω)

|s ∩ λ(s)| − |s\λ(s)|)) (4.14)

And thanks to Equations 4.11, 4.12 and 4.13 we know that f (∆P, I+, I−) =
Max∆( f (∆, I+, I−)). So, ∆∗ maximizes the fitness function of the Tabu Search when
observations are complete and noiseless.

Lemma 4.2 When the Tabu Search reaches the global maxima, the refinement step
converges if L(Σ) ≡ L(P) and observations are complete and noiseless.

Proof 4.6 When the Tabu Search reaches the global maxima, the function f (∆, I+, I−)
is maximized. So, all transitions in the DFA Σ are feasible, so the Effect Refinement Step
(see Section 4.3.4) does not add new effects. Also, all preconditions are encoded in ∆,
so the Precondition Refinement Step (see Section 4.3.4) does not add new preconditions.
So, when Tabu Search reaches the global maxima, the AMLSI refinement step converges.

Theorem 4.2 If L(Σ) ≡ L(P), when observations are complete and noiseless,
the refined PDDL domain ∆ learned by AMLSI is able to generate L(P) and the
observations function λ.

Proof 4.7 Thanks the Lemma 4.1, we know that the global maxima of the Tabu Search
is a PDDL domain able to generate L(P) and the observations function λ when
L(Σ) ≡ L(P) and when observations are complete and noiseless. Also, thanks the
Lemma 4.2 we know that when the Tabu Search reaches the global maxima, then the
AMLSI refinement step converges. So, ifL(Σ) ≡ L(P), when observations are complete
and noiseless, the refined PDDL domain ∆ learned by AMLSI is able to generate L(P)
and the observations function λ.

Finally, we can state the following Theorem:

Theorem 4.3 Soundness. When the observation set Ω is characteristic and when
observations are complete and noiseless, AMLSI learns a PDDL domain able to generate
the language L(P) and the observation function λ.

Proof 4.8 Thanks the Theorem 4.1 we know that AMLSI learns a DFA Σ such that
L(Σ) ≡ L(P) when the observation set Ω is characteristic. Then, if L(Σ) ≡ L(P),
when observations are complete and noiseless AMLSI learns a PDDL domain ∆ which
is able to generate the regular language L(P) and the observation function λ.
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Figure 4.6: Average performances in terms of syntactical distance of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure 4.7: Average performances in terms of FScore of AMLSI and LSONIO
when the training dataset increases in terms of number of actions.
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Figure 4.8: Average performances in terms of accuracy of AMLSI and LSONIO
when the training dataset increases in terms of number of actions.
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Figure 4.9: Average performances in terms of IPC score of AMLSI and LSONIO
when the training dataset increases in terms of actions.
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Domain #Operators #Predicates E+ E− ω+ ω−
Blocksworld 4 5 100 32546 49.8 33.8

Gripper 3 4 100 13163 51.3 33.9
Hanoi 4 7 100 34600 50.3 33.7

N-Puzzle 1 3 100 36626 49.9 33.7
Peg-Solitaire 3 4 100 14508 6.9 5.3

Parking 4 5 100 64963 50.6 34.0
Zenotravel 5 5 100 18154 50.4 33.9

Sokoban 2 4 100 40302 50.2 33.8
Visit All 4 7 100 16702 50.9 35.7
Elevator 4 6 100 13122 51.0 35.7
Spanner 4 6 100 4628 7.0 5.1
Logistics 6 3 100 31622 49.7 32.9
Floortile 6 10 100 48773 51.0 37.1

Table 4.1: Benchmark characteristics (from left to right): the number of
operators, the number of predicates, the average size of the E+ and the E−
testing dataset, and the average length of the positive (resp. negative) testing
sequences ω+ ∈ E+ (resp. ω− ∈ E−).

4.5 Experiments

4.5.1 Experimental setup

Our experiments are based on 13 STRIPS-Compliant IPC2 benchmarks:
Blocksworld, Gripper, Hanoi, N-Puzzle, Peg Solitaire, Parking, Zenotravel,
Sokoban, Visit All, Elevator, Spanner, Logistics and Floortile. Table 4.1 shows
our experimental setup3.

We test each IPC action model with 3 different instances over ten runs, and
we use ten randomly generated seeds for each run. Also, we generate partial
observations by randomly removing a fraction of the propositions of the states,
and we generate noise by changing the value of a fraction of the observable
propositions. All tests were performed on an Ubuntu 14.04 server with a multi-
core Intel Xeon CPU E5-2630 clocked at 2.30 GHz with 16GB of memory. PDDL4J
library (Pellier and Fiorino, 2018) was used to generate the benchmark data.

4.5.2 Evaluation metrics

Three metrics are used for the evaluation: the syntactical error (Zhuo et al., 2010b)
that computes the distance between the original action model and the action
model learned, the accuracy (Zhuo et al., 2013) that expresses the capability

2https://www.icaps-conference.org/competitions/
3Experimental setup are publicly available at https://github.com/maxencegrand/AMLSI
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of the action model learned to solve new problems (without proofreading).
Even though the syntactical error is the most used metric in the literature, we
argue that the accuracy is the most important metric in practice for planning
because it measures to what extent a learned action model is useful. Indeed,
it often happens that one missing precondition or effect, which amounts to a
small syntactical error, makes the learned action model unable to solve planning
problems. Finally, the last metric is the FScore (van Rijsbergen, 1979) that
expresses the capability of the learned action model to generate the grammar
related to the planning problem.

Formally, the syntactical error error(o) for an operator is the Hamming
distance between the learned operator and the ground truth operator, i.e. the
number of extra or missing predicates in the preconditions prec(o), the positive
effects add(o) and the negative effects del(o) divided by the total number
of possible predicates. By extension, the syntactical error for a action model
composed of a set of operator O is:

Eσ =
1
|O| ∑

o∈O
error(o)

Then, FScore = 2.P.R
P+R where R is the recall, i.e. the rate of sequences e

accepted by the original IPC action model that are successfully accepted by
the learned action model, computed as R = |{e∈E+ | accept(δ,e)}|

|E+| , and P is the
precision, i.e. the rate of sequences e accepted by the learned action model
that are also accepted by the original IPC action model, computed as P =

|{e∈E+ | accept(δ,e)}|
|{e∈E+ | accept(δ,e)}∪{e∈E− | accept(δ,e)}| . The test sets E+ and E− used to compute the
FScore are generated by random walks.

Finally, the accuracy Acc = N
N∗ is the ratio between N, the number of

correctly solved problems with the learned action model, and N∗, the total
number of problems to solve. In the rest of this section the accuracy is computed
over 20 problems. STRIPS problems are solved with Fast Downward v19.06
(Helmert, 2006). For each experiment, plan validation is done with VAL (Howey
and Long, 2003), which is used in the IPC competitions. In addition to the
Accuracy we report the IPC score in order to compute the quality of generated
plans. The score of a action model on a solved problem is the ratio between
the length of a reference plan, i.e. a plan generated by the reference IPC action
model, and the length of the plan generated by the learned action model. The
score on an unsolved problem is 0. The score of a learned action model is the
sum of its scores for all problems.

4.5.3 Discussion

Figures 4.6, 4.7, 4.8 shows the average performance of AMLSI and LSONIO
obtained on the 13 action models of our benchmarks when varying the training
dataset size. The size of the training set is indicated in number of actions. AMLSI
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and LSONIO are tested with 20 experimental scenarios: the level of observability
varies between 20% and 100% and the level of noise varies between 0% and
20%. We have three variants of AMLSI: (B) Base: DFA learning is done without
Pairwise Sequences (PS) and without Tabu Search, (B+PS) Base + PS: DFA
learning is done with PS but without Tabu Search, and (B+PS+Tabu) Base + PS +
Tabu: DFA learning is done with PS and with Tabu Search during the refinement
step.

Comparison with LSONIO We observe that AMLSI outperforms LSONIO
whatever the size of the learning dataset in terms of accuracy or in terms of
syntactical distance. We also observe that AMLSI needs very little data to obtain
a relatively large accuracy (almost 70% with only a learning dataset of 400
actions) in the most difficult scenario.

Ablation study The Base+PS variant is more robust to partial observations
than the Base variant of AMLSI. This is due to the fact that DFA learned with
PS are generally better than action model learned without PS. More precisely,
DFA learned with PS generally have fewer states and fewer transitions. This
allows for fewer false transitions which makes it easier to learn effects and
preconditions. However, when observations are noisy, the Base+PS variant
is not able to learn action models accurate enough to be used for planning
whatever the level of observability. Only the Base+PS+Tabu variant is both
robust to partial and noisy observations. Our ablation study confirms that
adding unobserved Pairwise Sequences improves the learning of the DFA,
and makes AMLSI more robust to partial observations while refining the
preconditions and the effects by using a Tabu Search allows AMLSI to learn
accurate action models with a high level of noise.

Finally, we observe that the plans generated with the learned action models
are generally longer than plans generated with the IPC action models, even with
optimal accuracy (ipc < 20). When the accuracy is not optimal, we notice that the
IPC score is close to the ratio between the IPC score with optimal accuracy and
the rate of solved problems, this implies that even when the accuracy is not
optimal the plans are not much longer than the original plans.

4.6 Conclusion

In this chapter, we have presented the AMLSI approach. The AMLSI approach
learns action models from interactions with the environment in which the agent
will have to solve planning problems. The AMLSI approach is divided in four
steps: (1) AMLSI generates a set of observations, (2) AMLSI learns the DFA
related to the planning problem using a variant the RPNI algorithm, (3) AMLSI
learns from the DFA the action model and express it as a PDDL planning
domain and (4) AMLSI refines the action model. Also, we have given the formal
properties of our approach. More precisely, we have shown that our variant
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of the RPNI algorithm preserves the identification in the limit property of the
vanilla RPNI algorithm. Also, we have shown the soundness of the AMLSI
approach.

Moreover, we can draw several lessons from our experimentation. First, we
show that the AMLSI approach is highly accurate whatever the level of partiality
and noise of the observations. Moreover, we have seen that AMLSI requires little
training dataset. Also, we have shown that AMLSI outperforms LSONIO, the
closest state-of-the-art approach. Finally, thanks to the ablation study, we were
able to show the usefulness of each step of our approach.

While these results are encouraging, the AMLSI approach has several
limitations. First of all, we can observe that AMLSI requires little training dataset
to be accurate. Also, the larger the data the better the results. However, as we
have seen in the previous part, acquiring data is a difficult and costly process.
Although AMLSI requires little training data, it is not possible to know a priori
how much training data is required to learn a model. It is therefore important
to be able to incrementally learn the action model and to have a criterion to
know that the action model is learned and to stop the learning process. This
is what we will see in the next chapter. Also, the AMLSI approach learns
STRIPS action models, but we have seen in the previous part that STRIPS action
models are based on assumptions that are too restrictive to be used in real-
world applications. In the following chapters, we will propose two extensions
for AMLSI to learn less restrictive action models.
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Chapter 5

IncrAMLSI: Incremental Action
Model Learning

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Operator Overhaul . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Introduction

In the previous chapter, we have presented the AMLSI approach. We have seen
that AMLSI successfully address the accuracy issue even when observations
are partial and/or noisy. Also, we have seen that AMLSI requires few data
to be accurate. However, in practise, data acquisition is a long term evolutive
process: in real world applications, training data become available gradually
over time, are difficult and costly to obtain, as for instance, Mars Exploration
Rover operations (Bresina et al., 2005) or robot fleets for offshore missions
(Carreno et al., 2020). Moreover, in practice, it is important to be able to update
learned action models to new incoming data without restarting the learning
process from scratch. Finally, it is also important to know when to stop learning
in order to know when to stop the data acquisition process and minimize the
amount of data acquired: a convergence criterion is required. In this chapter, we
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Figure 5.1: Incremental Learning Process.

propose an incremental version of AMLSI called IncrAMLSI (Grand et al., 2021)
to overcome these issues.

The rest of this chapter is organized as follows. In Section 5.2 we detail the
incremental learning process and give the formal properties of this incremental
extension. In Section 5.3 we show that our incremental allows to efficiently
consume training data. The problem statement being the same as in the previous
chapter, we will not present it in this chapter.

5.2 Incremental Learning

An overview of IncrAMLSI is shown in Figure 5.1. IncrAMLSI learns
incrementally the action model from incoming data and does not restart from
scratch when new data become available at each iteration t. More precisely,
IncrAMLSI consists in incrementally updating the PDDL domain ∆t with the
new incoming training datasets Ωt1 available at iteration t to produce the PDDL
domain ∆t+1. This algorithm is made up of three steps:

1. Update of the DFA with the modified version of RPNI algorithm in order to
accept It

+ and to reject It
− at iteration t (see Section - 4.3.2).

1Ωt contains all observations since the beginning of the learning process.
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Algorithm 2: Overhaul_Operator(∆t, It
+, It
−).

1 ∆t
new ← operatorGeneration();

2 backtrackInfeasibleEffects(∆t);
3 backtrackInfeasiblePreconditions(∆t);
4 repeat
5 repeat
6 backtrackPreconditions(∆t);
7 backtrackNegativeEffects(∆t);
8 until acceptAll(∆t, It

+);
9 backtrackEffects(∆t)

10 until acceptAll(∆t, It
+);

11 ∆t+1 ← merge(∆t, ∆t
new);

12 return ∆t+1

2. Overhaul of the PDDL operators in order to add new operators and remove
preconditions and effects that are no longer compatible with It

+ and It
−,

and the updated DFA at iteration t (see Section 5.2.1).

3. Refinement of the PDDL operators as in AMLSI to deal with noisy and partial
states in It

+ and It
−, and to produce the new domain ∆t+1 (see Section 4.3.4).

The incremental process is operated each time new training datasets are input
and until convergence of the PDDL domain.

5.2.1 Operator Overhaul

When at iteration t new positive and negative datasets are integrated and the
DFA is updated, it is possible that the domain previously learned ∆t is no longer
compatible with it. There are two possibilities:

1. Some operators may not have been generated in the previous datasets, so
IncrAMLSI have to add them

2. Some effects and preconditions in ∆t have to be removed to match the
updated DFA

Algorithm 2 describes the procedure to compute ∆t+1 from ∆t, It
+, and It

− at
iteration t. First of all, IncrAMLSI generates new operators in a PDDL domain
∆t

new (line 1). Then, IncrAMLSI removes all extra preconditions and effects in ∆t

(line 2 - 10). Finally, IncrAMLSI merges ∆t
new with ∆t (line 11) by making the

union sets of the preconditions and the effects of the operators.
First of all, functions backtrackInfeasibleEffects and

backtrackInfeasiblePreconditions (line 2, 3) remove the effects and preconditions
infeasible in the DFA. More precisely, backtrackInfeasibleEffects removes positive

91



and negative effects that does not respect the conditions given by Equations 4.3
and 4.4 in Section - 4.3.3.

Example 5.1 For example, suppose we have (holding ?x) ∈ add(unstack ?x ?y), and
there are no states in the current DFA where this effect appears, then (holding ?x) is
removed.

Likewise, backtrackInfeasiblePreconditions removes extra preconditions that does
not validate Equation 4.2.

Example 5.2 For example, suppose we have (holding ?y) ∈ prec(unstack ?x ?y) and
∃s ∈ µpreset(unstack green blue) such that (holding blue) 6∈ λ(s), then (holding ?y) is
removed.

Then, as observed states are noisy and partial, it is possible that some extra
preconditions and effects are not present in the current DFA. Therefore lines
4 - 10 remove extra preconditions and effects independently of this DFA. First
of all, backtrackPreconditions (line 6) removes all the preconditions that are not
compatible with It

+.

Example 5.3 For instance, suppose we have this positive sample:

〈(pick-up green), (put-down green), (pick-up green), (stack green blue), (unstack green blue)〉 ∈ It
+

and, when we execute it with the current domain ∆t we have:

(holding green) 6∈ λ(γ(s0, 〈(pick-up green), (put-down green), (pick-up green), (stack green blue)〉))

i.e. in the state before the last action (unstack green blue), the proposition (holding green)
is absent and suppose that (holding ?x) ∈ prec(unstack ?x ?y). Thus we remove this
unsatisfied precondition (holding ?x) from the operator (unstack ?x ?y).

Then, with backtrackNegativeEffects (line 7), we remove all the negative effects
that does not satisfy PDDL syntactical constraints (Yang et al., 2007) (e.g.,
negative effects must be in the preconditions etc.) We repeat these two functions
until the domain accepts all the positive samples (line 8), i.e. the domain is able
to regenerate all the positive samples It

+.
The next step (line 9) in the algorithm is to remove all the effects that are not

compatible with the negative samples It
− with function backtrackEffects.

Example 5.4 Suppose that two samples share the same prefix (unstack green blue):

〈(unstack green blue), (put-down green)〉 ∈ It
+.

and
〈(unstack green blue), (pick-up green)〉 ∈ It

−.

Also, suppose that, wrongly, (holding ?y) ∈ add(unstack ?x ?y), and, correctly,
(holding ?x) ∈ prec(put-down ?x). And suppose that the current domain
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∆t can generate 〈(unstack green blue)〉. The extra effect (holding green) ∈
add(unstack green blue) allows to the precondition of the unfeasible action (put-down
blue) to be satisfied, and (holding blue) is not in the preconditions of the feasible action
(put-down green). Thus, we remove the effect (holding ?y) from the operator (unstack
?x ?y).

As the backtrackEffects function removes effects, it is possible that some
positive samples can no longer be generated by the current domain ∆t.
We therefore have to repeat these three backtracking functions until the
domain accepts all the positive samples (line 10). Indeed, repeating these
functions until the domain accepts all the positive samples allows to ensure
that the last removed effects do not impact the acceptation of the positive
samples (termination is ensured by only allowing precondition and/or effect
withdrawals).

5.2.2 Convergence

IncrAMLSI stops when, after a given number T of iterations, the domain ∆t

checks three conditions: (1) ∆t accepts all the positive samples It
+, (2) ∆t rejects

all the negative samples It
−, and (3) ∆t = ∆t+1 during T iterations. We will

show experimentally (see section 5.3) that IncrAMLSI converges with partial
and noisy observations. However, it is possible to show formally that it is true
when state observations are complete and noiseless and T → ∞. More precisely,
we can prove that IncrAMLSI converges to a domain ∆P able to generate the
language L(P) and the observation function λ (see Chapter 4).

Lemma 5.1 When observation are complete and noiseless and when the observation set
Ωt = {It

+, It
−} is characteristic, then the overhaul operators step returns a domain ∆t+1

with no extra preconditions and effects w.r.t the domain ∆P.

Proof 5.1 First of all, as the observation set is characteristic we know, thanks to
Theorem 4.1 (see Chapter 4), that L(Σt) = L(P). Also, as observations are complete
and noiseless, ∆t

new does not contain any extra preconditions and effects. Then, as
functions backtrackInfeasibleEffects and backtrackInfeasiblePreconditions remove all
preconditions and effects incompatible with equations of the operators generation steps,
then all extra preconditions and effects are removes. Finally, as all extra preconditions
and effects are removed and as ∆t

new does not contain any extra preconditions and effects
then ∆t+1 does not contain any extra preconditions and effects

Theorem 5.1 When observation are complete and noiseless and when T → ∞,
IncrAMLSI converges to ∆P.

Proof 5.2 First of all, if T → ∞ then the observation set ΩT is characteristic. Also,
thanks the Lemma 5.1 we know that, before refinement, the domain ∆T does not contain
any extra preconditions and effects. Finally, thanks the Theorem 4.2 (see Chapter 4) we
know that the domain returned by the refinement step is ∆P the observation set ΩT
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Domain #Operators #Predicates
Blocksworld 4 5

Gripper 3 4
Hanoi 4 7

N-Puzzle 1 3
Peg-Solitaire 3 4

Parking 4 5
Zenotravel 5 5

Sokoban 2 4
Visit All 4 7
Elevator 4 6
Spanner 4 6
Logistics 6 3
Floortile 6 10

Table 5.1: Benchmark characteristics.

is characteristic and when observations are complete and noiseless. So, we can conclude
that IncrAMLSI converges to ∆P when observation are complete and noiseless and when
T → ∞.

5.3 Experiments

5.3.1 Experimental setup

Our experiments are based on 13 STRIPS-Compliant IPC2 benchmarks:
Blocksworld, Gripper, Hanoi, N-Puzzle, Peg Solitaire, Parking, Zenotravel,
Sokoban, Visit All, Elevator, Spanner, Logistics and Floortile. Table - 5.1 shows
our experimental setup3.

We test each IPC domain with 3 different initial states over ten runs, and
we use randomly generated seeds for each run. Also, we generate partial
observations by randomly removing a fraction of the propositions of the states,
and we generate noise by changing the value of a fraction of the observable
propositions. All tests were performed on an Ubuntu 14.04 server with a multi-
core Intel Xeon CPU E5-2630 clocked at 2.30 GHz with 16GB of memory. PDDL4J
library (Pellier and Fiorino, 2018) was used to generate the benchmark data.

2https://www.icaps-conference.org/competitions/
3Experimental setup are publicly available at https://github.com/maxencegrand/AMLSI
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Figure 5.2: Average performance of IncrAMLSI when the convergence criterion
T varies between 1 and 15.

5.3.2 Evaluation metrics

The metrics used for this evaluation is the accuracy (Zhuo et al., 2013) that
measures the learned domain performance to solve new problems. Formally,
the accuracy Acc = N

N∗ is the ratio between N, the number of correctly solved
problems with the learned domain, and N∗, the total number of problems to
solve. In the rest of this section the accuracy is computed over 20 problems.
The problems are solved with Fast Downward v19.06 (Helmert, 2006). Plan
validation is done with VAL (Howey and Long, 2003), which is used in the IPC
competitions.4

5.3.3 Discussion

Figure 5.2 shows the average performance of IncrAMLSI obtained on the
13 domains of our benchmarks when varying the convergence criterion T.
IncrAMLSI is tested with 20 experimental scenarios: the level of observability
varies between 20% and 100% and the level of noise varies between 0% and 20%

Whatever the experimental scenario, IncrAMLSI learns from accurate

4In the previous chapter we have also used the syntactical distance and the fscore. However,
we could observe that the most significant metric was the accuracy, so for this and the following
chapters we will use only this metric.
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models. Also, increasing T generally leads to better results; Finally, we can
observe that whatever the value of T and the experimental scenario, IncrAMLSI
converges in less than 35 iterations.

5.4 Conclusion

In this chapter, we have presented the incremental extension of the AMLSI
approach: IncrAMLSI. IncrAMLSI learns incrementally action models. The
incremental learning process is divided in 3 steps: each time new training data is
received, (1) IncrAMLSI updates the DFA, (2) removes extra preconditions and
effects and (3) refines the action model. IncrAMLSI stops when the convergence
criterion is reached. In addition, we have shown the convergence of the
IncrAMLSI extension.

The AMLSI approach, and its incremental extension, learns STRIPS action
models, but we have seen in the previous part that STRIPS action models
are based on assumptions that are too restrictive to be used in real-world
applications. In the following chapters, we will propose two extensions for
AMLSI to learn less restrictive action models. More precisely, we will extend
the AMLSI approach to learn temporal action model (see Chapter 6) and HTN
action models (see chapter 7).
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Chapter 6

TempAMLSI: Temporal Action
Model Learning
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6.1 Introduction

As seen previously, hand-encoding and proofreading STRIPS action models is
difficult, and this is even harder with less restrictive action models such as
temporal action models. It is therefore essential to develop tools allowing to
automatically learn temporal action models. As we have seen in Chapter 2
several approaches have been proposed to automatically learn STRIPS action
models: ARMS (Yang et al., 2007), SLAF (Shahaf and Amir, 2006), Louga (Kucera
and Barták, 2018), LSONIO (Mourão et al., 2012), LOCM (Cresswell et al., 2013),
IRale (Rodrigues et al., 2010a), PlanMilner (Segura-Muros et al., 2018).
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A major open issue is to learn temporal action models (Fox and Long,
2003). Temporal action models are action models allowing to represent durative
actions, i.e. actions that have a duration, and whose preconditions and effects
must be satisfied and applied at different times. An important property of
durative actions is that they can be executed concurrently. Temporal action
models have different levels of action concurrency (Cushing et al., 2007). Some
are sequential, which means that all the plan parts containing overlapping
durative actions can be rescheduled into a completely sequential succession of
durative actions: each durative action starts after the previous durative action
is terminated. One important property of sequential temporal action models is
that they can be rewritten as non-temporal action models, and therefore used by
classical planners. Some temporal action models require other forms of action
concurrency such as Single Hard Envelope (SHE) (Coles et al., 2009). SHE is
a form of action concurrency where a durative action can be executed only if
another durative action called the envelope extends over it. This is due to the
need by the enveloped durative action of a resource, all along its execution,
added at the start of the envelope and deleted at the end of the envelope.
One important property of SHE temporal action models is that they cannot be
sequentially rescheduled. Although some approaches have been proposed to
learn temporal features (Gabel and Su, 2010; Neider and Gavran, 2018; Gaglione
et al., 2021; Shah et al., 2018), only (Garrido and Jiménez, 2020) proposed an
approach learning temporal action models. However this approach is limited to
sequential temporal action models. To our best knowledge, there is no learning
approach for both SHE and sequential temporal action models.

In this chapter, we present TempAMLSI (Grand et al., 2022b), an accurate
learning algorithm for both SHE and sequential temporal action models.
TempAMLSI is built on AMLSI (see Chapter 4). Some planners (Fox and
Long, 2002a; Halsey et al., 2004; Celorrio et al., 2015; Furelos Blanco et al.,
2018) solve temporal planning problems by using non-temporal planners and
translation techniques. The key idea of the TempAMLSI approach is to reuse
these translation techniques for the learning problem. Like AMLSI, TempAMLSI
interacts with the environment to generate input feasible and infeasible action
sequences to frame what is allowed by the targeted action model. Then, the
temporal learning consists of three steps: (1) TempAMLSI translates temporal
sequences into STRIPS sequences, (2) TempAMLSI learns a non-temporal action
model with AMLSI, and then (3) translates it into a temporal action model.

TempAMLSI contributions in temporal action model learning are threefold:

• Concurrency: TempAMLSI is able to learn both sequential and SHE
temporal action models,

• Partial and noisy observations: TempAMLSI is able to learn temporal
action models with both partial and noisy observations.

• Accuracy: TempAMLSI is accurate even with highly partial and noisy
learning datasets: thus, it minimises proofreading for AI planning experts.
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We show that in many temporal benchmarks TempAMLSI does not require
any correction of the learned domains at all.

The rest of this chapter is organized as follows. In Section 6.2 we present
a problem statement. In Section 6.3 we give some backgrounds on STRIPS
translation techniques, in Section 6.4, we detail TempAMLSI steps. Finally,
Section 6.5 evaluates the performance of TempAMLSI on IPC temporal
benchmarks.

6.2 Problem Statement

We propose a formal framework inspired by (Höller, 2021) in order to define
the temporal learning problem. This formal framework extends the formal
framework proposed in Chapter 2 to the learning problem.

Definition 6.1 A temporal planning problem P is a tuple (L, A, S, d, s0, G, δ, τ, λ)
where:

• L is the set of logical propositions describing the environment.

• A is the set of durative actions.

• S is the set of state labels.

• d : A→ R is the duration function.

• s0 ∈ S is the initial state label.

• G ∈ S is the set of goal state labels.

• δ is the temporal action model.

• τ : S× A→ {true, f alse} is the feasibility function.

• λ : S→ 2L is the observation function.

As for STRIPS problems, L is a set of logical propositions, S is a set of states,
s0 ∈ S is the initial state, G is the set of goal states, and λ is the observation
function. A is a set of durative actions and d : A → R is the duration function.
Unlike STRIPS planning problems, action preconditions, positive and negative
effects are labeled with time labels at-start, at-end and overall. More precisely, δ
includes:

• prec : A× {s, o, e} → 2L: preconditions of a ∈ A at start, over all, and at
end, respectively.

• add : A × {s, e} → 2L: positive effects of a ∈ A at start and at end,
respectively.
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prec(a, s)

add(a, s)
del(a, s)

prec(a, o) prec(a, e)

add(a, e)
del(a, e)

d(a)

Figure 6.1: Structure of a durative action.

• del : A × {s, e} → 2L: negative effects of a ∈ A at start and at end,
respectively.

Example 6.1 For example, for the the action (stack green blue right) we have:

• Preconditions:

• prec((stack green blue right),o) = {(holding green right)}.

• prec((stack green blue right),s) = ∅.

• prec((stack green blue right),e) = {(clear blue)}.

• Positive effects:

• add((stack green blue right),e) = {(on green blue), (clear green)}.

• add((stack green blue right),s) = ∅

• Negative effects:

• del((stack green blue right),e) = {(clear blue), (holding green right)}.

• del((stack green blue right),s) = ∅

The semantics of durative actions is defined in terms of two discrete events
start-a and end-a, each of which is naturally expressed as a STRIPS action.
Starting a durative action a in state s is equivalent to applying the STRIPS action
start-a in s, first verifying that prec(start-a) holds in s. Ending a in state s′ is
equivalent to applying end-a in s′, first by verifying that prec(end-a) holds in s′.
start-a and end-a are defined as follows:

• start-a:

• prec(start-a) = prec(a,s).

• add(start-a) = add(a, s).

• del(start-a) = del(a, s).

• end-a:

• prec(end-a) = prec(a,e).

• add(end-a) = add(e, s).

• del(end-a) = del(a, e).
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Example 6.2 For the durative action (stack blue green right) we have:
add(end-stack green blue right) = add((stack green blue right),e) = { (on green blue),
(clear green)}

start-a and end-a are constrained by the duration of a, denoted d(a) and the
overall precondition: end-a has to occur exactly d(a) time units after start-a, and
the overall preconditions have to hold in all states between start-a and end-a.
Although a has a duration, its effects apply instantaneously at the start and
the end of a, respectively. The preconditions prec(a, s) and prec(a, e) are also
checked instantaneously, but prec(a, o) has to hold for the entire duration of a.
The structure of a durative action is summarized in Figure 6.1.

A temporal action sequence is a set of action-time pairs 〈(a1, t1), . . . , (an, tn)〉.
Each action-time pair (a, t) is composed of a durative action a ∈ A and a
scheduled start timestamp t ∈ R of a, and induces two events start-a and end-
a with associated timestamps t and t + d(a), respectively. Events start-a (resp.
end-a) is applied in the state st (resp. st+d(a)), st (resp. st+d(a)) being a state time-
stamped with t (resp. t + d(a)). Then, the temporal transition function γ can be
rewritten as: γ(s, a, t) = (γ(st, start-a), γ(st+d(a), end-a)). The transition function
γ(s, a, t) is defined if and only if: prec(a, s) ⊆ λ(st), prec(a, e) ⊆ λ(st+d(a)) and
∀t′ such that t ≤ t′ ≤ t + d(a) prec(a, o) ⊆ λ(st′).

Finally, we can define a temporal planning problem P as a formal language:

L(P) = {ω = ((a1, t1) . . . (an, tn))|ai ∈ A, ti ∈ T, g ∈ G, γ(s0, ω, t0) |= g}.

Unlike a STRIPS problem, the alphabet of the L(P) language does not only
contain actions but also timestamps. However, as we will see in Section 6.3, it
is possible to represent a temporal problem in the form of a STRIPS problem, so
it is possible to represent a temporal problem in the form of a regular language
LST RIPS(P).

A Temporal learning problem is as follow: given a set of temporal
observations Ω ⊆ L(P), is it possible to learn the temporal action model and
express it into a PDDL 2.1 domain?

The key idea of our approach is to translate the temporal observations
Ω into non-temporal observations ΩSTRIPS, learns the DFA Σ = (S, A, γ)
corresponding to the regular language LST RIPS(P), infers a STRIPS action
model from Σ and the partial and noisy observation function λ, generalizes
it into PDDL planning domain and translates it into the following PDDL 2.1
domain:

( :durat ive−act ion s tack
:parameters ( ? x ?y − block ?h − hand )
:durat ion (= ? durat ion 1)
: condi t ion ( and

( o v e r a l l ( holding ? a ?h ) )
( a t end ( c l e a r ?y ) ) )

: e f f e c t ( and
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Time

(pick-up green right)

(pick-up red left)

(stack green blue right) (stack red green left)

Time

(pick-up green right) (pick-up red left) (stack green b right) (stack r g left)

Figure 6.2: Sequential Domains: An example of a concurrent plan rescheduled
into a sequential plan.

( a t end ( not ( holding ?x ?h ) ) )
( a t end ( not ( c l e a r ?y ) ) )
( a t end ( c l e a r ?x ) )
( a t end ( handempty ?h ) )
( a t end ( on ?x ?y ) ) ) )

6.3 Background on STRIPS Translation based
Planning

Some planners (Fox and Long, 2002a; Halsey et al., 2004; Celorrio et al., 2015;
Furelos Blanco et al., 2018) solve temporal problems by using non-temporal
planners. To that end, they convert temporal problems into classical non-
temporal STRIPS problems, solve them with a non-temporal planner. Then they
convert the classical plan into a temporal plan with rescheduling techniques.

Temporal action models have different levels of required action concurrency
(Cushing et al., 2007). Some of them are sequential, which means that all the
plan parts containing overlapping durative actions can be rescheduled into a
completely sequential succession of durative actions: each durative action starts
after the previous durative action is terminated. For example, the Blocksworld
domain is a sequential domain (see Figure 6.2).

One important property of sequential temporal domains is that they can be
rewritten as classical domains, and therefore used by classical non-temporal
planners. To solve a sequential temporal problem, we can translate each durative
actions a ∈ A to a compressed STRIPS action Ca that simulates all of a at once
(Coles et al., 2009). The precondition of Ca is the union of the preconditions at-
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Adds (light m) Removes (light m)

Requires (light m) Requires (light m)

(light m)

(mend f1 m) (mend f2 m)

Figure 6.3: An example of SHE temporal domain.

start of a with the preconditions overall and at-end not achieved by the add effect
at-start. The effect of Ca is the effect at-start of a followed immediately by its
effect at-end. Formally, the compressed action Ca is defined as follows:

• prec(Ca) = prec(a, s) ∪ {{prec(a, o) ∪ prec(a, e)} \ del(a, s)}

• add(Ca) = {add(a, s) \ del(a, e)} ∪ add(a, e)}

• del(Ca) = {del(a, s) \ add(a, e)} ∪ del(a, e)}

Example 6.3 For example, for Blocksworld and the action (stack green blue right), we
have:

• prec(C(stack green blue right)) = {(holding right green), (clear blue)}

• add(C(stack green blue right)) = {(handempty right), (on green blue), (clear green)}

• del(C(stack green blue right)) = {(holding right green), (clear blue)}

Once the durative actions are translated, the temporal problem becomes a
STRIPS problem that can be solved using a classical planner. When the STRIPS
problem is solved, the plan containing compressed actions is translated into a
plan with durative actions executed one after another.

Some temporal domains require different forms of action concurrence such
as Single Hard Envelope (SHE) (Coles et al., 2009). SHE is a form of action
concurrency where the execution of a durative action a is required for the
execution of a second durative action a′. Formally, a SHE is a durative action
a′ that adds a proposition p at-start and deletes it at-end while p is an overall
preconditions of a durative action a. Contrary to sequential temporal domains,
for temporal domains containing SHE there exists temporal action sequences
that cannot be sequentially rescheduled.
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Sequential
Domains

SHE
Domains

All Cushing’s form of
required action concurrency

Figure 6.4: Different forms of required action concurrency.

Example 6.4 For example, see the IPC Match domain1 (see Figure 6.3) and the
following durative actions:

• (mend f1 m) such that (light m) ∈ prec((mend f1 m), o)

• (mend f2 m) such that (light m) ∈ prec((mend f2 m), o)

• (light m) such that (light m) ∈ add((light m), s) and (light m) ∈ del((light m), e)

The durative action (mend f m) cannot start before the start of the durative action
(light m) and (mend f m) cannot end after the end of (light m), so (mend f m) has to
start after the start of (light m) and to end before the end of (light m): it is therefore
impossible to sequentially reschedule such temporal action sequences.

Generally, to solve SHE Temporal planning problems, planners start by
translating durative actions into STRIPS actions. For instance, the CRICKEY
planner (Coles et al., 2009) translates each durative action a into three STRIPS
actions start-a, inv-a and end-a. Then classical planners are used to solve the
problem. Finally, scheduling techniques are used to translate the plans. For
instance, the CRICKEY planner builds a set of partially ordered plans with the
STRIPS actions. Then, a Simple Temporal Network is used to translate the set of
partially ordered plans into a temporal plan.

In addition, it should be noted that there are other forms of required action
concurrency besides SHE (Cushing et al., 2007) (see Figure 6.4).

6.4 Temporal Learning

The main idea of TempAMLSI is that it is possible to learn a state machine
by testing durative actions and by observing the states resulting from the

1An agent needs to repair fuses. To repair a fuse the agent needs a lighted match, see Annexe
C for more details.
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Figure 6.5: Overview of the TempAMLSI approach.

executions of the durative actions and to represent it as a PDDL 2.1 planning
domain. TempAMLSI assumes that it knows the names of the durative actions,
i.e., the names of the transitions of the state machine, that it can test them and
it is able to observe the state resulting from their applications as a set of logical
propositions whose predicates are also known.

Based on these assumptions, TempAMLSI produces a set of observations Ω
by using a random walk and learns as output a planning domain modeling
these observations. The planning domain learned is expressed using the PDDL
2.1 language. To perform this learning, TempAMLSI translates Ω into a non
temporal observation set ΩSTRIPS, learns a STRIPS action model, and more
precisely a set of PDDL operators ∆STRIPS and translates it into a temporal action
model, and more precisely a set of temporal PDDL 2.1 operators ∆. TempAMLSI
assumes that L, A, C, S, s0, d are known and the observation function λ is
possibly partial and noisy. No knowledge of the goal states G is required.

The TempAMLSI approach (see Figure 6.5) consists of 4 steps:

1. Observation Generation. TempAMLSI produces a set of observations Ω by
using a random walk. In Section 6.4.1, we will present how TempAMLSI
is able to efficiently exploit these observations by taking into account not
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Figure 6.6: Observation Generation Overview.

only the fact that some actions are deasible in certain states.

2. Observations Translation. After having generated the samples of temporal
sequences (including both feasible and infeasible sequences), TempAMLSI
translates them into non-temporal sequences (see Section - 6.4.2).

3. Classical Action Model Learning. TempAMLSI learns a classical STRIPS
action model, and more precisely a set of PDDL operators, from the
translated samples using the AMLSI algorithm (see Chapter 4).

4. Operators Translation. TempAMLSI translates PDDL operators them into
Temporal PDDL 2.1 operators (see Section - 6.4.3)

6.4.1 Observation Generation

Figure 6.6 gives an overview of this step. To generate the observations in Ω,
TempAMLSI uses random walks by applying a randomly selected durative
action to the initial state of the problem. If this action is feasible, the start event
with the corresponding timestamp is appended to the current action sequence.
Otherwise, the feasible prefix plus the infeasible start event are added to the
set of negative samples I−. The procedure is repeated until the feasible prefix
achieves an arbitrary size and added to the set of positive samples I+. Random
walks are repeated until I+ and I− achieves an arbitrary size.

Example 6.5 As an example, consider the following feasible sequence ω in the
Blocksworld problem:

ω = 〈 (0, start(pick-up green right)), (0.5, start(pick-up red left)), (1, end(pick-up green right)),
(1.1, start(stack green blue right)), (1.5, end(pick-up red left)), (2.1, end(stack green blue right)) 〉

6.4.2 Observations Translation

In practice, the temporal sequences generated by TempAMLSI are timestamped
start and end event sequences (see Example 6.5). This means that durative action
(pick-up green right) starts at 0 and finishes at 1, (pick-up red left) starts at 0.5 and
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finishes at 1.5 and (stack green blue right) starts at 1.1 and finishes at 2.1. In the
rest of this section we focus on the sample and operator translation steps. We
will present two variants for these translations:

2-Operators Translation : The STRIPS action sequences contain, for each
durative action a, the start action start-a and the end action end-a corresponding
to the events of a durative action (see Section - 6.2). This method only translates
the events observed in the temporal sequences. But, it does not directly represent
the overall preconditions that constrain the "life cycle" of a durative action.
Indeed, for a durative action a to be executed the at-start preconditions must
be checked at the start event, and the at-end preconditions must be checked at
the end event, but it is also necessary that the overall preconditions are satisfied
on all the duration of action a.

3-Operators Translation : The STRIPS action sequences contain, for each
durative action a, as for the 2-Operators translation, the start action start-a and
the end action end-a corresponding to the events of a durative action. However,
they also contains inv-a: an invariant action. This invariant action is added at
each new event (a durative action starts or ends) and allows to represent the
overall preconditions.

Example 6.6 Let ω be a temporal sequence such that:

ω = 〈 (0, start(pick-up green right)), (0.5, start(pick-up red left)), (1, end(pick-up green right)),
(1.1, start(stack green blue right)), (1.5, end(pick-up red left)), (2.1, end(stack green blue right)) 〉

• 2-Operators: Each durative action a is converted into two event actions start-a
and end-a. After conversion:

ωSTRIPS2OP = 〈 (start-pick-up green right), (start-pick-up red left), (end-pick-up green right),
(start-stack green blue right), (end-pick-up red left), (end-stack green blue right) 〉

• 3-Operators: In this case, each durative action a is converted into three event
actions start-a, inv-a and end-a. After conversion, we have the following sequence:

ωSTRIPS3OP = 〈 (start-pick-up green right), (inv-pick-up green right), (start-pick-up red left),
(inv-pick-up green right), (inv-pick-up red left), (end-pick-up green right),
(inv-pick-up red left), (start-stack green blue right), (inv-pick-up red left),
(inv-stack green blue right), (end-pick-up red left), (inv-stack green blue right),
(end-stack green blue right) 〉

6.4.3 Operators Translation

After having learned the STRIPS domain with AMLSI, TempAMLSI converts
STRIPS operators into temporal operators.

107



2-Operators at-start (resp. at-end) effects are the effects of start (resp. end)
STRIPS operators. overall preconditions are the intersection of preconditions of
start and end STRIPS operators. And, at-start (resp. at-end) preconditions are
the preconditions of the start (resp. end) STRIPS operators excluding end (resp.
start) preconditions. Formally, 2-Operators translation is as follows:

• prec(a,s)= prec(start-a) \ prec(end-a)

• add(a,s)=add(start-a)

• del(a,s)=del(start-a)

• prec(a,e)= prec(end-a) \ prec(start-a)

• add(a,e)=add(end-a)

• del(a,e)=del(end-a)

• prec(a,o)= prec(start-a) ∩ prec(end-a)

3-Operators at-start (resp. at-end) effects are the effects of start (resp. end)
STRIPS operators. overall preconditions are the preconditions of inv STRIPS
operators. And, at-start (resp. at-end) preconditions are the preconditions of
start (resp. end) STRIPS operators excluding inv preconditions. Formally, 3-
Operators translation is as follows:

• prec(a,s)= prec(start-a) \ prec(inv-a)

• add(a,s)=add(start-a)

• del(a,s)=del(start-a)

• prec(a,e)= prec(end-a) \ prec(inv-a)

• add(a,e)=add(end-a)

• del(a,e)=del(end-a)

• prec(a,o)= prec(inv-a)

Example 6.7 Let’s go back to the Blocksworld example:

• 2-Operators: Let ∆2OP be the set of PDDL operators learned such that:

• prec(start-stack ?x ?y ?h) = { (holding ?x ?h) }, add(start-stack ?x ?y ?h) =
∅, del(start-stack ?x ?y ?h) = ∅

• prec(end-stack ?x ?y ?h) = { (holding ?x ?h),(clear ?y) }, add(end-stack ?x
?y ?h) = { (handempty ?h),(clear ?x),(on ?x ?y) }, del(end-stack ?x ?y ?h) =
{ (holding ?x ?h),(clear ?y) }
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After translation, we have the following set of Temporal PDDL 2.1 operators ∆
such that:

• prec((stack ?x ?y ?h),s) = prec(start-stack ?x ?y ?h) \ prec(end-stack ?x ?y
?h) = ∅

• prec((stack ?x ?y ?h),e) = prec(end-stack ?x ?y ?h) \ prec(start-stack ?x ?y
?h) = { (clear ?y) }

• prec((stack ?x ?y ?h),o) = prec(start-stack ?x ?y ?h) ∩ prec(end-stack ?x ?y
?h) = { (holding ?x ?h) }

• add((stack ?x ?y ?h),s) = add(start-stack ?x ?y ?h) = ∅

• del((stack ?x ?y ?h),s) = del(start-stack ?x ?y ?h) = ∅

• add((stack ?x ?y ?h),e) = add(end-stack ?x ?y ?h) = { (handempty ?h),(clear
?x),(on ?x ?y) }

• del((stack ?x ?y ?h),e) = del(end-stack ?x ?y ?h) = { (holding ?x ?h),(clear
?y) }

• 3-Operators: Let ∆3OP be the set of PDDL operators learned such that:

• prec(start-stack ?x ?y ?h) = { (holding ?x ?h) }, add(start-stack ?x ?y ?h) =
∅, del(start-stack ?x ?y ?h) = ∅

• prec(inv-stack ?x ?y ?h) = { (holding ?x ?h) }, add(inv-stack ?x ?y ?h) = ∅,
del(inv-stack ?x ?y ?h) = ∅

• prec(end-stack ?x ?y ?h) = { (holding ?x ?h),(clear ?y) }, add(end-stack ?x
?y ?h) = { (handempty ?h),(clear ?x),(on ?x ?y) }, del(end-stack ?x ?y ?h) =
{ (holding ?x ?h),(clear ?y) }

After translation, we have the following set of Temporal PDDL 2.1 operators ∆
such that:

• prec((stack ?x ?y ?h),s) = prec(start-stack ?x ?y ?h) \ prec(inv-stack ?x ?y
?h) = ∅

• prec((stack ?x ?y ?h),e) = prec(end-stack ?x ?y ?h) \ prec(inv-stack ?x ?y
?h) = { (clear ?y) }

• prec((stack ?x ?y ?h),o) = prec(inv-stack ?x ?y ?h) = { (holding ?x ?h) }

• add((stack ?x ?y ?h),s) = add(start-stack ?x ?y ?h) = ∅

• del((stack ?x ?y ?h),s) = del(start-stack ?x ?y ?h) = ∅

• add((stack ?x ?y ?h),e) = add(end-stack ?x ?y ?h) = { (handempty ?h),(clear
?x),(on ?x ?y) }

• del((stack ?x ?y ?h),e) = del(end-stack ?x ?y ?h) = { (holding ?x ?h),(clear
?y) }
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Domain Operators Predicates Type
Peg Solitaire 1 3 Sequential

Sokoban 2 3 Sequential
Zenotravel 5 4 Sequential

Match 2 4 SHE
Turn and Open 5 8 SHE

Table 6.1: Benchmark domain characteristics.

6.5 Experiments and Evaluations

The evaluation consists in the comparison of the performance of the 2-Operators
and 3-Operators variants of TempAMLSI.

6.5.1 Experimental Setup

Our experiments are based on 5 temporal IPC action models2 (see Table 6.1)3.
More precisely we test TempAMLSI with three sequential action models (Peg
Solitaire, Sokoban, Zenotravel), and two SHE action models (Match, Turn and
Open). We test each IPC action model with 3 different initial states over ten runs,
and we use ten randomly generated seeds for each run. Finally we generate
partial observations by randomly removing a fraction of the propositions of
the states, and we generate noise by changing the value of a fraction of the
observable propositions. All the tests were performed on an Ubuntu 14.04 server
with a multi-core Intel Xeon CPU E5-2630 clocked at 2.30 GHz with 16GB of
memory. PDDL4J library (Pellier and Fiorino, 2018) was used to generate the
benchmark data.

6.5.2 Evaluation Metrics

TempAMLSI is evaluated using the accuracy (Zhuo et al., 2013) that measures
the learned action model performance to solve new problems.

Formally, Accuracy = N
N∗ is the ratio between N, the number of correctly

solved problems with the learned action model, and N∗, the total number of
problems to solve. In the rest of this section the accuracy is computed over 20
problems. We also report in our results the ratio of (possibly incorrectly) solved
problems. A problem is incorrectly solved when a solution plan is found with
the learned action model that is not correct with respect to the original action
model. In the experiments, we solve the benchmark problems with the TP-
SHE (Celorrio et al., 2015) planner. Plan validation is done with VAL, the IPC
competition validation tool (Howey and Long, 2003).

2https://www.icaps-conference.org/competitions/
3Experimental setup are publicly available at https://github.com/maxencegrand/AMLSI
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Figure 6.7: Average performance of TempAMLSI when the training data set size
increases in terms of number of durative actions in terms of Accuracy.

6.5.3 Discussion

Figure 6.7 shows the average performance of TempAMLSI obtained on the 5
action models of our benchmarks when varying the training data set size. The
size of the training set is indicated in number of durative actions. TempAMLSI is
tested with 20 experimental scenarios: the level of observability varies between
20% and 100% and the level of noise varies between 0% and 20%.

We observe that 2-Operators and 3-Operators variants are accurate when the
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level of noise is not high (< 20%) whatever the level of observability. Only the
2-Operators variant is accurate with high level of noise. Also, we observe that
the 2-Operators variant is generally more robust than the 3-Operators variant.
The fact that the 2-Operators variant is more robust than the 3-Operators variant
can be explained in different ways. First of all, the fact that action sequences of
2-Operators variants are shorter than action sequences of 3-Operators variants
makes DFAs easier to learn since they have fewer states. The better the DFA
learning, the better the operator learning. Moreover, it is easier for 2-Operators
variants than for 3-Operators variants because 2-Operators variants have less
operators.

6.6 Conclusion

In this chapter we have presented TempAMLSI, a novel algorithm to learn
temporal action models. TempAMLSI is built on the AMLSI approach and the
idea to use classical STRIPS translation techniques: after generated a set of
temporal action sequences, TempAMLSI converts temporal action sequences
into non-temporal sequences. Then TempAMLSI uses AMLSI algorithm to learn
a classical action model and converts it into a temporal action.

Our experimental results show that TempAMLSI is able to learn accurately
both sequential and SHE temporal action models from partial and noisy
datasets. However, SHE are not the only form of required action concurrency.
Indeed, there exist different levels of required action concurrency for each
Allen’s interval algebra. So in future works, TempAMLSI could be extended to
encompass more temporal relations. Also, the learned action models are STRIPS-
compliant, i.e. preconditions and effects are sets of logical propositions, it would
be interesting to learn more complex preconditions and effects including logical
quantifiers.

In the next chapter, we will present another extension of the AMSLI approach
learning HTN task models.

112



Chapter 7

HierAMLSI: HTN Task Model
Learning
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7.1 Introduction

As we have seen it in Chapter 2, the Hierarchical Task Network (HTN)
formalism (Erol et al., 1994) is very expressive and used to express a wide
variety of planning problems. This formalism allows planners to exploit domain
knowledge to solve problems more efficiently (Nau et al., 2005) when planning
problems can be naturally decomposed hierarchically in terms of tasks and task
decompositions. In contrast to the classical STRIPS formalism in which only
the action model needs to be specified, the HTN formalism requires to specify
the task model. A task model can be primitive and compound. A primitive
tasks model is described by classical actions. A compound tasks model is
described using HTN methods. A HTN method describes the set of primitive
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(do-put-on green blue)

(do-clear green) (do-clear blue) (do-move green blue)

(unstack red green) (put-down red) ∅ (pick-up green) (stack green blue)

(a) Fully Annotated Execution Traces.
(do-put-on green blue)

(unstack red green) (put-down red) ∅ (pick-up green) (stack green blue)

(b) Partially Annotated Execution Traces.

Figure 7.1: Examples of Task Annotated Execution Traces.

and/or compound tasks requires to decompose a specific compound task. For
this reason, hand-encoding HTN task models is considered more difficult and
more error-prone than classical STRIPS action model. This makes it all the more
necessarily to develop techniques to learn HTN task models.

In Chapter 2, we have seen that some approaches have been proposed to
learn HTN task models, e.g. CAMEL (Ilghami et al., 2002), HTN-Maker (Hogg
et al., 2008, 2009), LHTNDT (Nargesian and Ghassem-Sani, 2008) or HTN-
Learner (Zhuo et al., 2009). These approaches have several drawbacks. First,
they only learn compound task models, except HTN-Learner, i.e., they consider
that the primitive task model is known a priori. Also, although the majority
of approaches learning only compound task models are accurate, this is not
the case for methods learning both primitive and compound task models.
Finally, usually these approaches take as input execution traces containing
task annotations, i.e. execution traces are fully annotated with the compound
tasks and their decompositions (see Figure 7.1a). Obtaining these annotation is
difficult and needs a lot of human effort.

In this chapter, we present HierAMLSI (Grand et al., 2022a), an accurate
learning algorithm for both compound and primitive task models robust to
partial and noisy observations. HierAMLSI is built on AMLSI (see Chapter
4). Like AMLSI, HierAMLSI interacts with the environment to generate input
feasible and infeasible task sequences to frame what is allowed by the targeted
task model. In order to reduce the difficulty to obtain execution traces, execution
traces are only partially annotated, i.e. intermediate task decomposition are
unknown. Figure 7.1 gives a comparison between a fully and a partially
annotated trace.

HierAMLSI contributions in HTN task model learning are fourfold:

• Output: HierAMLSI is able to learn primitive task model or compound
task model or both.

• Partial and noisy observations: HierAMLSI is able to learn task models
with both partial and noisy observations.

• Annotation: HierAMLSI takes as input only partially annotated execution
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traces that allows to reduce the difficulty to obtain annotated execution
traces.

• Accuracy: HierAMLSI is accurate even with highly partial and noisy
learning datasets: thus, it minimises proofreading for AI Planning experts.
We show that in many HTN benchmarks HierAMLSI does not require any
correction of the learned action models at all.

This chapter is organized as follows. In Section 7.2 we present the problem
statement. In Section 7.3, we detail the HierAMLSI steps. Then, Section
7.4 evaluates the performance of HierAMLSI on IPC benchmarks. Although
HierAMLSI is able to learn the primitive task model or the compound task
model or both, the primitive task model learning being done using AMLSI, this
chapter focus on the compound task model learning.

7.2 Problem Statement

We propose a formal framework inspired by (Höller, 2021) in order to define the
HTN learning problem. This formal framework extends the formal framework
proposed in Chapter 2 to the learning problem.

Definition 7.1 An HTN planning problem P is a tuple
(L, C, A, S, M, s0, ωI , G, δ, λ, σ, ζ) where:

• L is the set of logical propositions describing the environment.

• S is the set of state labels.

• C is the set of compound tasks.

• A is the set of actions (or primitive tasks).

• M is the set of HTN method labels.

• s0 ∈ S is the initial state.

• ωI ∈ {A ∪ C}∗ is the initial task network.

• G ∈ S is the set of goal state labels.

• δ is the task model.

• λ : S→ 2L is the observation function.

• σ : M→ C× {A ∪ C}∗ is the method decomposition function1.

• ζ : {A ∪ C}∗ × S→ {A ∪ C}∗ is the decomposition function.
1* is the Kleene operator
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(do-put-on green blue)

ALT

(m0-do-put-on green blue)

∅

(m1-do-put-on green blue)

(do-clear green) (do-clear blue) (do-move green blue)

Figure 7.2: Method decomposition of the task (do-put-on green blue).

As for STRIPS problems, L is a set of logical propositions describing the
world states, S is a set of state labels, s0 ∈ S is the label of the initial state, G ⊆ S
is the set of goal label, λ is the observation function and preconditions, positive
and negative effects are given by the functions prec, add and del included in δ.

A is the set of action (or primitive task) labels and C is a set of compound (or
non primitive) task labels, with C ∩ A = ∅.

Example 7.1 In the Blocksworld example, A is composed of the following primitive
tasks: {(pick-up red),(pick-up blue),(pick-up green),(stack green blue),. . . } and C is
composed of the following compound tasks: {(do-clear green),(do-clear blue),(do-clear
red),(do-put-on green blue),. . . }.

Tasks are maintained in task networks. A task network is a sequence of
tasks. Compound tasks can be decomposed by methods. The set M contains
all method labels. Methods are defined by the function σ : M→ C× {C⋃ A}∗.

Example 7.2 As example, Figure 7.2 gives the method decomposition of the task
(do-put-on green blue). There are two relevant methods, i.e. methods allowing to
decompose this task: (m0-do-put-on green blue) and (m1-do-put-on green blue). The first
one decomposes the task into an empty task network: σ(m0-do-put-on green blue) =
((do-put-on green blue), ∅). The second one decomposes the task into three subtasks:
σ(m1-do-put-on green blue) = ((do-put-on green blue), 〈(do-clear green),(do-clear
blue),(do-move green blue)〉).

A compound task c is decomposable in a state s if and only if there exists a
relevant method m ∈ M such that: σ(m) = (c, ω) and prec(m) ∈ λ(s). The
function ζ : {C⋃ A}∗ × S → {C⋃ A}∗ gives the decomposition function. For a
totally ordered task network ω = ω1tω2, ζ is defined as follows:

ζ(ω1tω2, s) =


ω1tω2 if t is a primitive task.
ω1ω′ω2 if t is a compound task

and t is decomposable in γ(ω1, s).
∅ Otherwise.
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ωI

(do-put-on green blue)

(do-clear green) (do-clear blue) (do-move green blue)

∅ ∅ (pick-up green) (stack green blue)

(do-put-on red green)

(do-clear red) (do-clear green) (do-move red green)

∅ ∅ (pick-up red) (stack red green)

Figure 7.3: A Solution Task Network.

Example 7.3 In our example, we have:

prec(m0-do-put-on green blue) = {(on green blue), (handempty)}
prec(m1-do-put-on green blue) = {(not(on green blue)), (handempty)}

Let’s take our initial state s0, then

ζ((m0-do-put-on green blue), s0) = {(do-clear blue), (do-clear green), (do-move green blue)}
Indeed, we have prec(m0-do-put-on green blue) 6∈ λ(s0) and
prec(m1-do-put-on green blue)) ∈ λ(s0), then ζ cannot decompose the task with
the method (m0-do-put-on green blue) but can decompose the task with the method
(m1-do-put-on green blue).

As ω1tω2 is a totally ordered task network, ω1 contains only primitive tasks.
Indeed, as the network is totally ordered, the compound tasks are decomposed
from left to right and therefore if we have to decompose t then ω1 contains only
primitive task.

We denote ω →∗ ω∗ that ω can be decomposed into ω∗ by 0 or more method
applications. Finally, ωI is the initial task network.

Example 7.4 In our example:

ωI = {(do-put-on green blue), (do-put-on green blue)}

A solution to an HTN planning problem is a task network ω with:

1. ωI →∗ ω, i.e. it can be reached by decomposing ωI .

2. ω ∈ A∗, i.e. all tasks are primitive.

3. γ(s0, ω) |= g, i.e. ω is applicable in so and results in a goal state.

Figure 7.3 gives a solution task network for our example.
Finally, we can define an HTN planning problem P as a formal language:

L(P) = {ω = 〈t1 . . . tn〉|ti ∈ A, γ(s0, ω) |= g, ωI →∗ ω}.
Unlike STRIPS planning problems, the language L(P) is not necessarily regular
(Höller et al., 2014) and cannot be represented as a DFA. As mentioned by
(Höller et al., 2014; Höller, 2021), L(P) is the intersection of two languages:

117



s0start

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

(p
ick
-u
p
re
d)

(p
ut
-d
ow
n
re
d)

(pick-up green)

(put-down blue)

(pick-up
blue)

(put-down
green)

(stack red green)

(stack red blue)

(unstack red green)

(unstack red blue)

(stack
green

red)

(stack green blue)

(unsta
ck green

red)

(unstack green blue)

(sta
ck blu

e re
d)

(stack blue green)
(un

stac
k blu

e re
d)

(unstack blue green)

(pick-up blue) (stack blue red)

(put-down blue) (unstack blue red)

(pick-up green) (stack green red)

(put-down green) (unstack green red)
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(put-down red) (unstack red blue)

Figure 7.4: The DFA accepting the regular language LC(P) for the Blocksworld
example.

1. LC(P) = {ω ∈ A∗|γ(s0, ω) ∈ g}, which is defined by the state transition
system defined by the preconditions and effects of the primitive tasks. This
language is regular. (see Figure 4.1 in Chapter 4)

2. LH(P) = {ω ∈ A∗|wI →∗ ω}, which is defined by the decomposition
hierarchy, i.e. by the compound tasks and methods. In our example,LH(P)
is defined as follows:

• ωI → (do-put-on green blue) (do-put-on red green)
• (do-put-on green blue) → ∅|(do-clear green) (do-clear blue) (move green

blue)
• (do-clear green) → ∅|(do-clear blue) (unstack blue green) (put-down

blue)|(do-clear red) (unstack red green) (put-down red)
• . . .

A HTN learning problem is as follow: given a set of observations Ω ⊆ L(P),
is it possible to learn the decomposition method function σ and express it into a
HDDL domain?

The key idea of our approach is to learn the DFA ΣC = (S, A, γ)
corresponding to the regular language LC(P), and modify the DFA by
adding compound task transitions in order to encode the rules of LH(P) and
approximate the language L(P) with the DFA Σ = (S, {A ∪ C}, γ), infer the
decomposition function σ:

σ(m0-do-put-on b c) = ((m0-do-put-on b c), ∅)
σ(m1-do-put-on b c) = ((m0-do-put-on b c), 〈(do-clear b), (do-clear c), (do-move b c)〉)

. . .
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and the HTN methods preconditions

prec(m0-do-put-on b c) = {(on b c), (handempty)}
prec(m1-do-put-on b c) = {(not(on b c)), (handempty)}

. . .

from ζ, Σ and the partial and noisy observation function λ and express them as
the following HDDL domain:

( :method m0_do_put_on
:parameters ( ?x − block ?y − block )
: t a s k ( do_put_on ?x ?y )
:precondit ion ( and ( on ?x ?y ) ( handempty ) )
:ordered−subtasks ( and ) )

( :method m1_do_put_on
:parameters ( ?x − block ?y − block )
: t a s k ( do_put_on ?x ?y )
:precondit ion ( and ( handempty ) )
:ordered−subtasks ( and

( do_c lear ?x )
( do_clear ?y )
( do_move ?x ?y ) ) )

7.3 The HierAMLSI approach

The main idea of HierAMLSI is that it is possible to learn a state machine by
testing decompositions and transitions and by observing the states resulting
from the executions of the decompositions and to represent it as a HDDL
planning domain. HierAMLSI assumes that it knows the names of the primitive
tasks, i.e., the names of the transitions of the state machine and the names of the
compound tasks, that it can test and it is able to observe their decompositions
and the state resulting from their applications as a set of logical propositions
whose predicates are also known.

Based on these assumptions, HierAMLSI produces a set of observations Ω
by using a random walk and learns as output a planning domain modeling
these observations. The planning domain learned is expressed using the HDDL
language. To perform this learning, HierAMLSI learns first the transition
function expressed as a set of actions δ and the method decomposition function
σ of a particular problem P and generalizes δ and σ as a HDDL domain ∆.
HierAMLSI assumes that it knows L, A, C, S, s0, the decomposition function ζ
is partially annotated (no knowledge about intermediate task decompositions)
and the observation function λ is possibly partial and noisy. No knowledge of
the goal states G is required.

The HierAMLSI approach (see Figure 7.5) consists of 4 steps:
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Input:
Initial State
Task Names

Observable Predicates

Step I: Observation Generation

Step II: DFA Learning

Step III: HTN Methods Generation

Step IV: HDDL Method Learning

Output:
HDDL Planning Domain

Observation Set

DFA

HTN Methods

Figure 7.5: HTN Learning Overview.

1. Observation Generation. HierAMLSI produces a set of observations Ω by
using a random walk. In Section 7.3.1, we will present how HierAMLSI
is able to efficiently exploit these observations by taking into account not
only the fact that some task are decomposable in certain states and their
decomposition but also that others are not.

2. DFA Learning. HierAMLSI learns a DFA approximating the language L(P)
(see Section 7.3.2).

3. HTN Methods Generation. HierAMLSI generates from the DFA learned
previously a set of HTN Methods allowing to decompose all tasks observed
in Ω (see Section 7.3.3).

4. HDDL Methods Learning. Once HTN Methods have been learned,
HierAMLSI has to learn the HTN Methods preconditions. To do this,
HierAMLSI treats HTN Methods as primitive tasks and learn an
action model containing all methods using the learning and refinement
techniques described in Chapter 4.
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AMLSIStates Machine Environnement

Randomly generated
task t decomposable?

Yes/no

Generation of the positive and
negative task sequences

Apply feasible decomposition ζ(t, si)

Observed states {si+1, . . . , si+n}
Observation of the positive
task sequences execution

Figure 7.6: HTN Observation Generation Overview.

start

0 21 43

pick-up(green)

pick-up(blue)

stack(blue green)

stack(green blue) unstack(green blue)

unstack(blue green) put-down(green)

put-down(blue)

do put on(green blue)

do put on(green blue)

clear(green)

do put on(green blue)
clear(blue)
clear(green)

do put on(blue green)

do put on(blue green)

clear(blue)

do put on(blue green)
clear(blue)
clear(green)

Figure 7.7: DFA Learning Step. The primitive task DFA is the DFA containing
only primitive tasks, i.e. black transitions, and the task DFA contains compound
tasks, i.e. dashed red transitions, in addition.

7.3.1 Observation Generation

The observation generation process (see Figure 7.6) is similar to the generation
method described in Chapter 4. To generate the observations in Ω, HierAMLSI
uses random walks by querying a State Machine. HierAMLSI chooses randomly
a (primitive or compound) task t. If the task t is decomposable in a state s,
HierAMLSI adds ζ(t, s), the final decomposition containing only primitive task
to the current primitive task sequence. Otherwise, the feasible prefix plus the
infeasible task is added to set of negative samples I−. The procedure is repeated
until the feasible prefix achieves an arbitrary size and added to the set of positive
samples I+. Random walks are repeated until I+ and I− achieve an arbitrary
size.

7.3.2 DFA Learning

As mentioned in Section 7.2 the language L(P) is not necessarily regular, then
the purpose of this step is to learn a DFA approximating this language. More
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precisely, the DFA learning step is divided in 2 steps: (1) HierAMLSI learns
a DFA corresponding to the language LC(P) which is defined by the state
transition system defined by the preconditions and effects of the primitive tasks
and (2) HierAMLSI adds transitions to represent compound tasks in the DFA to
allow to approximate the language L(P).

Step 1: Primitive task DFA Learning AMLSI starts by using the DFA Learning
algorithm described in Chapter 4 to learn the DFA containing only primitive
tasks.

Step 2: Task DFA Induction Once the primitive task DFA has been learned,
HierAMLSI induces the task DFA by adding compound task transitions in the
DFA, i.e. by adding transitions whose labels are compound task labels.

Example 7.5 Figure 7.7 gives an example of task DFA. Suppose we have the compound
task (do-put-on green blue) has been decomposed by primitive tasks {(pick-up green),
(stack green blue)} in state 0 and reached the state 3. Then we add the following
transitions in the DFA γ(0, (do-put-on green blue))→ 3.

7.3.3 HTN Methods Learning

Once the task DFA is induced HierAMLSI can directly extract HTN Methods
from the task DFA. However, it is possible that a large number of HTN Methods
has been generated.

Example 7.6 Let’s take the task DFA in Figure 7.7. For the compound task (do-put-on
green blue), HierAMLSI can generate several methods:

ω1 = 〈〉
ω2 = 〈(pick-up green), (stack green blue)〉
ω3 = 〈(unstack blue green), (put-down blue), (pick-up green)(stack green blue)〉
ω4 = 〈(do-clear green), (pick-up green)(stack green blue)〉
ω5 = 〈(do-clear green), (do-clear blue), (pick-up green)(stack green blue)〉
ω6 = 〈(do-clear green), (do-clear blue), (do-put-on green blue)〉

. . .

Some of these decompositions are redundant. To facilitate proof reading we
want a more compact description of the HTN Methods. More precisely, we want
minimizing the set of methods allowing to decompose observed compound
tasks. Then, the HTN Methods learning problem can be reduce to a variant
of the set cover problem (Karp, 1972) which is NP-Complete. The Greedy
Approximation (GA) (Chvátal, 1979) is a classical way to approximate the
solution in a polynomial time. GA is an iterative process which, at each stage,
adds the method covering the largest number of decompositions. GA stops once
all decompositions are covered by the method set. The main drawback of this
approach is that it does not take into account the dependencies between tasks.
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(do-clear green) : ω1 = 〈〉, ω2 = 〈(unstack blue green), (put-down blue〉
(do-clear blue) : ω1 = 〈〉, ω2 = 〈(unstack green blue), (put-down green〉
(do-put-on green blue) : ω1 = 〈〉

ω2 = 〈(pick-up green), (stack green blue)〉
ω3 = 〈(unstack blue green), (put-down blue), (pick-up green)(stack green blue)〉

(do-put-on blue green) : ω1 = 〈〉
ω2 = 〈(pick-up blue), (stack blue green)〉
ω3 = 〈(unstack green blue), (put-down green), (pick-up blue)(stack blue green)〉

(a) Step 0: Initialization with no compound task dependency.

(do-clear green) : ω1 = 〈〉, ω2 = 〈(unstack blue green), (put-down blue〉
(do-clear blue) : ω1 = 〈〉, ω2 = 〈(unstack green blue), (put-down green〉
(do-put-on green blue) : ω1 = 〈〉, ω2 = 〈(do-clear green), (pick-up green), (stack green blue)〉
(do-put-on blue green) : ω1 = 〈〉, ω2 = 〈(do-clear blue), (pick-up blue), (stack blue green)〉

(b) Step 1: Induction with 1 compound task dependency.

(do-clear green) : ω1 = 〈〉, ω2 = 〈(unstack blue green), (put-down blue〉
(do-clear blue) : ω1 = 〈〉, ω2 = 〈(unstack green blue), (put-down green〉
(do-put-on green blue) : ω1 = 〈〉, ω2 = 〈(do-clear green), (do-clear blue), (pick-up green), (stack green blue)〉
(do-put-on blue green) : ω1 = 〈〉, ω2 = 〈(do-clear blue), (do-clear green), (pick-up blue), (stack blue green)〉

(c) Step n: Induction with n compound task dependencies.

Figure 7.8: HTN Methods Generation Example.

Example 7.7 For example, the optimal way to decompose the compound task (do-put-on
green blue) is ω1 = 〈〉, ω5 = 〈(do-clear green), (do-clear blue), (pick-up green), (stack
green blue) 〉. So the compound task (do-put-on green blue) depends of the compound
tasks (do-clear green) and (do-clear blue). So, as long as all methods for the compound
tasks (do-clear green) and (do-clear blue) have been generated, GA will always prioritize
ω3 to ω5. Indeed, the decomposition ω5 can be added to the current solution of GA if
and only if all methods for the compound tasks (do-clear green) and (do-clear blue) have
been added.

Heuristic Approach We propose a sound, complete and polynomial heuristic
approach taking into account dependencies between tasks. Figure 7.8 gives an
example for the IPC Blocksworld domain2.

AMLSI starts by initializing the set of HTN methods using the decomposition
function ζ observed during the observation generation step (see Section 7.3.1).
For each compound task we have therefore a set of HTN Methods containing
only primitive tasks and no compound task dependencies.

Example 7.8 For the compound task (do-put-on green blue) we have the three following

2Please note that for the sake of readability the example is deliberately incomplete.

123



decomposition:

ω1 = 〈〉
ω2 = 〈(pick-up green), (stack green blue)〉
ω3 = 〈(unstack blue green), (put-down blue), (pick-up green)(stack green blue)〉

Then, at each iteration HierAMLSI uses GA to compute a new set of HTN
Methods with an additional compound task dependency. Finally, if the new HTN
Method set is smaller than the one learned in the previous iteration, then it is
retained.

Example 7.9 Suppose we have the two following decompositions for the compound task
(do-clear blue):

ω1 = 〈〉
ω2 = 〈(unstack green blue), (put-down green〉

Then, the Greedy Search return only two decompositions for the compound task (do-put-
on a blue):

ω1 = 〈〉
ω2 = 〈(do-clear blue), (pick-up green)(stack green blue)〉

As adding a dependency reduces the number of methods required to decompose the
task (do-clear blue), then these new decompositions are retained and the previous are
removed.

HierAMLSI, repeats this step until it can no longer add new dependencies.

Lemma 7.1 The Heuristic approach is sound and complete. The heuristic approach
generates a set of HTN Methods M able to decompose all observed compound tasks in
the observation set Ω.

Proof 7.1 During the observation generation step (see Section 7.3.1), for each generated
compound task t, we have its final decomposition ζ. So at the initialization step of the
Heuristic approach, there are at least one method able to decompose each observed task.
The initialization is therefore sound and complete. Moreover the following steps of the
Heuristic approach generates methods decomposing as many tasks as the previous steps,
then the Heuristic approach is sound and complete.

Lemma 7.2 The Heuristic approach is polynomial.

Proof 7.2 First of all, we have O(|I+|)3 states in the DFA. Then, in the worst case,
we have a possible HTN Method for each state pair, then we have O(|I+|2) possible
HTN Methods in the DFA. Then, the complexity of GA is O(|I+|3) in term of tested
decomposition. Moreover, GA is repeated |C|2 times. Finally, the complexity of the
Heuristic approach is O(|C|2.|I+|3).

3|I+| denote the number of primitive tasks in the positive sample
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Domain # Primitive Task # Compound Task # Methods # Predicates
Blocksworld 4 4 8 5

Gripper 3 3 4 4
Zenotravel 4 2 5 7
Transport 3 4 6 5

Childsnack 6 1 2 12

Table 7.1: Benchmark domain characteristics. From left to right, the number of
Primitive Tasks, the number of Compound Tasks, the number of Methods and
the number of Predicates for each IPC domain.

7.4 Experiments and evaluations

The purpose of this evaluation is to evaluate the performance of HierAMLSI
through two variants: (1) we evaluate the performance of HierAMLSI when it
learns separately action or methods, and (2) we evaluate the performance of
HierAMLSI when it learns both methods and the action model. We use several
experimental scenarios: the level of noise varies between 0% and 20% and the
level of observable propositions varies between 20% and 100%.

7.4.1 Experimental setup

Our experiments are based on 5 HDDL (Höller et al., 2020; Höller et al., 2019)
action models (see Table - 7.1) from the IPC 2020 competition4: Blocksworld,
Childsnack, Transport, Zenotravel and Gripper5.

HierAMLSI learns HTN action models from one instance. To avoid
performances being biased by the initial state, HierAMLSI is evaluated with
different instances. Also, for each instance, to avoid performances being biased
by the generated observations, experiments are repeated ten times. All tests
were performed on an Ubuntu 14.04 server with a multi-core Intel Xeon CPU
E5-2630 clocked at 2.30 GHz with 16GB of memory. PDDL4J library (Pellier and
Fiorino, 2018) was used to generate the benchmark data.

7.4.2 Evaluation Metrics

HierAMLSI is evaluated using the accuracy (Zhuo et al., 2013) that measures the
learned action model performance to solve new problems. As for the previous
chapters, the accuracy is computed over 20 problems. The problems are solved
with the TFD (Totally Ordered Fast Downward) planner (Pellier and Fiorino,
2020) provided by the PDDL4J library. Plan validation is done with VAL, the
IPC competition validation tool (Howey and Long, 2003).

4https://www.icaps-conference.org/competitions/
5Experimental setup are publicly available at https://github.com/maxencegrand/AMLSI
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Figure 7.9: Average performance of HierAMLSI when the training data set size
increases in number of tasks in terms of Accuracy.

7.4.3 Discussion

Figure 7.9 shows the average performance of HierAMLSI obtained on the 5
action models of our benchmarks when varying the training data set size. The
size of the training set is indicated in number of tasks. HierAMLSI is tested with
20 experimental scenarios: the level of observability varies between 20% and
100% and the level of noise varies between 0% and 20%.

First of all, we observe that when HierAMLSI learns only the set of HTN
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Methods, learned action models are generally optimal (Accuracy = 100%) with
600 tasks whatever the experimental scenario. Also, 100 tasks are generally
sufficient to learn accurate action models (Accuracy > 50%). Then, when
HierAMLSI learns both action model and HTN Methods performances are
similar when observations are noiseless. However, when observations are noisy,
performances are downgraded. This is due to learning errors in the primitive
task model learned. However, learned action models remain accurate when
there are at least 300 tasks in the training dataset.

To conclude, we have shown experimentally that HierAMLSI learns accurate
action models. More precisely, when the action model is known, HierAMLSI
generally learns optimal task models. Also the performances are downgraded
when AMLSI has to learn the primitive task model in addition to the set
of HTN methods, but the learned task models remain accurate. Performance
degradation are due to learning errors in the primitive task model.

7.5 Conclusion

In this chapter we have addressed the problem of learning HTN task models
from traces with noisy and partial observations. To deal with this problem, we
have we have presented HierAMLSI, an HTN extension of the AMLSI approach.
This extension is composed of four steps. The first step consists in building two
training sets of feasible and infeasible action sequences. In the second step, our
extension induces a DFA. The third step is the generation of the HTN Methods,
and the last step learns HDDL planning domain. Our experimental results show
that our extension is able to learn accurately both primitive and compound task
models from partial and noisy observations.

As for temporal action model learning, the learned action models are
STRIPS-compliant, i.e. preconditions and effects are sets of logical propositions,
it would be interesting to learn more complex preconditions and effects
including logical quantifiers. Also, we have restricted ourselves to Totally
Ordered HTN planning, a possible extension would be to generalize the
HierAMLSI approach for Partially Ordered HTN planning.
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Chapter 8

Conclusion & Perspectives
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8.1 Introduction

The field of artificial intelligence aims to design and build agents able to
perceive, learn and act without any human intervention to perform complex
tasks. To perform complex tasks, the agent must plan the best possible actions
and execute them. To do this, the agent needs an action model. An action model
is a semantic representation of the actions it can execute. In an action model, an
action is represented using (1) a precondition: the set of conditions that must
be satisfied to execute an action, and (2) the effects: the set of properties of the
world that will be altered by executing an action. STRIPS planning is a classical
method to design these action models. However, STRIPS action models are
generally too restrictive to be used in real-world applications. There are other
forms of action models: temporal action models allowing to represent actions
that can be executed concurrently, HTN action models allowing to represent
actions as tasks and subtasks, etc. These models are less restrictive, but the less
restrictive the models are the more difficult they are to design. In this thesis, we
are interested in approaches facilitating the acquisition of these action models
based on machine learning techniques.

In this thesis, we claim that to be efficient, an action model learning approach
has to be able to learn action models less restrictive than STRIPS action model.
Also, learning approaches require training datasets. For these approaches to
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be usable in practice, the data acquisition must not be too costly. Moreover,
it is imperative that the action models are sufficiently accurate to be used
by planners without planning experts proofreading step. Also, the learning
approach has to be robust to both partial and noisy observations, i.e. the learned
action models must be accurate even if observations are partial and/or noisy.
Finally, the learning approach must require few training data while avoiding
the overfitting issues.

8.2 Contributions – The AMLSI Approach

In this thesis we have introduced AMLSI (Action Model Learning with State
machine Interaction), a learning approach for action model acquisition.

In a first step we have shown that our approach was able to learn accurate
STRIPS action models. More precisely, in Chapter 4, we presented AMLSI, a
learning approach for STRIPS action models. This approach is based on the
fact that STRIPS planning problems are related to state machines equivalent to
regular grammars. The key idea of our approach is to learn the state machine
related to the planning problem using RGI algorithms and inducing the action
model from this state machine. Also, as planning problems are declared using
a planning domain, our approach has to represent the STRIPS action model
in the form of a PDDL planning domain. The AMLSI approach tests different
actions in the environment in which the agent has to solve planning problems,
observes how the environment evolves when these actions are executed, and
learns the action model from its observations. We have shown experimentally
that the AMLSI approach learns accurate action models even with high level
of partiality and/or noise in the observations. Also, as the AMLSI approach
uses both feasible and infeasible action sequences, the AMLSI approach requires
few training data to learn accurate action models. Finally, we have shown that
the AMLSI approach outperforms state-of-the-art approaches. Then, in Chapter
5, we have presented IncrAMLSI, an incremental extension of the AMLSI
approach. This incremental extension allows us to take into account that training
data acquisition beging a long term evolutive process.

In a second step we have extended the AMLSI approach to learn less
restrictive action models. First of all, in Chapter 6, we have presented
TempAMLSI, an accurate temporal extension of the AMLSI approach for
both sequential and SHE temporal action models robust to partial and noisy
observations. The key idea of the TempAMLSI approach is to use translation
techniques used by some planners Fox and Long (2002a); Halsey et al. (2004);
Celorrio et al. (2015); Furelos Blanco et al. (2018) for the learning problem. Like
AMLSI, TempAMLSI interacts with the environment to generate input feasible
and infeasible action sequences to frame what is allowed by the targeted action
model. Then, the temporal learning consists of three steps: (1) TempAMLSI
translates temporal sequences into STRIPS sequences, (2) TempAMLSI learns
a non-temporal action model with AMLSI, and then (3) translates it into a
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temporal action model. Then, in Chapter 7, we have presented HierAMLSI,
an accurate HTN extension of the AMLSI approach for both compound and
primitive task models robust to partial and noisy observations. HierAMLSI is
built on AMLSI (see Chapter 4). Like AMLSI, HierAMLSI interacts with the
environment to generate input feasible and infeasible action sequences to frame
what is allowed by the targeted task model. Then, HierAMLSI learns the state
machine, generates HTN methods and induces HTN task models.

8.3 Perspectives

Our work has many perspectives. We develop here the main ones.

8.3.1 AMLSI Extension

A first perspective is to extend the AMLSI approach.
The main limitation of the AMLSI approach is the expressiveness of

the learned action models. Although that the AMLSI approach learns less
restrictive models than STRIPS, the preconditions and effects of actions are
STRIPS-compliant, i.e. preconditions and effects are sets of logical propositions.
However, it is possible to have more complex preconditions and effects. First
of all, the ADL Pednault (1994) formalism allows to include logical quantifier
in preconditions and effects. During this thesis, we tested an extension of
AMLSI for ADL action models. However, this extension was not able to learn
accurate action models when the observations were noisy and/or partial. Also,
the AMLSI approach does not learn any numerical features. However, some
description languages and AI planning formalism allow to take into account
numerical features such as probabilistic effects Younes and Littman (2004);
Sanner (2010), numerical function and fluent Fox and Long (2003, 2002b, 2006).
A first perspective for our approach will be to extend it to respond to these
limitations.

As we have stated in Chapter 2, planning problems less restrictive than
STRIPS problems are more complex to solve. ML-based techniques have been
proposed to facilitate the resolution of these problems such as macro actions
Dawson and Siklóssy (1977); Korf (1985); Botea et al. (2005); Castellanos-Paez
et al. (2018), generalized policies Minton (2012); Borrajo and Veloso (1997); de la
Rosa et al. (2007, 2008) and heuristics De La Rosa et al. (2009); Yoon et al. (2006)
learning. The objective of these methods is to learn macro, policy or heuristics
to facilitate the resolution of planning problems from execution traces. For
example, macro actions are actions composed of several actions. For example,
for Blocksworld, we could have the macro action pick-up-stack composed of
the actions pick-up and stack. To learn these macros, the learning approaches
typically take as input a set of solution plans and return the macros that have
been observed often. A possible perspective could be to reuse the key idea of
AMLSI to learn macros, policies and heuristics: learn the state machine related
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to the planning problem using grammar induction algorithms and induce, from
this state machine, macros, policies and heuristics. More generally, we could
extend the AMLSI approach to be able to both learn action models and learn
structured knowledge in order to efficiently solve planning problems using the
learned action models.

8.3.2 Applications

As we have seen before, the main interest of approaches learning action models
is to facilitate the acquisition of these models in order to use them in real-world
applications such as aerospace Fisher et al. (2000); Backes et al. (2004); Bresina
et al. (2005), autonomous vehicles Urmson and Whittaker (2008), logistics Cross
and Walker (1994), robotics Dvorak et al. (2014); Lallement et al. (2018); Liang
et al. (2022), industry Hoffmann et al. (2009), cybersecurity Edelkamp et al.
(2009). A natural perspective for our work would therefore be to use the
AMLSI approach to facilitate the action model acquisition in these real-world
applications.

A second application would be to take advantage of the interactive aspect
of the AMLSI approach to facilitate the development of tools using end-user
interactions. For example the programming of robots, and more precisely, the
Programming by Demonstration (PbD) Billard et al. (2008) of robots. PbD
is an end-user programming technique for teaching a robot new skills by
demonstrating them. AMLSI can be adapted to this context to learn action
models. As we have seen before, the first step of the AMLSI approach is a query
phase. In the context of PbD this query phase could be the interaction between
the robot and the user: the robot could ask the user about feasible and infeasible
actions or tasks. In this context, the demonstrations would be the execution of
the generated action sequences.

Finally, in this thesis we took advantage of the fact that planning problems
are equivalent to grammars to learn action models. Also, we have seen in
Chapter 3 that grammatical induction has several applications, e.g. Syntactic
and Structural Pattern Recognition, Natural Language Processing Adriaans and
van Zaanen (2004); Dupont et al. (2008); Boström (1996); Boström (1998); Cruz-
Alcázar and Vidal (1998); Bex et al. (2006); Cruz-Alcázar and Vidal (2008); Stein
et al. (2006); Bréhélin et al. (2001); Raffelt and Steffen (2006); Berg et al. (2006).
A final application could be to use AMLSI in these application settings when
a representation in the form of action models can have benefits. For example,
in the field of System Behavior Modeling, grammar induction algorithms are
used to discover the behavior of a system, software, industrial process etc.
The behavior of these systems are represented as a grammar and can then be
analyzed to automatize them Dupont et al. (2008), detect intrusions Su and
Wassermann (2006); Godefroid et al. (2008) etc. In this context, AMLSI could
be used to learn action models representing the behavior of these systems.
The advantage would be to have a more compact and readable representation
of these systems. Also, the learned action models could be directly used to

132



automatize these systems, to detect intrusions Edelkamp et al. (2009) etc.
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Nomenclature

ω A sequence.

δ Action model.

γ Transition function.

σ HTN method decomposition function.

τ Feasabili function.

ζ Decomposition function.

A Set of actions/Alphabet.

add Set of positive effects.

C The set of compound tasks.

d Duration function.

del Set of negative effects.

G Set of goal states.

L Set of logical propositions.

M Set of HTN methods.

P A planning problem.

prec Set of preconditions.

S Set of states.

s0 Initial state.

at-end Time label for the end of a durative action.

at-start Time label for the start of a durative action.
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end-a End event of a durative action a.

overall Time label for the whole duration of a durative action.

start-a Start event of a durative action a.

∆ A set of planning operators.

∆P The set of planning operators accepting L(P) and generating λ.

λ Observation function.

postset(a) The set of states where a is an ingoing transition.

preset(a) The set of states where a is an outgoing transition.

LC(P) The language defined by the state transition system.

LH(P) The language defined by the decomposition hierarchy.

L(P) The language accepted the set of solution plans of the planning problem
P.

Ω The training dataset.

L The complement language of L.

Π A Partition.

Σ An automaton.

BSMCA(I+, I−) The border set.

I+ A positive sample.

I− A negative sample.

Lat A lattice.

MCA(I+) The Maximal Canonical Automaton.

Pr(L) The prefix set of L.

PTA(I+) The Prefix Tree Acceptor.

L A language.

L(Σ) The language accepted by Σ.

L(H(ωj)) The language induced after reading the j first element of Ω.

L/u the right quotient of L.
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Appendix B

Experiments – Detailed Results

Contents
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3.1 STRIPS Learning . . . . . . . . . . . . . . . . . . . . . . . 154

B.3.2 Temporal Learning . . . . . . . . . . . . . . . . . . . . . . 155

B.3.3 HTN Learning . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.1 Introduction

In this chapter, we present all the experiments performed in the framework of
this thesis. Table B.1 shows benchmarks action model characteristics. A complete
description of all action models in the IPC benchmark is given in annexes C.

STRIPS Learning: Our experiments are based on 13 STRIPS-Compliant IPC
benchmarks: Blocksworld, Gripper, Hanoi, N-Puzzle, Peg Solitaire, Parking,
Zenotravel, Sokoban, Visit All, Elevator, Spanner, Logistics and Floortile. Table -
B.1a shows our experimental setup.

Temporal Learning: Our experiments are based on 5 temporal IPC action
models (see Table B.1b). More precisely we test TempAMLSI with three
Sequential action models (Peg Solitaire, Sokoban, Zenotravel), and two SHE
action models (Match, Turn and Open).

HTN: Learning: Our experiments are based on 5 HDDL (Höller et al., 2020;
Höller et al., 2019) action models (see Table - B.1c) from the IPC 2020
competition: Blocksworld, Childsnack, Transport, Zenotravel and Gripper.
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Domain #Operators #Predicates E+ E− ω+ ω−
Blocksworld 4 5 100 32546 49.8 33.8

Gripper 3 4 100 13163 51.3 33.9
Hanoi 4 7 100 34600 50.3 33.7

N-Puzzle 1 3 100 36626 49.9 33.7
Peg-Solitaire 3 4 100 14508 6.9 5.3

Parking 4 5 100 64963 50.6 34.0
Zenotravel 5 5 100 18154 50.4 33.9

Sokoban 2 4 100 40302 50.2 33.8
Visit All 4 7 100 16702 50.9 35.7
Elevator 4 6 100 13122 51.0 35.7
Spanner 4 6 100 4628 7.0 5.1
Logistics 6 3 100 31622 49.7 32.9
Floortile 6 10 100 48773 51.0 37.1

(a) From left to right: the number of operators, the number of predicates, the average
size of the E+ and the E− testing dataset, and the average length of the positive (resp.
negative) testing sequences ω+ ∈ E+ (resp. ω− ∈ E−).

Domain # Operators # Predicates Type |E+| |E−| |ω+| |ω−|
Peg Solitaire 1 3 Sequential 100 4309 3.9 3.7

Sokoban 2 3 Sequential 100 57165 25.0 13.4
Zenotravel 5 4 Sequential 100 22711 25.0 13.5

Match 2 4 SHE 100 3259 4.0 4.3
Turn and Open 5 8 SHE 100 23148 25.0 13.1

(b) From left to right: the number of operators and predicates, the temporal action
model type, the average size of the E+ and the E− testing dataset, and the average
length of the positive (resp. negative) testing sequences ω+ ∈ E+ (resp. ω− ∈ E−).

Domain # Primitive Task # Compound Task # Methods # Predicates E+ E− ω+ ω−
Blocksworld 4 4 8 5 100 5804 45.5 30.1

Gripper 3 3 4 4 100 8336 38.4 26.5
Zenotravel 4 2 5 7 100 3575 32.4 22.3
Transport 3 4 6 5 100 5710 42.0 28.0

Childsnack 6 1 2 12 100 25256 29.6 23.7

(c) From left to right, the number of Primitive Tasks, the number of Compound Tasks,
the number of Methods, the number of Predicates for each IPC action model, the average
size of the E+ and the E− testing dataset, and the average length of the positive (resp.
negative) testing sequences ω+ ∈ E+ (resp. ω− ∈ E−).

Table B.1: IPC Benchmark Domain Characteristics.

For each experiment, we test each IPC action model with 3 different initial
states over ten runs, and we use ten randomly generated seeds for each run.
Also, we generate partial observations by randomly removing a fraction of the
propositions of the states, and we generate noise by changing the value of a
fraction of the observable propositions. All tests were performed on an Ubuntu
14.04 server with a multi-core Intel Xeon CPU E5-2630 clocked at 2.30 GHz
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with 16GB of memory. PDDL4J library (Pellier and Fiorino, 2018) was used to
generate the benchmark data.

B.2 Evaluation metrics

We evaluate AMLSI and all its extensions with three different metrics: the
syntactical error (Zhuo et al., 2010b) that computes the distance between the
original action model and the learned model, the accuracy (Zhuo et al., 2013)
that expresses the capability of the learned action model to solve new problems
(without proofreading). Even though the syntactical error is the most used
metric in the literature, we argue that the accuracy is the most important metric
in practice for planning because it measures to what extent a learned action
model is useful. Indeed, it often happens that one missing precondition or effect,
which amounts to a small syntactical error, makes the learned action model
unable to solve planning problems. Finally, the last metric is the FScore that
expresses the capability of the learned action model to generate the grammar
related to the planning problem.

Formally, the syntactical error error(o) for an operator is the Hamming
distance between the learned operator and the ground truth operator, i.e. the
number of extra or missing predicates in the preconditions prec(o), the positive
effects add(o) and the negative effects del(o) divided by the total number of
possible predicates. By extension, the syntactical error for an action model
composed of a set of operator O is:

Eσ =
1
|O| ∑

o∈O
error(o)

Then, FScore = 2.P.R
P+R where R is the recall, i.e. the rate of sequences e

accepted by the original IPC action model that are successfully accepted by
the learned action model, computed as R = |{e∈E+ | accept(δ,e)}|

|E+| , and P is the
precision, i.e. the rate of sequences e accepted by the learned action model
that are also accepted by the original IPC action model, computed as P =

|{e∈E+ | accept(δ,e)}|
|{e∈E+ | accept(δ,e)}∪{e∈E− | accept(δ,e)}| . The test sets E+ and E− used to compute the
FScore are generated by random walks.

Finally, the accuracy Acc = N
N∗ is the ratio between N, the number of

correctly solved problems with the learned action model, and N∗, the total
number of problems to solve. In the rest of this section the accuracy is computed
over 20 problems. STRIPS problems are solved with Fast Downward v19.06
(Helmert, 2006), Temporal problems are solved with the TP-SHE (Celorrio et al.,
2015) planner and HTN problems are solved with the TFD planner (Pellier
and Fiorino, 2020) provided by the PDDL4J library. For each experiment, plan
validation is done with VAL (Howey and Long, 2003), which is used in the IPC
competitions. In addition to the Accuracy we report the IPC score in order to
compute the quality of generated plans. The score of an action model on a solved
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problem is the ratio between the length of a reference plan, i.e. a plan generated
by the reference IPC action model, and the length of the plan generated by the
learned action model. The score on an unsolved problem is 0. The score of a
learned action model is the sum of its scores for all problems.

B.3 Discussion

B.3.1 STRIPS Learning

Figures B.1 – B.48 show the average performance of AMLSI and LSONIO
obtained on the 13 action models of our benchmarks when varying the training
dataset size. The size of the training set is indicated in number of actions. AMLSI
and LSONIO are tested with 20 experimental scenarios: the level of observability
varies between 20% and 100% and the level of noise varies between 0% and
20%. We have three variants of AMLSI: (B) Base: DFA learning is done without
Pairwise Sequences (PS) and without Tabu Search, (B+PS) Base + PS: DFA
learning is done with PS but without Tabu Search, and (B+PS+Tabu) Base + PS +
Tabu: DFA learning is done with PS and with Tabu Search during the refinement
step.

Comparison with LSONIO We observe that AMLSI outperforms LSONIO
whatever the size of the learning dataset in terms of accuracy or in terms of
syntactical distance. We also observe that AMLSI needs very little data to obtain
a relatively large accuracy (almost 90% with only a learning dataset of 200
actions) in the most difficult scenario.

Ablation study The Base+PS variant is more robust to partial observations
than the Base variant of AMLSI. This is due to the fact that DFA learned with
PS are generally better that action models learned without PS. More precisely,
DFA learned with PS generally have fewer states and fewer transitions. This
allows for fewer false transitions which makes it easier to learn effects and
preconditions. However, when observations are noisy, the Base+PS variant
is not able to learn action models accurate enough to be used for planning
whatever the level of observability. Only the Base+PS+Tabu variant is both
robust to partial and noisy observations. Our ablation study confirms that
adding unobserved Pairwise Sequences improves the learning of the DFA,
and makes AMLSI more robust to partial observations while refining the
preconditions and the effects by using a Tabu Search allows AMLSI to learn
accurate action models with a high level of noise.

Convergent Learning Figures B.53a – B.63d shows the average performance of
IncrAMLSI obtained on the 13 action models of our benchmarks when varying
the convergence criterion T. IncrAMLSI is tested with 20 experimental scenarios:
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the level of observability varies between 20% and 100% and the level of noise
varies between 0% and 20%. Whatever the experimental scenario, IncrAMLSI
learns from accurate models. Also, increasing T generally leads to better results.
Finally, we can observe that whatever the value of T and the experimental
scenario, IncrAMLSI converges in less than 35 iterations.

Finally, we observe that the plans generated with the learned action models
are generally a little longer than plansg generated with the IPC action models,
even with optimal accuracy (ipc < 20). When the accuracy is not optimal, we
notice that the IPC score is close to the ratio between the ipc score with optimal
accuracy and the rate of solved problems, this implies that even when the
accuracy is not optimal the plans are not much longer than the original plans.

B.3.2 Temporal Learning

Figures B.65 – B.84 shows the average performance of HierAMLSI obtained on
the 5 action models of our benchmarks when varying the training data set size.
The size of the training set is indicated in number of tasks. HierAMLSI is tested
with 20 experimental scenarios: the level of observability varies between 20%
and 100% and the level of noise varies between 0% and 20%.

When observations are complete and noiseless we observe that we observe
that both variants learn optimal action models. Indeed, FScore and accuracy are
optimal. However, we can observe that the syntactical distance is not optimal
for some action models.this is due to the fact that some at start and at end effect
preconditions are encoded as overall preconditions and vice versa.

Also, We observe that 2-Operators and 3-Operators variants are accurate
when the level of noise is not high (< 20%) whatever the level of observability.
Only the 2-Operators variant is accurate with high level of noise. Also, we
observe that the 2-Operators variant is generally more robust than the 3-
Operators variant. The fact that the 2-Operators variant is more robust than the
3-Operators variant can be explained in different ways. First of all, the fact that
action sequences of 2-Operators variants are shorter than action sequences of 3-
Operators variants makes DFAs easier to learn since they have fewer states. The
better the DFA learning, the better the operator learning. Moreover, it is easier
for 2-Operators variants than for 3-Operators variants because 2-Operators
variants have less operators.

Finally, as for STRIPS learning, we observe that the plans generated with the
learned action models are generally a little longer than plans generated with the
IPC action models. However, we notice that the IPC score is close to the ratio
between the IPC score with optimal accuracy and the rate of solved problems,
this implies that even when the accuracy is not optimal the plans are not much
longer than the original plans.
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B.3.3 HTN Learning

The purpose of this evaluation is to evaluate the performance of HierAMLSI
though two variants: (1) we evaluate the performance of HierAMLSI when only
HTN Methods are learned, i.e. the action model is known and (2) we evaluate
the performance of HierAMLSI when both HTN Methods are learned and the
action model is unknown. We use several experimental scenarios: the level of
noise varies between 0% and 20% and the level of observable propositions varies
between 20% and 100%.

Figures B.85 – B.99 show the average performance of HierAMLSI obtained
on the 5 action models of our benchmarks when varying the training data set
size. The size of the training set is indicated in number of tasks. HierAMLSI is
tested with 20 experimental scenarios: the level of observability varies between
20% and 100% and the level of noise varies between 0% and 20%.

First of all, we observe that when HierAMLSI learns only the set of HTN
Methods, learned action models are generally optimal (Accuracy = 100%) with
600 tasks whatever the experimental scenario. Also, 100 tasks are generally
sufficient to learn accurate action models (Accuracy > 50%). Then, when
HierAMLSI learns both action model and HTN Methods performances are
similar when observations are noiseless. However, when observations are noisy,
performances are downgraded. This is due to the fact that there are learning
error in the primitive task model learned. However, learned action models
remain accurate when there are at least 300 tasks in the training dataset.

Finally, as for STRIPS learning, we observe that the plans generated with the
learned action models are generally a little longer than plans generated with the
IPC action models. However, we notice that the IPC score is close to the ratio
between the IPC score with optimal accuracy and the rate of solved problems,
this implies that even when the accuracy is not optimal the plans are not much
longer than the original plans.
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Figure B.1: Blocksworld – Average performances in terms of syntactical disatnce
of AMLSI and LSONIO when the training dataset increases in terms of number
of actions.
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Figure B.2: Blocksworld – Average performances in terms of FScore of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.3: Blocksworld – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.4: Blocksworld – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.5: Gripper – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.6: Gripper – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.7: Gripper – Average performances in terms of accuracy of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.8: Gripper – Average performances in terms of IPC score of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.9: Hanoi – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.

165



0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 0%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 1%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 5%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 20%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Observability: 100%

Observability: 80%

Observability: 60%

Observability: 40%

Observability: 20%

Base Base + PS Base + PS + Tabu LSONIO

Figure B.10: Hanoi – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.11: Hanoi – Average performances in terms of accuracy of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.12: Hanoi – Average performances in terms of IPC score of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.13: N Puzzle – Average performances in terms of syntactical disatnce
of AMLSI and LSONIO when the training dataset increases in terms of number
of actions.

169



0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 0%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 1%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 5%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 20%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Observability: 100%

Observability: 80%

Observability: 60%

Observability: 40%

Observability: 20%

Base Base + PS Base + PS + Tabu LSONIO

Figure B.14: N Puzzle – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.15: N Puzzle – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.16: N Puzzle – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.17: Peg Solitaire – Average performances in terms of syntactical
disatnce of AMLSI and LSONIO when the training dataset increases in terms
of number of actions.
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Figure B.18: Peg Solitaire – Average performances in terms of FScore of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.19: Peg Solitaire – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.20: Peg Solitaire – Average performances in terms of IPC score of
AMLSI and LSONIO when the training dataset increases in terms of number
of actions.
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Figure B.21: Parking – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.22: Parking – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.23: Parking – Average performances in terms of accuracy of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.24: Parking – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.25: Zenotravel – Average performances in terms of syntactical disatnce
of AMLSI and LSONIO when the training dataset increases in terms of number
of actions.
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Figure B.26: Zenotravel – Average performances in terms of FScore of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.27: Zenotravel – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.28: Zenotravel – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.29: Sokoban – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.30: Sokoban – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.31: Sokoban – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.32: Sokoban – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.33: Elevator – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.

189



0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 0%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 1%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 5%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Noise: 20%

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Size

F
S
co
re

(%
)

Observability: 100%

Observability: 80%

Observability: 60%

Observability: 40%

Observability: 20%

Base Base + PS Base + PS + Tabu LSONIO

Figure B.34: Elevator – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.35: Elevator – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.36: Elevator – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.37: Visit All – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.38: Visit All – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.39: Visit All – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.40: Visit All – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.41: Logistics – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.42: Logistics – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.43: Logistics – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.44: Logistics – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.45: Floortile – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.46: Floortile – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.47: Floortile – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.48: Floortile – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.49: Spanner – Average performances in terms of syntactical disatnce of
AMLSI and LSONIO when the training dataset increases in terms of number of
actions.
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Figure B.50: Spanner – Average performances in terms of FScore of AMLSI and
LSONIO when the training dataset increases in terms of number of actions.
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Figure B.51: Spanner – Average performances in terms of accuracy of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.52: Spanner – Average performances in terms of IPC score of AMLSI
and LSONIO when the training dataset increases in terms of number of actions.
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Figure B.53: Blocksworld – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.54: Gripper – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.55: Hanoi – Average performance of IncrAMLSI when the convergence
criterion T varies between 1 and 15.
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Figure B.56: N Puzzle – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.57: Peg Solitaire – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.58: Parking – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.59: Zenotravel – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.60: Elevator – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.61: Visit All – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.62: Logistics – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.63: Floortile – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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(b) FScore
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Figure B.64: Spanner – Average performance of IncrAMLSI when the
convergence criterion T varies between 1 and 15.
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Figure B.65: Peg Solitaire – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of syntactical
distance.
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Figure B.66: Peg Solitaire – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of FScore.
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Figure B.67: Peg Solitaire – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of Accuracy.
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Figure B.68: Peg Solitaire – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of IPC.
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Figure B.69: Zenotravel – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of syntactical
distance.
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Figure B.70: Zenotravel – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of FScore.
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Figure B.71: Zenotravel – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of Accuracy.
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Figure B.72: Zenotravel – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of IPC.
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Figure B.73: Sokoban – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of syntactical distance.
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Figure B.74: Sokoban – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of FScore.
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Figure B.75: Sokoban– Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of Accuracy.
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Figure B.76: Sokoban – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of IPC.
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Figure B.77: Match – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of syntactical distance.
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Figure B.78: Match– Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of FScore.
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Figure B.79: Match – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of Accuracy.
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Figure B.80: Match – Average performance of TempAMLSI when the training
data set size increases in number of tasks in terms of IPC.
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Figure B.81: Turn and Open – Average performance of TempAMLSI when
the training data set size increases in number of tasks in terms of syntactical
distance.
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Figure B.82: Turn and Open – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of FScore.
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Figure B.83: Turn and Open – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of Accuracy.
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Figure B.84: Turn and Open – Average performance of TempAMLSI when the
training data set size increases in number of tasks in terms of IPC.
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Figure B.85: Blocksworld – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of FScore.
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Figure B.86: Blocksworld – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of Accuracy.
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Figure B.87: Blocksworld – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of IPC.
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Figure B.88: Gripper – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of FScore.
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Figure B.89: Gripper – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of Accuracy.

245



0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

Noise: 0%

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

Noise: 1%

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

Noise: 5%

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

Noise: 20%

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

0 200 400 600 800 1,000 1,200
0

5

10

15

20

Size

IP
C

(%
)

Observability: 20%

Observability: 40%

Observability: 60%

Observability: 80%

Observability: 100%

Only Methods Only Action Model Action Model + Methods

Figure B.90: Gripper – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of IPC.
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Figure B.91: Zenotravel – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of FScore.
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Figure B.92: Zenotravel – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of Accuracy.
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Figure B.93: Zenotravel – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of IPC.
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Figure B.94: Transport – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of FScore.
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Figure B.95: Transport – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of Accuracy.
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Figure B.96: Transport – Average performance of HierAMLSI when the training
data set size increases in number of tasks in terms of IPC.
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Figure B.97: Childsnack – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of FScore.
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Figure B.98: Childsnack – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of Accuracy.
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Figure B.99: Childsnack – Average performance of HierAMLSI when the
training data set size increases in number of tasks in terms of IPC.
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C.4.3 Zenotravel . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

C.4.4 Childsnack . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

C.4.5 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

C.1 Introduction

In this chapter we give a detailed description of all the action models used in this
thesis. We start by describing the STRIPS action models and more particularly
their declaration in the form of PDDL planning domains. For each domain, we
give a description of the domain, the list of the predicates and the list of the
operators with their PDDL declaration. Then, we describe the temporal action
models and more precisely their declaration in the form of PDDL 2.1 planning
domains. As for PDDL domains, for each domain, we give a description of the
domain, the list of the predicates and the list of the operators with their PDDL 2.1
declaration. Finally, we describe the HTN task models and more precisely their
declaration in the form of HDDL planning domains. For each domain, we give
a description of the domain, the list of the predicates, the list of the compound
tasks and the list of the primitive tasks with their HDDL declaration and the list
of HDDL methods.

C.2 STRIPS Planning Domains

C.2.1 Blocksworld

Description Classical STRIPS planning domain, where stackable blocks need
to be re-assembled on a table. Using its hand, an autonomous agent can stack a
block onto a block, unstack a block from a block, put down a block, or pick up a
block.

Predicates

• (on ?x - block ?y - block): Thee block ?x is on the block ?y.

• (ontable ?x - block): The block ?x is on the table.

• (clear ?x - block): The block ?x is clear, i.e. there no block on ?x and it is not
held .

• (holding ?x - block): The block ?x is held by the autonomous agent.

• (handempty): The autonomous agent does not hold any block.
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Operators

• (pick-up ?x - block): The autonomous agent picks a block placed on the table.

1 ( : a c t i o n pick−up
2 :parameters ( ? x − block )
3 :precondit ion ( and
4 ( c l e a r ?x )
5 ( ontable ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( not ( ontable ?x ) )
9 ( not ( c l e a r ?x ) )

10 ( not ( handempty ) )
11 ( holding ?x ) ) )

• (put-down ?x - block): The autonomous agent puts down a block on the
table.

1 ( : a c t i o n put−down
2 :parameters ( ? x − block )
3 :precondit ion ( holding ?x )
4 : e f f e c t ( and
5 ( not ( holding ?x ) )
6 ( c l e a r ?x )
7 ( handempty )
8 ( ontable ?x ) ) )

• (stack ?x - block ?y - block): The autonomous agent stacks a block on an other
block.

1 ( : a c t i o n s tack
2 :parameters ( ? x ?y − block )
3 :precondit ion ( and
4 ( holding ?x )
5 ( c l e a r ?y ) )
6 : e f f e c t ( and
7 ( not ( holding ?x ) )
8 ( not ( c l e a r ?y ) )
9 ( c l e a r ?x )

10 ( handempty )
11 ( on ?x ?y ) ) )

• (unstack ?x - block ?y - block): The autonomous agent unstacks a block from
an other block.
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1 ( : a c t i o n unstack
2 :parameters ( ? x ?y − block )
3 :precondit ion ( and
4 ( on ?x ?y )
5 ( c l e a r ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( holding ?x )
9 ( c l e a r ?y )

10 ( not ( c l e a r ?x ) )
11 ( not ( handempty ) )
12 ( not ( on ?x ?y ) ) ) ) )

C.2.2 Gripper

Description In this domain, there are a robot called robby with grippers and a
set of rooms containing balls. The goal is to transport balls from a given room to
another.

Predicates

• (at-robby ?r - room): The robot robby is in the room ?r.

• (at ?b - ball ?r - room): The ball ?b is in the room ?r.

• (free ?g - gripper): The Robby’s gripper ?g is free.

• (carry ?b - ball ?g - gripper): Robby is carrying the ball ?b with its gripper ?g.

Operators

• (move ?from - room ?to - room): Robby goes to the room ?to.

1 ( : a c t i o n move
2 :parameters ( ? from ? to − room )
3 :precondit ion ( at−robby ? from )
4 : e f f e c t ( and
5 ( at−robby ? to )
6 ( not ( at−robby ? from ) ) ) )

• (pick ?b - ball ?r - room ?g - gripper): Robby picks the ball with its gripper.

1 ( : a c t i o n pick
2 :parameters ( ? b − b a l l ? r − room ?g − gripper )
3 :precondit ion ( and
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4 ( a t ?b ? r )
5 ( at−robby ? r )
6 ( f r e e ?g ) )
7 : e f f e c t ( and
8 ( carry ?b ?g )
9 ( not ( a t ?b ? r ) )

10 ( not ( f r e e ?g ) ) ) )

• (drop ?b - ball ?r - room ?g - gripper): Robby drops the held ball.

1 ( : a c t i o n drop
2 :parameters ( ? b − b a l l ? r − room ?g − gripper )
3 :precondit ion ( and
4 ( carry ?b ?g )
5 ( at−robby ? r ) )
6 : e f f e c t ( and
7 ( a t ?b ? r )
8 ( f r e e ?g )
9 ( not ( carry ?b ?g ) ) ) ) )

C.2.3 Hanoi

Description The Tower of Hanoi is a puzzle consisting of several rods and a
number of disks of various diameters, which can slide onto any rod. It is possible
to stack a disk on a second if the latter is bigger.

Predicates

• (on ?x - disk ?y - disk): The disk ?x is on the disk ?y.

• (bigger ?x - disk ?y - disk): The disk ?x is bigger than disk ?y.

• (on-location ?x - block ?l - location): The disk ?x is on the location ?l.

• (clear ?x - disk): The disk ?x is clear.

• (clear-location ?l - location): The location ?l is clear.

• (holding ?x - disk): The disk ?x is held by the autonomous agent.

• (handempty): The autonomous agent does not hold any block.
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Operators

• (pick-up ?x - disk ?l - location): The autonomous agent picks a disk placed
on ?l.

1 ( : a c t i o n pick−up
2 :parameters ( ? x − disk ? l − l o c a t i o n )
3 :precondit ion ( and
4 ( c l e a r ?x )
5 ( on− location ?x ? l )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( not ( on− location ?x ? l ) )
9 ( not ( c l e a r ?x ) )

10 ( not ( handempty ) )
11 ( c l e a r− l o c a t i o n ? l )
12 ( holding ?x ) ) )

• (put-down ?x - disk ?l - location): The autonomous agent puts down a disk
on ?l.

1 ( : a c t i o n put−down
2 :parameters ( ? x − disk ? l − l o c a t i o n )
3 :precondit ion ( and
4 ( holding ?x )
5 ( c l e a r− l o c a t i o n ? l ) )
6 : e f f e c t ( and
7 ( not ( holding ?x ) )
8 ( c l e a r ?x )
9 ( handempty )

10 ( not ( c l e a r− l o c a t i o n ? l ) )
11 ( on− location ?x ) ) )

• (stack ?x - disk ?y - disk): The autonomous agent stacks ?x on ?y. ?y must be
bigger than ?x.

1 ( : a c t i o n s tack
2 :parameters ( ? x ?y − disk )
3 :precondit ion ( and
4 ( bigger ?y ?x )
5 ( holding ?x )
6 ( c l e a r ?y ) )
7 : e f f e c t ( and
8 ( not ( holding ?x ) )
9 ( not ( c l e a r ?y ) )

10 ( c l e a r ?x )

262



11 ( handempty )
12 ( on ?x ?y ) ) )

• (unstack ?x - disk ?y - disk): The autonomous agent unstacks ?x from ?y.

1 ( : a c t i o n unstack
2 :parameters ( ? x ?y − disk )
3 :precondit ion ( and
4 ( on ?x ?y )
5 ( c l e a r ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( holding ?x )
9 ( c l e a r ?y )

10 ( not ( c l e a r ?x ) )
11 ( not ( handempty ) )
12 ( not ( on ?x ?y ) ) ) ) )

C.2.4 N-Puzzle

Description The N-Puzzle (also called Mystic Square) is a sliding puzzle
having N2 − 1 square tiles numbered 1–(N2 − 1) on a square of N × N tiles.

Predicates

• (at ?t - tile ?p - position): The tile ?t is at ?p.

• (neighbor ?p1 - position ?p2 - position): ?p1 is neighbor of ?p2.

• (empty ?p - position): There are no tile at ?p.

Operators

• (move ?t - tile ?from - position ?to - position): The tile in position ?from is
moved to the empty adjacent position ?to.

1 ( : a c t i o n move
2 :parameters ( ? t − t i l e ? from ? to − p o s i t i o n )
3 :precondit ion ( and
4 ( neighbor ? from ? to )
5 ( a t ? t ? from )
6 ( empty ? to ) )
7 : e f f e c t ( and
8 ( a t ? t ? to )
9 ( empty ? from )

10 ( not ( a t ? t ? from ) )
11 ( not ( empty ? to ) ) ) )
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C.2.5 Peg Solitaire

Description Peg solitaire is a board game for one player involving movement
of pegs on a board with holes.

Predicates

• (in-line ?x - location ?y - location ?z - location): The locations ?x, ?y and ?z are
in the same line.

• (occupied ?l - location): The location ?l is occupied by a token.

• (free ?l - location): The location ?l is not occupied by any token.

• (move-ended): The move is over.

• (last-visited ?l - location): The position ?l is the last location altered (by
added or removed a token) during the movement.

Operators

• (jump-new-move ?from - location ?over - location ?to - location): The player
begins a new move. More precisely, The peg in the ?from location is moves
into the ?to location. The peg placed in the ?over location is removed.

1 ( : a c t i o n jump−new−move
2 :parameters ( ? from ? over ? to − l o c a t i o n )
3 :precondit ion ( and
4 ( move−ended )
5 ( in− l ine ? from ? over ? to )
6 ( occupied ? from )
7 ( occupied ? over )
8 ( f r e e ? to ) )
9 : e f f e c t ( and

10 ( not ( move−ended ) )
11 ( not ( occupied ? from ) )
12 ( not ( occupied ? over ) )
13 ( not ( f r e e ? to ) )
14 ( f r e e ? from )
15 ( f r e e ? over )
16 ( occupied ? to )
17 ( l a s t−v i s i t e d ? to ) ) )

• (jump-continue-move ?from - location ?over - location ?to - location): The player
continues its move a remove the peg in the location ?over.
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1 ( : a c t i o n jump−continue−move
2 :parameters ( ? from ? over ? to − l o c a t i o n )
3 :precondit ion ( and
4 ( l a s t−v i s i t e d ? from )
5 ( in− l ine ? from ? over ? to )
6 ( occupied ? from )
7 ( occupied ? over )
8 ( f r e e ? to ) )
9 : e f f e c t ( and

10 ( not ( occupied ? from ) )
11 ( not ( occupied ? over ) )
12 ( not ( f r e e ? to ) )
13 ( f r e e ? from )
14 ( f r e e ? over )
15 ( occupied ? to )
16 ( not ( l a s t−v i s i t e d ? from ) )
17 ( l a s t−v i s i t e d ? to ) ) )

• (end-move ?loc - location): The player ends its movement.

1 ( : a c t i o n end−move
2 :parameters ( ? l o c − l o c a t i o n )
3 :precondit ion ( l a s t−v i s i t e d ? l o c )
4 : e f f e c t ( and
5 ( move−ended )
6 ( not ( l a s t−v i s i t e d ? l o c ) ) ) )

• (unstack ?x - block ?y - block):

1 ( : a c t i o n unstack
2 :parameters ( ? x − block ?y − block )
3 :precondit ion ( and
4 ( on ?x ?y )
5 ( c l e a r ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( holding ?x )
9 ( c l e a r ?y )

10 ( not ( c l e a r ?x ) )
11 ( not ( handempty ) )
12 ( not ( on ?x ?y ) ) ) ) )
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C.2.6 Zenotravel

Description A transportation domain involves transporting people around in
planes, using different modes of movement: fast and slow.

Predicates

• (at ?p - person ?c - city): The person ?p is at the city ?c.

• (at-aircraft ?a - aircraft ?c - city): The aircraft ?a is at the city ?c.

• (in ?p - person ?a - aircraft): The person ?p is in the aircraft ?a.

• (fuel-level ?a - aircraft ?l - flevel): The fuel level ?l for the aircraft ?a.

• (next ?l1 - flevel ?l2 - flevel): If the flevel is ?l1 then the next level will be ?l2.

Operators

• (board ?p - person ?a - aircraft ?c - city): Passenger ?p boards in ?a at the city
?c.

1 ( : a c t i o n board
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :precondit ion ( and
4 ( a t ?p ? c )
5 ( a t− a i r c r a f t ? a ? c ) )
6 : e f f e c t ( and
7 ( not ( a t ?p ? c ) )
8 ( in ?p ? a ) ) )

• (debark ?p - person ?a - aircraft ?c - city): Passenger ?p debarks from ?a at the
city ?c.

1 ( : a c t i o n debark
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :precondit ion ( and
4 ( in ?p ? a )
5 ( a t− a i r c r a f t ? a ? c ) )
6 : e f f e c t ( and
7 ( a t ?p ? c )
8 ( not ( in ?p ? a ) ) ) )

• (fly ?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel): ?a flies from ?c1 to
?c2. Its fuel reserves are reduced from ?l1 to ?l2.
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1 ( : a c t i o n f l y
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ? l 1 ? l 2 − f l e v e l )
5 :precondit ion ( and
6 ( a t− a i r c r a f t ? a ? c1 )
7 ( fue l− l eve l ? a ? l 1 )
8 ( next ? l 2 ? l 1 ) )
9 : e f f e c t ( and

10 ( not ( a t− a i r c r a f t ? a ? c1 ) )
11 ( a t− a i r c r a f t ? a ? c2 )
12 ( not ( fue l− l eve l ? a ? l 1 ) )
13 ( fue l− l eve l ? a ? l 2 ) ) )

• (zoom ?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel ?l3 - flevel): ?a flies
from ?c1 to ?c2. Its fuel reserves are reduced from ?l1 to ?l3.

1 ( : a c t i o n zoom
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ? l 1 ? l 2 ? l 3 − f l e v e l )
5 :precondit ion ( and
6 ( a t− a i r c r a f t ? a ? c1 )
7 ( fue l− l eve l ? a ? l 1 )
8 ( next ? l 2 ? l 1 )
9 ( next ? l 3 ? l 2 ) )

10 : e f f e c t ( and
11 ( not ( a t− a i r c r a f t ? a ? c1 ) )
12 ( a t− a i r c r a f t ? a ? c2 )
13 ( not ( fue l− l eve l ? a ? l 1 ) )
14 ( fue l− l eve l ? a ? l 3 ) ) )

• (refuel ?a - aircraft ?c - city ?l - flevel ?l1 - flevel): ?a fills up with fuel in the
city ?c. Its fuel reserves are increased from ?l to ?l1.

1 ( : a c t i o n r e f u e l
2 :parameters ( ? a − a i r c r a f t ? c − c i t y ? l ? l 1 − f l e v e l )
3 :precondit ion ( and
4 ( fue l− l eve l ? a ? l )
5 ( next ? l ? l 1 )
6 ( a t− a i r c r a f t ? a ? c ) )
7 : e f f e c t ( and
8 ( fue l− l eve l ? a ? l 1 )
9 ( not ( fue l− l eve l ? a ? l ) ) ) ) )
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C.2.7 Parking

Description The domain involves parking cars on a street with N curb
locations, and where cars can be double-parked but not triple-parked.

Predicates

• (at-curb ?c - car): The car ?c is parked to a curb.

• (at-curb-num ?c - car ?c - curb): The car ?c is parked to the curb ?c.

• (behind-car ?c ?front-car - car): ?c is parked behind ?front-car.

• (car-clear ?c - car): There are no cars in the back of ?c.

• (curb-clear ?c - curb): There are no cars at ?c.

Operators

• (move-curb-to-curb ?c - car ?csrc - curb ?cdest - curb): Car parked on the curb
?csrc is moved to the curb ?cdest.

1 ( : a c t i o n move−curb−to−curb
2 :parameters ( ? c − car ? c s r c ? cdes t − curb )
3 :precondit ion ( and
4 ( car−c lear ? c )
5 ( curb−clear ? cdes t )
6 ( at−curb−num ? c ? c s r c ) )
7 : e f f e c t ( and
8 ( not ( curb−clear ? cdes t ) )
9 ( curb−clear ? c s r c )

10 ( at−curb−num ? c ? cdes t )
11 ( not ( at−curb−num ? c ? c s r c ) ) ) )

• (move-curb-to-car ?c - car ?csrc - curb ?cdest - car): Car parked on the curb
?csrc is moved to the back of ?cdest.

1 ( : a c t i o n move−curb−to−car
2 :parameters ( ? c − car ? c s r c − curb ? cdes t − car )
3 :precondit ion ( and
4 ( car−c lear ? c )
5 ( car−c lear ? cdes t )
6 ( at−curb−num ? c ? c s r c )
7 ( at−curb ? cdes t ) )
8 : e f f e c t ( and
9 ( not ( car−c lear ? cdes t ) )

10 ( curb−clear ? c s r c )
11 ( behind−car ? c ? cdes t )

268



12 ( not ( at−curb−num ? c ? c s r c ) )
13 ( not ( at−curb ? c ) ) ) )

• (moce-car-to-curb ?c - car ?csrc - car ?cdest - curb): Car parked on the back of
?csrc is moved to the curb ?cdest.

1 ( : a c t i o n move−car−to−curb
2 :parameters ( ? c ? c s r c − car ? cdes t − curb )
3 :precondit ion ( and
4 ( car−c lear ? c )
5 ( curb−clear ? cdes t )
6 ( behind−car ? c ? c s r c ) )
7 : e f f e c t ( and
8 ( not ( curb−clear ? cdes t ) )
9 ( car−c lear ? c s r c )

10 ( at−curb−num ? c ? cdes t )
11 ( not ( behind−car ? c ? c s r c ) )
12 ( at−curb ? c ) ) )

• (move-car-to-car ?c - car ?csrc - car ?cdest - car): Car parked on the back of
?csrc is moved to the back of ?cdest.

1 ( : a c t i o n move−car−to−car
2 :parameters ( ? c ? c s r c ? cdes t − car )
3 :precondit ion ( and
4 ( car−c lear ? c )
5 ( car−c lear ? cdes t )
6 ( behind−car ? c ? c s r c )
7 ( at−curb ? cdes t ) )
8 : e f f e c t ( and
9 ( not ( car−c lear ? cdes t ) )

10 ( car−c lear ? c s r c )
11 ( behind−car ? c ? cdes t )
12 ( not ( behind−car ? c ? c s r c ) ) ) )

C.2.8 Sokoban

Description Sokoban is a puzzle in which the player pushes boxes around in
a warehouse, trying to get them to storage locations

Predicates

• (at ?o - box ?l - location): the box ?o is at ?l.

• (at-robot ?l - location): The robot is at ?l.
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• (adjacent ?l1 - location ?l2 - location ?d - direction): The robot can move from
?l1 to ?l2, and ?l2 is on the ?d of ?l1.

• (clear ?l - location): There are nothing at ?l.

Operators

• (move ?from - location ?to - location ?dir - direction): The player moves to the
?dir of the location ?from to the location ?to.

1 ( : a c t i o n move
2 :parameters ( ? from ? to − l o c a t i o n
3 ? d i r − d i r e c t i o n )
4 :precondit ion ( and
5 ( c l e a r ? to )
6 ( at−robot ? from )
7 ( ad jacent ? from ? to ? d i r ) )
8 : e f f e c t ( and
9 ( at−robot ? to )

10 ( not ( at−robot ? from ) ) ) )

• (push ?rloc - location ?bloc - location ?floc - location ?dir - direction ?b - box):
The player pushes the box ?b to the location ?floc. The initial position of
the player was ?rloc and its final position is the initial position of the box:
?bloc.

1 ( : a c t i o n push
2 :parameters ( ? r l o c ? bloc ? f l o c − l o c a t i o n
3 ? d i r − d i r e c t i o n
4 ?b − box )
5 :precondit ion ( and
6 ( at−robot ? r l o c )
7 ( a t ?b ? bloc )
8 ( c l e a r ? f l o c )
9 ( ad jacent ? r l o c ? bloc ? d i r )

10 ( ad jacent ? bloc ? f l o c ? d i r ) )
11 : e f f e c t ( and
12 ( at−robot ? bloc )
13 ( a t ?b ? f l o c )
14 ( c l e a r ? bloc )
15 ( not ( at−robot ? r l o c ) )
16 ( not ( a t ?b ? bloc ) )
17 ( not ( c l e a r ? f l o c ) ) ) )
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C.2.9 Visit All

Description An agent in the middle of a square grid n × n must visit all the
cells in the grid

Predicates

• (connected ?x - place ?y - place): Places ?x and ?y are connected.

• (at-robot ?x - place): The robot is at ?x.

• (visited ?x - place): The robot has already visited ?x.

Operators

• (move ?curpos - place ?nextpos - place): Agent moves from the ?curpos to the
?nextpos.

1 ( : a c t i o n move
2 :parameters ( ? curpos ? nextpos − place )
3 :precondit ion ( and
4 ( at−robot ? curpos )
5 ( connected ? curpos ? nextpos ) )
6 : e f f e c t ( and
7 ( at−robot ? nextpos )
8 ( not ( at−robot ? curpos ) ) ) )

• (visit ?pos - place): Agent marks its position as visited.

1 ( : a c t i o n v i s i t
2 :parameters ( ? pos − place )
3 :precondit ion ( and
4 ( at−robot ? pos )
5 ( not ( v i s i t e d ? pos ) ) )
6 : e f f e c t ( v i s i t e d ? pos ) )

C.2.10 Elevator

Description Transport a number of passengers with an elevator from their
origin to their destination floors. With explicit control over the passengers that
get in or out of the lift.
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Predicates

• (origin ?p - passenger ?f - floor): ?p waits for the elevator at the floor ?f.

• (destin ?p - passenger ?f - floor): ?p wants to go to the floor ?f.

• (ontable ?x - block): The block ?x is on the table.

• (above ?f1 - floor ?f2 - floor): ?f1 is above ?f2.

• (boarded ?p - passenger): ?p is on board of the elevator.

• (served ?p - passenger): ?p has been served by the elevator.

• (lift-at ?f - floor): The elevator is at floor ?f.

Operators

• (board ?f - floor ?p - passenger): Passenger ?p boards the elevator at floor ?f.

1 ( : a c t i o n board
2 :parameters ( ? f − f l o o r ?p − passenger )
3 :precondit ion ( and
4 ( l i f t− a t ? f )
5 ( o r i g i n ?p ? f )
6 ( not ( boarded ?p ) )
7 ( not ( served ?p ) ) )
8 : e f f e c t ( boarded ?p ) )

• (depart ?f - floor ?p - passenger): Passenger ?p exits the elevator at floor ?f.

1 ( : a c t i o n board
2 :parameters ( ? f − f l o o r ?p − passenger )
3 :precondit ion ( and
4 ( l i f t− a t ? f )
5 ( d e s t i n ?p ? f )
6 ( boarded ?p )
7 ( not ( served ?p ) ) )
8 : e f f e c t ( and
9 ( not ( boarded ?p ) )

10 ( served ?p ) ) )

• (up ?f1 - floor ?f2 - floor): The elevator goes up to floor ?f2 from floor ?f1.

1 ( : a c t i o n up
2 :parameters ( ? f1 ? f2 − f l o o r )
3 :precondit ion ( and
4 ( l i f t− a t ? f1 )
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5 ( above ? f1 ? f2 ) )
6 : e f f e c t ( and
7 ( l i f t− a t ? f2 )
8 ( not ( l i f t− a t ? f1 ) ) ) )

• (down ?f1 - floor ?f2 - floor): The elevator goes down to floor ?f2 from floor
?f1.

1 ( : a c t i o n down
2 :parameters ( ? f1 ? f2 − f l o o r )
3 :precondit ion ( and
4 ( l i f t− a t ? f1 )
5 ( above ? f2 ? f1 ) )
6 : e f f e c t ( and
7 ( l i f t− a t ? f2 )
8 ( not ( l i f t− a t ? f1 ) ) ) )

C.2.11 Floortile

Description A set of robots use different colors to paint patterns in floor tiles.
The robots can move around the floor tiles in four directions (up, down, left, and
right). Robots paint with one color at a time but can change their spray guns to
any available color. However, robots can only paint the tile that is in front (up)
and behind (down) them, and once a tile has been painted, no robot can stand
on it.

Predicates

• (robot-at ?r - robot ?x - tile): Robot ?r is at tile ?t.

• (robot-has ?r - robot ?c - color): Robot ?r has the color ?c ?t.

• (above ?x - tile ?y - tile): ?y is above ?x.

• (below ?x - tile ?y - tile): ?y is below ?x.

• (rightOf ?x - tile ?y - tile): ?y is to the right of ?x.

• (leftOf ?x - tile ?y - tile): ?y is to the left of ?x.

• (clear ?x - tile): The tile ?x is clear, i.e. there no robot or paint on ?x.

• (painted ?x - tile ?c - color): ?x is painted in ?c.

• (available-color ?c - color): ?c is available.

• (free-color ?r - robot): Robot ?x has no color.
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Operators

• (change-color ?r - robot ?c - color ?c2 - color): Robot ?r replaces the color ?c
with the color ?c2.

1 ( : a c t i o n change−color
2 :parameters ( ? r − robot
3 ? c ? c2 − c o l o r )
4 :precondit ion ( and
5 ( robot−has ? r ? c )
6 ( ava i lab le− co lor ? c2 ) )
7 : e f f e c t ( and
8 ( not ( robot−has ? r ? c ) )
9 ( robot−has ? r ? c2 ) ) )

• (paint-up ?r - robot ?y - tile ?x - tile ?c - color): Robot ?r, place on tile ?x, paint
the tile above it (?y) with color ?c.

1 ( : a c t i o n paint−up
2 :parameters ( ? r − robot
3 ?y ?x − t i l e
4 ? c − c o l o r )
5 :precondit ion ( and
6 ( robot−has ? r ? c )
7 ( robot−at ? r ?x )
8 ( above ?y ?x )
9 ( c l e a r ?y ) )

10 : e f f e c t ( and
11 ( not ( c l e a r ?y ) )
12 ( painted ?y ? c ) ) )

• (paint-down ?r - robot ?y - tile ?x - tile ?c - color): Robot ?r, place on tile ?x,
paint the tile below it (?y) with color ?c.

1 ( : a c t i o n paint−down
2 :parameters ( ? r − robot
3 ?y ?x − t i l e
4 ? c − c o l o r )
5 :precondit ion ( and
6 ( robot−has ? r ? c )
7 ( robot−at ? r ?x )
8 ( below ?y ?x )
9 ( c l e a r ?y ) )

10 : e f f e c t ( and
11 ( not ( c l e a r ?y ) )
12 ( painted ?y ? c ) ) )
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• (up ?r - robot ?x - tile ?y - tile): Robot ?r goes on the tile above.

1 ( : a c t i o n up
2 :parameters ( ? r − robot ?x ?y − t i l e )
3 :precondit ion ( and
4 ( robot−at ? r ?x )
5 ( above ?y ?x )
6 ( c l e a r ?y ) )
7 : e f f e c t ( and
8 ( robot−at ? r ?y )
9 ( not ( robot−at ? r ?x ) )

10 ( c l e a r ?x )
11 ( not ( c l e a r ?y ) ) ) )

• (down ?r - robot ?x - tile ?y - tile): Robot ?r goes on the tile below.

1 ( : a c t i o n down
2 :parameters ( ? r − robot ?x ?y − t i l e )
3 :precondit ion ( and
4 ( robot−at ? r ?x )
5 ( below ?y ?x )
6 ( c l e a r ?y ) )
7 : e f f e c t ( and
8 ( robot−at ? r ?y )
9 ( not ( robot−at ? r ?x ) )

10 ( c l e a r ?x )
11 ( not ( c l e a r ?y ) ) ) )

• (right ?r - robot ?x - tile ?y - tile): Robot ?r goes on the tile to its right.

1 ( : a c t i o n r i g h t
2 :parameters ( ? r − robot ?x ?y − t i l e )
3 :precondit ion ( and
4 ( robot−at ? r ?x )
5 ( r ightOf ?y ?x )
6 ( c l e a r ?y ) )
7 : e f f e c t ( and
8 ( robot−at ? r ?y )
9 ( not ( robot−at ? r ?x ) )

10 ( c l e a r ?x )
11 ( not ( c l e a r ?y ) ) ) )

• (left ?r - robot ?x - tile ?y - tile): Robot ?r goes on the tile to its left.

1 ( : a c t i o n l e f t
2 :parameters ( ? r − robot ?x ?y − t i l e )
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3 :precondit ion ( and
4 ( robot−at ? r ?x )
5 ( l e f t O f ?y ?x )
6 ( c l e a r ?y ) )
7 : e f f e c t ( and
8 ( robot−at ? r ?y )
9 ( not ( robot−at ? r ?x ) )

10 ( c l e a r ?x )
11 ( not ( c l e a r ?y ) ) ) )

C.2.12 Logistics

Description Transport packages within cities via trucks, and between cities
via airplanes. Locations within a city are directly connected (trucks can move
between any two such locations), and so are the cities.

Predicates

• in-city ?loc - place ?c - city): The place ?loc is in ?c.

• (at ?obj - physobj ?loc - place): The physical object ?obj is at place ?loc.

• (in ?pkg - package ?veh - vehicle): The package ?pkg is in the vehicle ?veh.

Operators

• (load-truck ?pkg - package ?t - truck ?loc - place): The package ?pkg is loaded
in the truck ?t at the place ?loc.

1 ( : a c t i o n load−truck
2 :parameters ( ? pkg − package
3 ? t − t ruck
4 ? l o c − place )
5 :precondit ion ( and
6 ( a t ? t ? l o c )
7 ( a t ?pkg ? l o c ) )
8 : e f f e c t ( and
9 ( not ( a t ?pkg ? l o c ) )

10 ( in ?pkg ? t ) ) )

• (unload-truck ?pkg - package ?t - truck ?loc - place): The package ?pkg is
unloaded from the truck ?t at the place ?loc.

1 ( : a c t i o n unload−truck
2 :parameters ( ? pkg − package
3 ? t − t ruck
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4 ? l o c − place )
5 :precondit ion ( and
6 ( a t ? t ? l o c )
7 ( in ?pkg ? t ) )
8 : e f f e c t ( and
9 ( not ( in ?pkg ? t ) )

10 ( a t ?pkg ? l o c ) ) )

• (load-airplane ?pkg - package ?a - airplane ?loc - place): The package ?pkg is
loaded in the airplane ?a at the place ?loc.

1 ( : a c t i o n load−airplane
2 :parameters ( ? pkg − package
3 ? a − a i r p l a n e
4 ? l o c − place )
5 :precondit ion ( and
6 ( a t ? a ? l o c )
7 ( a t ?pkg ? l o c ) )
8 : e f f e c t ( and
9 ( not ( a t ?pkg ? l o c ) )

10 ( in ?pkg ? a ) ) )

• (unload-airplane ?pkg - package ?a - airplane ?loc - place): The package ?pkg is
unloaded from the airplane ?a at the place ?loc.

1 ( : a c t i o n unload−airplane
2 :parameters ( ? pkg − package
3 ? a − a i r p l a n e
4 ? l o c − place )
5 :precondit ion ( and
6 ( a t ? a ? l o c )
7 ( in ?pkg ? a ) )
8 : e f f e c t ( and
9 ( not ( in ?pkg ? a ) )

10 ( a t ?pkg ? l o c ) ) )

• (drive-truck ?t - truck ?loc-from - place ?loc-to - place ?c - city): The truck moves
from ?loc-from to ?loc-to in the city ?c.

1 ( : a c t i o n drive− truck
2 :parameters ( ? t − t ruck
3 ? loc−from ? loc− to − place
4 ? c − c i t y )
5 :precondit ion ( and
6 ( a t ? t ? loc−from )
7 ( in−ci ty ? loc−from ? c )
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8 ( in−ci ty ? loc− to ? c ) )
9 : e f f e c t ( and

10 ( not ( a t ? t ? loc−from ) )
11 ( a t ? t ? loc− to ) ) )

• (fly-airplane ?a - airplane ?loc-from - airport ?loc-to - airport): The airplane flies
from the airport ?loc-from to the airport ?loc-to.

1 ( : a c t i o n f ly−a i rp lane
2 :parameters ( ? a − a i r p l a n e
3 ? loc−from ? loc− to − a i r p o r t )
4 :precondit ion ( a t ? a ? loc−from )
5 : e f f e c t ( and
6 ( not ( a t ? a ? loc−from ) )
7 ( a t ? a ? loc− to ) ) ) )

C.2.13 Spanner

Description A worker is in a shed, containing a number of spanners, and at a
gate some distance away there are a number of nuts that must be tightened. The
spanners are fragile and can be used only once to tighten a nut.

Predicates

• (at ?m - locatable ?l - location): ?m is at ?l.

• (carrying ?m - man ?s - spanner): The man ?m carries the spanner ?s.

• (useable ?s - spanner): There are no man carrying ?s.

• (link ?l1 - location ?l2 - location): There are a link between ?l1 and ?l2.

• (tightened ?n - nut): The nut ?n is tightened.

• (loose ?n - nut): The nut ?n is loosed.

Operators

• (walk ?start - location ?end - location ?m - man): The worker ?m walks from
?start to ?end.

1 ( : a c t i o n walk
2 :parameters ( ? s t a r t ?end − l o c a t i o n
3 ?m − man)
4 :precondit ion ( and
5 ( a t ?m ? s t a r t )
6 ( l i n k ? s t a r t ?end ) )
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7 : e f f e c t ( and
8 ( not ( a t ?m ? s t a r t ) )
9 ( a t ?m ?end ) ) )

• (pickup-spanner ?l - location ?s - spanner ?m - man): ?m picks the spanner ?s
at ?l.

1 ( : a c t i o n pickup−spanner
2 :parameters ( ? l − l o c a t i o n ? s − spanner ?m − man)
3 :precondit ion ( and
4 ( a t ?m ? l )
5 ( a t ? s ? l ) )
6 : e f f e c t ( and
7 ( not ( a t ? s ? l ) )
8 ( carry ing ?m ? s ) ) )

• (tighten-nut ?l - location ?s - spanner ?m - man ?n - nut): ?m tightens the nut
with its spanner.

1 ( : a c t i o n t ighten−nut
2 :parameters ( ? l − l o c a t i o n
3 ? s − spanner
4 ?m − man
5 ?n − nut )
6 :precondit ion ( and
7 ( a t ?m ? l )
8 ( a t ?n ? l )
9 ( carry ing ?m ? s )

10 ( useable ? s )
11 ( loose ?n ) )
12 : e f f e c t ( and
13 ( not ( loose ?n ) )
14 ( not ( useable ? s ) )
15 ( t ightened ?n ) ) )

C.3 Temporal Planning Domains

C.3.1 Match

Description An agent needs to repair fuses. To repair a fuse the agent needs a
lighted match.

Predicates
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• (handfree): The hand is free.

• (unused ?m - match): Match ?m is unused.

• (mended ?f - fuse): Fuse ?f is mended.

• (light ?m - match): Match ?m is light.

Operators

• (light-match ?m - match): The agent lights the match ?m.

1 ( :durat ive−act ion light−match
2 :parameters ( ?m − match )
3 :durat ion (= ? durat ion 5)
4 : condi t ion ( a t s t a r t ( unused ?m) )
5 : e f f e c t ( and
6 ( a t s t a r t ( not ( unused ?m) ) )
7 ( a t s t a r t ( l i g h t ?m) )
8 ( a t end ( not ( l i g h t ?m) ) ) ) )

• (mend-fuse ?f - fuse ?m - match): The agent repairs the fuse ?f by lighting
himself with the match ?m.

1 ( :durat ive−act ion mend−fuse
2 :parameters ( ? f − fuse ?m − match )
3 :durat ion (= ? durat ion 2)
4 : condi t ion ( and
5 ( a t s t a r t ( handfree ) )
6 ( a t s t a r t ( not ( mended ? f ) ) )
7 ( over a l l ( l i g h t ?m) ) )
8 : e f f e c t ( and
9 ( a t s t a r t ( not ( handfree ) ) )

10 ( a t end ( mended ? f ) )
11 ( a t end ( handfree ) ) ) )

C.3.2 Turn and Open

Description In this domain, there are several robots with grippers and a set
of rooms containing balls. The goal is to transport balls from a given room to
another. There are doors that must be open to move from one room to another.
In order to open a given door, the robot must turn the doorknob and open the
door at the same time.
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Predicates

• (at-robby ?r - robot ?x - room): Robot ?r is at room ?x.

• (at ?o - obj ?x - room): Object ?o is at room ,x.

• (free ?r - robot ?g - gripper): Robot ?r’s gripper ?g is free.

• (carry ?r - robot ?o - obj ?g - gripper): Robot ?r is carrying ?o with its gripper
?g.

• (connected ?x - room ?y - room ?d - door): Rooms ?x and ?y are connected
with the door ?d.

• (open ?d - door): ?d is opened.

• (closed ?d - door): ?d is closes.

• (doorknob-turned ?d - door ?g - gripper): The door’s doorknob is turned by
?g.

Operators

• (turn-doorknob ?r - robot ?from ?to - room ?d - door ?g - gripper): Robot turns
the doorknob of the door.

1 ( :durat ive−act ion turn−doorknob
2 :parameters ( ? r − robot
3 ? from ? to − room
4 ?d − door
5 ?g − gripper )
6 :durat ion (= ? durat ion 3)
7 : condi t ion ( and
8 ( over a l l ( at−robby ? r ? from ) )
9 ( a t s t a r t ( f r e e ? r ?g ) )

10 ( over a l l ( connected ? from ? to ?d ) )
11 ( a t s t a r t ( c losed ?d ) ) )
12 : e f f e c t ( and
13 ( a t s t a r t ( not ( f r e e ? r ?g ) ) )
14 ( a t end ( f r e e ? r ?g ) )
15 ( a t s t a r t ( doorknob−turned ?d ?g ) )
16 ( a t end ( not ( doorknob−turned ?d ?g ) ) ) ) )

• (open-door)?r - robot ?from ?to - room ?d - door ?g - gripper: Robot opens the
door.
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1 ( :durat ive−act ion open−door
2 :parameters ( ? r − robot
3 ? from ? to − room
4 ?d − door
5 ?g − gripper )
6 :durat ion (= ? durat ion 2)
7 : condi t ion ( and
8 ( over a l l ( at−robby ? r ? from ) )
9 ( over a l l ( connected ? from ? to ?d ) )

10 ( over a l l ( doorknob−turned ?d ?g ) )
11 ( a t s t a r t ( c losed ?d ) ) )
12 : e f f e c t ( and
13 ( a t s t a r t ( not ( c losed ?d ) ) )
14 ( a t end ( open ?d ) ) ) )

• (move ?r - robot ?from ?to - room ?d - door): Robot goes to the room ?to. The
door must be open.

1 ( :durat ive−act ion move
2 :parameters ( ? r − robot
3 ? from ? to − room
4 ?d − door )
5 :durat ion (= ? durat ion 1)
6 : condi t ion ( and
7 ( a t s t a r t ( at−robby ? r ? from ) )
8 ( over a l l ( connected ? from ? to ?d ) )
9 ( over a l l ( open ?d ) ) )

10 : e f f e c t ( and
11 ( a t end ( at−robby ? r ? to ) )
12 ( a t s t a r t ( not ( at−robby ? r ? from ) ) ) ) )

• (pick ?r - robot ?obj - obj ?room - room ?g - gripper): Robot picks the ball with
its gripper.

1 ( :durat ive−act ion pick
2 :parameters ( ? r − robot
3 ? ob j − obj
4 ?room − room
5 ?g − gripper )
6 :durat ion (= ? durat ion 1)
7 : condi t ion ( and
8 ( a t s t a r t ( a t ? ob j ?room ) )
9 ( a t s t a r t ( at−robby ? r ?room ) )

10 ( a t s t a r t ( f r e e ? r ?g ) ) )
11 : e f f e c t ( and

282



12 ( a t end ( carry ? r ? ob j ?g ) )
13 ( a t s t a r t ( not ( a t ? ob j ?room ) ) )
14 ( a t s t a r t ( not ( f r e e ? r ?g ) ) ) ) )

• (drop ?r - robot ?obj - obj ?room - room ?g - gripper): Robot drops the ball holds
by its gripper.

1 ( :durat ive−act ion pick
2 :parameters ( ? r − robot
3 ? ob j − obj
4 ?room − room
5 ?g − gripper )
6 :durat ion (= ? durat ion 1)
7 : condi t ion ( and
8 ( a t s t a r t ( a t ? ob j ?room ) )
9 ( a t s t a r t ( at−robby ? r ?room ) )

10 ( a t s t a r t ( f r e e ? r ?g ) ) )
11 : e f f e c t ( and
12 ( a t end ( carry ? r ? ob j ?g ) )
13 ( a t s t a r t ( not ( a t ? ob j ?room ) ) )
14 ( a t s t a r t ( not ( f r e e ? r ?g ) ) ) ) )

C.3.3 Peg Solitaire

Description Peg solitaire is a board game for one player involving movement
of pegs on a board with holes.

Predicates

• (in-line ?x - location ?y - location ?z - location): The locations ?x, ?y and ?z are
in the same line.

• (occupied ?l - location): The location ?l is occupied by a token.

• (free ?l - location): The location ?l is not occupied by any token.

Operators

• (jump ?from - location ?over - location ?to - location): The player jumps from
?from to ?to. More precisely, The peg in the ?from location is moves into
the ?to location. The peg placed in the ?over location is removed.

1 ( :durat ive−act ion jump
2 :parameters ( ? from ? over ? to − l o c a t i o n )
3 :durat ion (= ? durat ion 1)
4 : condi t ion ( and
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5 ( over a l l ( in− l ine ? from ? over ? to ) )
6 ( a t s t a r t ( occupied ? from ) )
7 ( a t s t a r t ( occupied ? over ) )
8 ( a t s t a r t ( f r e e ? to ) ) )
9 : e f f e c t ( and

10 ( a t s t a r t ( not ( occupied ? from ) ) )
11 ( a t s t a r t ( not ( occupied ? over ) ) )
12 ( a t s t a r t ( not ( f r e e ? to ) ) )
13 ( a t end ( f r e e ? from ) )
14 ( a t end ( f r e e ? over ) )
15 ( a t end ( occupied ? to ) ) ) )

C.3.4 Zenotravel

A transportation domain involves transporting people around in planes, using
different modes of movement: fast and slow.

Description

Predicates

• (at ?x - locatable ?c - city): The locatable ?x is at the city ?c.

• (in ?p - person ?a - aircraft): The person ?p is in the aircraft ?a.

• (fuel-level ?a - aircraft ?l - flevel): The fuel level ?l for the aircraft ?a.

• (next ?l1 - flevel ?l2 - flevel): If the flevel is ?l1 then the next level will be ?l2.

Operators

• (board ?p - person ?a - aircraft ?c - city): Passenger ?p boards in ?a at the city
?c.

1 ( :durat ive−act ion board
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :durat ion (= ? durat ion 20)
4 : condi t ion ( and
5 ( a t s t a r t ( a t ?p ? c ) )
6 ( over a l l ( a t ? a ? c ) ) )
7 : e f f e c t ( and
8 ( a t s t a r t ( not ( a t ?p ? c ) ) )
9 ( a t end ( in ?p ? a ) ) ) )

• (debark ?p - person ?a - aircraft ?c - city): Passenger ?p debarks from ?a at the
city ?c.

284



1 ( :durat ive−act ion debark
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :durat ion (= ? durat ion 30)
4 : condi t ion ( and
5 ( a t s t a r t ( in ?p ? a ) )
6 ( over a l l ( a t ? a ? c ) ) )
7 : e f f e c t ( and
8 ( a t s t a r t ( not ( in ?p ? a ) ) )
9 ( a t end ( a t ?p ? c ) ) ) )

• (fly ?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel): ?a flies from ?c1 to
?c2. Its fuel reserves are reduced from ?l1 to ?l2. (slow)

1 ( :durat ive−act ion f l y
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ? l 1 ? l 2 − f l e v e l )
5 :durat ion (= ? durat ion 180)
6 : condi t ion ( and
7 ( a t s t a r t ( a t ? a ? c1 ) )
8 ( a t s t a r t ( fue l− l eve l ? a ? l 1 ) )
9 ( a t s t a r t ( next ? l 2 ? l 1 ) ) )

10 : e f f e c t ( and
11 ( a t s t a r t ( not ( a t ? a ? c1 ) ) )
12 ( a t end ( a t ? a ? c2 ) )
13 ( a t s t a r t ( not ( fue l− l eve l ? a ? l 1 ) ) )
14 ( a t end ( fue l− l eve l ? a ? l 2 ) ) ) )

• (zoom ?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel ?l3 - flevel): ?a flies
from ?c1 to ?c2. Its fuel reserves are reduced from ?l1 to ?l3. (quick)

1 ( :durat ive−act ion zoom
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ? l 1 ? l 2 ? l 3 − f l e v e l )
5 :durat ion (= ? durat ion 100)
6 : condi t ion ( and
7 ( a t s t a r t ( a t ? a ? c1 ) )
8 ( a t s t a r t ( fue l− l eve l ? a ? l 1 ) )
9 ( a t s t a r t ( next ? l 2 ? l 1 ) )

10 ( a t s t a r t ( next ? l 3 ? l 2 ) ) )
11 : e f f e c t ( and
12 ( a t s t a r t ( not ( a t ? a ? c1 ) ) )
13 ( a t end ( a t ? a ? c2 ) )
14 ( a t end ( not ( fue l− l eve l ? a ? l 1 ) ) )
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15 ( a t end ( fue l− l eve l ? a ? l 3 ) ) ) )

• (refuel ?a - aircraft ?c - city ?l - flevel ?l1 - flevel): ?a fills up with fuel in the
city ?c. Its fuel reserves are increased from ?l to ?l1.

1 ( :durat ive−act ion r e f u e l
2 :parameters ( ? a − a i r c r a f t
3 ? c − c i t y
4 ? l ? l 1 − f l e v e l )
5 :durat ion (= ? durat ion 73)
6 : condi t ion ( and
7 ( a t s t a r t ( fue l− l eve l ? a ? l ) )
8 ( a t s t a r t ( next ? l ? l 1 ) )
9 ( over a l l ( a t ? a ? c ) ) )

10 : e f f e c t ( and
11 ( a t end ( fue l− l eve l ? a ? l 1 ) )
12 ( a t s t a r t ( not ( fue l− l eve l ? a ? l ) ) ) ) )

C.3.5 Sokoban

Description Sokoban is a puzzle in which the player pushes stones around in
a warehouse, trying to get them to storage locations

Predicates

• (at ?t - thing ?l - location): The thing ?l is at ?l.

• (adjacent ?l1 - location ?l2 - location ?d - direction): The robot can move from
?l1 to ?l2, and ?l2 is on the ?d of ?l1.

• (clear ?l - location): There are nothing at ?l.

Operators

• (move ?p - player ?from - location ?to - location ?dir - direction): The player
moves to the ?dir of the location ?from to the location ?to.

1 ( :durat ive−act ion move
2 :parameters ( ? p − player
3 ? from ? to − l o c a t i o n
4 ? d i r − d i r e c t i o n )
5 :durat ion (= ? durat ion 1)
6 : condi t ion ( and
7 ( a t s t a r t ( a t ?p ? from ) )
8 ( a t s t a r t ( c l e a r ? to ) )
9 ( over a l l ( ad jacent ? from ? to ? d i r ) ) )
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10 : e f f e c t ( and
11 ( a t s t a r t ( not ( a t ?p ? from ) ) )
12 ( a t s t a r t ( not ( c l e a r ? to ) ) )
13 ( a t end ( a t ?p ? to ) )
14 ( a t end ( c l e a r ? from ) ) ) )

• (push ?p - player ?s - stone ?ppos - location ?from - location ?to - location ?dir
- direction): The player pushes the stone ?s to the location ?to. The initial
position of the player was ?ppos and its final position is the initial position
of the stone: ?from.

1 ( :durat ive−act ion push
2 :parameters ( ? p − player
3 ? s − stone
4 ?ppos ? from ? to − l o c a t i o n
5 ? d i r − d i r e c t i o n )
6 :durat ion (= ? durat ion 1)
7 : condi t ion ( and
8 ( a t s t a r t ( a t ?p ?ppos ) )
9 ( a t s t a r t ( a t ? s ? from ) )

10 ( a t s t a r t ( c l e a r ? to ) )
11 ( over a l l ( ad jacent ?ppos ? from ? d i r ) )
12 ( over a l l ( ad jacent ? from ? to ? d i r ) ) )
13 : e f f e c t ( and
14 ( a t s t a r t ( not ( a t ?p ?ppos ) ) )
15 ( a t s t a r t ( not ( a t ? s ? from ) ) )
16 ( a t s t a r t ( not ( c l e a r ? to ) ) )
17 ( a t end ( a t ?p ? from ) )
18 ( a t end ( a t ? s ? to ) )
19 ( a t end ( c l e a r ?ppos ) ) ) )

C.4 HTN Planning Domains

C.4.1 Blocksworld

Description HTN version of the classical STRIPS planning domain
Blocksworld, where stackable blocks need to be re-assembled on a table.
Using its hand, an autonomous agent can stack a block onto a block, unstack a
block from a block, put down a block, or pick up a block.

Predicates

• (on ?x - block ?y - block): Thee block ?x is on the block ?y.

• (ontable ?x - block): The block ?x is on the table.
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• (clear ?x - block): The block ?x is clear, i.e. there no block on ?x and it is not
held .

• (holding ?x - block): The block ?x is held by the autonomous agent.

• (handempty): The autonomous agent does not hold any block.

Compound Tasks

• (do-put-on ?x - block ?y - block): Put ?x on ?y.

• (do-on-table): Put ?x on the table.

• (do-move ?x - block ?y - block): Move ?x on ?y.

• (do-clear ?x - block): Clear block ?x.

Primitive Tasks

• (pick-up ?x - block): The autonomous agent picks a block placed on the table.

1 ( : a c t i o n pick−up
2 :parameters ( ? x − block )
3 :precondit ion ( and
4 ( c l e a r ?x )
5 ( ontable ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( not ( ontable ?x ) )
9 ( not ( c l e a r ?x ) )

10 ( not ( handempty ) )
11 ( holding ?x ) ) )

• (put-down ?x - block): The autonomous agent puts down a block on the
table.

1 ( : a c t i o n put−down
2 :parameters ( ? x − block )
3 :precondit ion ( holding ?x )
4 : e f f e c t ( and
5 ( not ( holding ?x ) )
6 ( c l e a r ?x )
7 ( handempty )
8 ( ontable ?x ) ) )

• (stack ?x - block ?y - block): The autonomous agent stacks a block on an other
block.
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1 ( : a c t i o n s tack
2 :parameters ( ? x ?y − block )
3 :precondit ion ( and
4 ( holding ?x )
5 ( c l e a r ?y ) )
6 : e f f e c t ( and
7 ( not ( holding ?x ) )
8 ( not ( c l e a r ?y ) )
9 ( c l e a r ?x )

10 ( handempty )
11 ( on ?x ?y ) ) )

• (unstack ?x - block ?y - block): The autonomous agent unstacks a block from
an other block.

1 ( : a c t i o n unstack
2 :parameters ( ? x ?y − block )
3 :precondit ion ( and
4 ( on ?x ?y )
5 ( c l e a r ?x )
6 ( handempty ) )
7 : e f f e c t ( and
8 ( holding ?x )
9 ( c l e a r ?y )

10 ( not ( c l e a r ?x ) )
11 ( not ( handempty ) )
12 ( not ( on ?x ?y ) ) ) ) )

Methods

• (m0-do-put-on ?x - block ?y - block): ?x is already on ?y.

1 ( :method m0−do−put−on
2 :parameters ( ? x ?y − block )
3 : t a s k (do−put−on ?x ?y )
4 :precondit ion ( and
5 ( on ?x ?y )
6 ( handempty ) )
7 :ordered−subtasks ( and ) )

• (m1-do-put-on ?x - block ?y - block): To put ?x on ?y, the agent clears ?x and
?y and moves ?x on ?y.

1 ( :method m1−do−put−on
2 :parameters ( ? x ?y − block )
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3 : t a s k (do−put−on ?x ?y )
4 :precondit ion ( handempty )
5 :ordered−subtasks ( and
6 ( do−clear ?x )
7 ( do−clear ?y )
8 (do−move ?x ?y ) ) )

• (m2-do-on-table ?x - block ?y - block): If ?x in on ?y, the agent unstacks ?x
from ?y and puts down it on the table.

1 ( :method m2−do−on−table
2 :parameters ( ? x ?y − block )
3 : t a s k ( do−on−table ?x )
4 :precondit ion ( and
5 ( c l e a r ?x )
6 ( handempty )
7 ( not ( ontable ?x ) ) )
8 :ordered−subtasks ( and
9 ( unstack ?x ?y )

10 (put−down ?x ) ) )

• (m3-do-on-table ?x - block): ?x is already on the table.

1 ( :method m3−do−on−table
2 :parameters ( ? x − block )
3 : t a s k ( do−on−table ?x )
4 :precondit ion ( and
5 ( c l e a r ?x )
6 ( ontable ?x )
7 ( handempty ) )
8 :ordered−subtasks ( and ) )

• (m4-do-move ?x - block ?y - block): If ?x is on the table, the agents picks up ?x
and stacks it on ?y;

1 ( :method m4−do−move
2 :parameters ( ? x ?y − block )
3 : t a s k (do−move ?x ?y )
4 :precondit ion ( and
5 ( c l e a r ?x )
6 ( c l e a r ?y )
7 ( handempty )
8 ( ontable ?x ) )
9 :ordered−subtasks ( and

10 ( pick−up ?x )
11 ( s tack ?x ?y ) ) )
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• (m5-do-move ?x - block ?y - block): If ?x is on ?z, the agent unstacks ?x from
?z and stacks it on ?y.

1 ( :method m5−do−move
2 :parameters ( ? x ?y ? z − block )
3 : t a s k (do−move ?x ?y )
4 :precondit ion ( and
5 ( c l e a r ?x )
6 ( c l e a r ?y )
7 ( on ?x ? z )
8 ( handempty )
9 ( not ( ontable ?x ) ) )

10 :ordered−subtasks ( and
11 ( unstack ?x ? z )
12 ( s tack ?x ?y ) ) )

• (m6-do-clear ?x - block): ?x is already clear.

1 ( :method m6−do−clear
2 :parameters ( ? x − block )
3 : t a s k ( do−clear ?x )
4 :precondit ion ( and
5 ( c l e a r ?x )
6 ( handempty ) )
7 :ordered−subtasks ( and ) )

• (m7-do-clear ?x - block ?y - block): If ?y is on ?x, the agents clear ?y and puts
it on the table.

1 ( :method m7−do−clear
2 :parameters ( ?x ?y − block )
3 : t a s k ( do−clear ?x )
4 :precondit ion ( and
5 ( not ( c l e a r ?x ) )
6 ( on ?y ?x )
7 ( handempty ) )
8 :ordered−subtasks ( and
9 ( do−clear ?y )

10 ( unstack ?y ?x )
11 (put−down ?y ) ) )

C.4.2 Gripper

Description In this domain, there are a robot called robby with grippers and a
set of rooms containing balls. The goal is to transport balls from a given room to
another.
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Predicates

• (at-robby ?r - room): The robot robby is in the room ?r.

• (at ?b - ball ?r - room): The ball ?b is in the room ?r.

• (free ?g - gripper): The Robby’s gripper ?g is free.

• (carry ?b - ball ?g - gripper): Robby is carrying the ball ?b with its gripper ?g.

Compound Tasks

• (move-two-balls ?b1 - ball ?b2 - ball ?r - room): Move balls ?b1 ?b2 in ?r.

• (move-one-ball ?b - ball ?r - room): Move ball ?b in ?r.

• (goto ?r - room): Go to room ?r.

Primitive Tasks

• (move ?from - room ?to - room): Robby goes to the room ?to.

1 ( : a c t i o n move
2 :parameters ( ? from ? to − room )
3 :precondit ion ( at−robby ? from )
4 : e f f e c t ( and
5 ( at−robby ? to )
6 ( not ( at−robby ? from ) ) ) )

• (pick ?b - ball ?r - room ?g - gripper): Robby picks the ball with its gripper.

1 ( : a c t i o n pick
2 :parameters ( ? b − b a l l ? r − room ?g − gripper )
3 :precondit ion ( and
4 ( a t ?b ? r )
5 ( at−robby ? r )
6 ( f r e e ?g ) )
7 : e f f e c t ( and
8 ( carry ?b ?g )
9 ( not ( a t ?b ? r ) )

10 ( not ( f r e e ?g ) ) ) )

• (drop ?b - ball ?r - room ?g - gripper): Robby drops the held ball.

1 ( : a c t i o n drop
2 :parameters ( ? b − b a l l ? r − room ?g − gripper )
3 :precondit ion ( and
4 ( carry ?b ?g )
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5 ( at−robby ? r ) )
6 : e f f e c t ( and
7 ( a t ?b ? r )
8 ( f r e e ?g )
9 ( not ( carry ?b ?g ) ) ) ) )

Methods

• (move-two-balls-0 ?b1 - ball ?b2 - ball ?r - room ?rb - room ?g1 - gripper ?g2 -
gripper)): To move ?b1 and ?b2 in the room ?rb. Robby goes to ?ra, picks
the balls, goes to ?rb and drops the balls.

1 ( :method move−two−balls−0
2 :parameters ( ? b1 ? b2 − b a l l
3 ? r ? rb − room
4 ? g1 ? g2 − gripper )
5 : t a s k ( move−two−balls ? b1 ? b2 ? r )
6 :precondit ion ( and
7 ( a t ? b1 ? rb )
8 ( a t ? b2 ? rb ) )
9 :ordered−subtasks ( and

10 ( goto ? rb )
11 ( pick ? b1 ? rb ? g1 )
12 ( pick ? b2 ? rb ? g2 )
13 (move ? rb ? r )
14 ( drop ? b1 ? r ? g1 )
15 ( drop ? b2 ? r ? g2 ) ) )

• (move-two-balls-0 ?b1 - ball ?b2 - ball ?r - room ?rb - room ?g1 - gripper ?g2
- gripper)): To move ?b in the room ?rb. Rooby goes to ?ra, picks the ball,
goes to ?rb and drops the ball.

1 ( :method move−one−balls−0
2 :parameters ( ? b − b a l l
3 ? r ? rb − room
4 ?g − gripper )
5 : t a s k ( move−one−ball ?b ? r )
6 :precondit ion ( and
7 ( a t ?b ? rb ) )
8 :ordered−subtasks ( and
9 ( goto ? rb )

10 ( pick ?b ? rb ?g )
11 (move ? rb ? r )
12 ( drop ?b ? r ?g ) ) )
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• (goto-0 ?r - room): Robby is already at ?r.

1 ( :method goto−0
2 :parameters ( ? r − room )
3 : t a s k ( goto ? r )
4 :precondit ion ( and
5 ( at−robby ? r ) )
6 :ordered−subtasks ( ) )

• (goto-1 ?from - room ?to - room): Robby goes to the room ?to.

1 ( :method goto−1
2 :parameters ( ? from ? to − room )
3 : t a s k ( goto ? to )
4 :precondit ion ( at−robby ? from )
5 :ordered−subtasks (move ? from ? to ) )

C.4.3 Zenotravel

A transportation domain involves transporting people around in planes.

Description

Predicates

• (at ?t - thing ?c - city): The thing ?t is at the city ?c.

• (in ?p - person ?a - aircraft): The person ?p is in the aircraft ?a.

• (fuel-level ?a - aircraft ?l - flevel): The fuel level ?l for the aircraft ?a.

• (next ?l1 - flevel ?l2 - flevel): If the flevel is ?l1 then the next level will be ?l2.

• (max ?l - flevel): The max level of fuel is ?l.

• (min ?l - flevel): The min level of fuel is ?l.

• (not-min ?l - flevel): The min level of fuel is not ?l.

Compound Tasks

• (transport-person ?p - person ?c - city): Transport ?p at ?c.

• (transport-aircraft ?a - aircraft ?c - city): Transport ?a at ?c.
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Primitive Tasks

• (board ?p - person ?a - aircraft ?c - city): Passenger ?p boards in ?a at the city
?c.

1 ( : a c t i o n board
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :precondit ion ( and
4 ( a t ?p ? c )
5 ( a t− a i r c r a f t ? a ? c ) )
6 : e f f e c t ( and
7 ( not ( a t ?p ? c ) )
8 ( in ?p ? a ) ) )

• (debark ?p - person ?a - aircraft ?c - city): Passenger ?p debarks from ?a at the
city ?c.

1 ( : a c t i o n debark
2 :parameters ( ? p − person ? a − a i r c r a f t ? c − c i t y )
3 :precondit ion ( and
4 ( in ?p ? a )
5 ( a t− a i r c r a f t ? a ? c ) )
6 : e f f e c t ( and
7 ( a t ?p ? c )
8 ( not ( in ?p ? a ) ) ) )

• (fly ?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel): ?a flies from ?c1 to
?c2. Its fuel reserves are reduced from ?l1 to ?l2.

1 ( : a c t i o n f l y
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ? l 1 ? l 2 − f l e v e l )
5 :precondit ion ( and
6 ( a t− a i r c r a f t ? a ? c1 )
7 ( fue l− l eve l ? a ? l 1 )
8 ( next ? l 2 ? l 1 ) )
9 : e f f e c t ( and

10 ( not ( a t− a i r c r a f t ? a ? c1 ) )
11 ( a t− a i r c r a f t ? a ? c2 )
12 ( not ( fue l− l eve l ? a ? l 1 ) )
13 ( fue l− l eve l ? a ? l 2 ) ) )

• (refuel ?a - aircraft ?l - flevel ?l1 - flevel): ?a fills up with fuel in the city ?c. Its
fuel reserves are increased from ?l to ?l1.
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1 ( : a c t i o n r e f u e l
2 :parameters ( ? a − a i r c r a f t ? l ? l 1 − f l e v e l )
3 :precondit ion ( and
4 ( fue l− l eve l ? a ? l )
5 ( next ? l ? l 1 ) )
6 : e f f e c t ( and
7 ( fue l− l eve l ? a ? l 1 )
8 ( not ( fue l− l eve l ? a ? l ) ) ) ) )

Methods

• (transport-person-0 ?a - aircraft ?c1 - city ?c2 - city ?p - person): ?a transports
?p from ?c1 to ?c2. First of all, ?a goes to ?c1, then ?p boards in ?a, then ?p
goes to ?c2 and finally ?p debarks from ?a.

1 ( :method transport−person−0
2 :parameters ( ? a − a i r c r a f t
3 ? c1 ? c2 − c i t y
4 ?p − person )
5 : t a s k ( transport−person ?p ? c2 )
6 :precondit ion ( and
7 ( a t ?p ? c1 )
8 ( not ( a t ?p ? c2 ) ) )
9 :ordered−subtasks ( and

10 ( t r a n s p o r t− a i r c r a f t ? a ? c1 )
11 ( board ?p ? a ? c1 )
12 ( t r a n s p o r t− a i r c r a f t ? a ? c2 )
13 ( debark ?p ? a ? c2 ) ) )

• (transport-person-1 ?c - city ?p - person): ?p is already in its destination.

1 ( :method transport−person−1
2 :parameters ( ? c − c i t y ?p − person )
3 : t a s k ( transport−person ?p ? c )
4 :precondit ion ( a t ?p ? c )
5 :ordered−subtasks )

• (transport-aircraft-0 ?a - aircraft ?c - city): ?a is already in its destination.

1 ( :method t ranspor t−a i rcra f t−0
2 :parameters ( ? a − a i r c r a f t ? c − c i t y )
3 : t a s k ( t r a n s p o r t− a i r c r a f t ? a ? c )
4 :precondit ion ( a t ? a ? c )
5 :ordered−subtasks )
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• (transport-aircraft-1 ?a - aircraft ?c - city ?other - city ?l1 - flevel ?l2 - flevel): ?a
flies from ?other to ?c.

1 ( :method t ranspor t−a i rcra f t−1
2 :parameters ( ? a − a i r c r a f t
3 ? c ? other − c i t y
4 ? l 1 ? l 2 − f l e v e l )
5 : t a s k ( t r a n s p o r t− a i r c r a f t ? a ? c )
6 :precondit ion ( and
7 ( not ( a t ? a ? c ) )
8 ( a t ? a ? other )
9 ( fue l− l eve l ? a ? l 1 )

10 ( next ? l 2 ? l 1 )
11 ( not−min ? l 1 ) )
12 :ordered−subtasks ( f l y ? a ? other ? c ? l 1 ? l 2 ) )

• (transport-aircraft-2 ?a - aircraft ?c - city ?other - city ?l1 - flevel ?lmax - flevel):
?a flies from ?other to ?c. Before its departure, ?a fills his fuel tank.

1 ( :method t ranspor t−a i rcra f t−2
2 :parameters ( ? a − a i r c r a f t
3 ? c ? other − c i t y
4 ? l 1 ? lmax − f l e v e l )
5 : t a s k ( t r a n s p o r t− a i r c r a f t ? a ? c )
6 :precondit ion ( and
7 ( not ( a t ? a ? c ) )
8 ( a t ? a ? other )
9 ( fue l− l eve l ? a ? l 1 )

10 ( min ? l 1 )
11 (max ? lmax ) )
12 :ordered−subtasks ( and
13 ( r e f u e l ? a ? l 1 ? lmax )
14 ( t r a n s p o r t− a i r c r a f t ? a ? c ) ) )

C.4.4 Childsnack

Description This domain plan how to make and serve sandwiches for a group
of children in which some are allergic to gluten.

Predicates

• (at-kitchen-bread ?b - bread-portion): The bread portion ?b is at the kitchen.

• (at-kitchen-content ?c - content-portion): The content portion ?c is at the
kitchen.
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• (at-kitchen-sandwich ?s - sandwich): The sandwich ?s is at the kitchen.

• (no-gluten-content ?c - content-portion): The content portion ?c is gluten free.

• (no-gluten-bread ?b - bread-portion): The bread portion ?b is gluten free.

• (ontray ?s - sandwich ?t - tray): The sandwich ?s is on ?t.

• (no-gluten-sandwich ?s - sandwich): The sandwich ?s is gluten free.

• (allergic-gluten ?c - child): The child is allergic to gluten.

• (not-allergic-gluten ?c - child): The child is not allergic to gluten.

• (served ?c - child): The child has been served.

• (waiting ?c - child ?p - place): The child wait for its sandwich at ?p.

• (at ?t - tray ?p - place): ?t is at ?p.

• (not-exist ?s - sandwich): The sandwich has not yet been prepared.

Compound Tasks

• (serve ?c - child): Make a sandwich for the child ?c.

Primitive Tasks

• (make-sandwich-no-gluten ?s - sandwich ?b - bread-portion ?c content-portion):
Make a sandwich with gluten free bread and content.

1 ( : a c t i o n make−sandwich−no−gluten
2 :parameters ( ? s − sandwich
3 ?b − bread−portion
4 ? c − content−portion )
5 :precondit ion ( and
6 ( at−kitchen−bread ?b )
7 ( at−kitchen−content ? c )
8 ( no−gluten−bread ?b )
9 ( no−gluten−content ? c )

10 ( not−exist ? s ) )
11 : e f f e c t ( and
12 ( not ( at−kitchen−bread ?b ) )
13 ( not ( at−kitchen−content ? c ) )
14 ( at−kitchen−sandwich ? s )
15 ( no−gluten−sandwich ? s )
16 ( not ( not−exist ? s ) ) ) )
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• (make-sandwich ?s - sandwich ?b - bread-portion ?c content-portion): Make a
sandwich with bread and content containing gluten.

1 ( : a c t i o n make−sandwich
2 :parameters ( ? s − sandwich
3 ?b − bread−portion
4 ? c − content−portion )
5 :precondit ion ( and
6 ( at−kitchen−bread ?b )
7 ( at−kitchen−content ? c )
8 ( not−exist ? s ) )
9 : e f f e c t ( and

10 ( not ( at−kitchen−bread ?b ) )
11 ( not ( at−kitchen−content ? c ) )
12 ( at−kitchen−sandwich ? s )
13 ( not ( not−exist ? s ) ) ) )

• (put-on-tray ?s - sandwich ?t - tray ?kitchen - place): Put a sandwich on the
tray of the kitchen.

1 ( : a c t i o n put−on−tray
2 :parameters ( ? s − sandwich
3 ? t − t ray
4 ? ki tchen − place )
5 :precondit ion ( and
6 ( at−kitchen−sandwich ? s )
7 ( a t ? t ? k i tchen ) )
8 : e f f e c t ( and
9 ( not ( at−kitchen−sandwich ? s ) )

10 ( ontray ? s ? t ) ) )

• (serve-sandwich-no-gluten ?s - sandwich ?c - child ?t - tray ?p - place): Serve a
gluten free sandwich to a child.

1 ( : a c t i o n serve−sandwich−no−gluten
2 :parameters ( ? s − sandwich
3 ? c − c h i l d
4 ? t − t ray
5 ?p − place )
6 :precondit ion ( and
7 ( a l l e r g i c−g l u t e n ? c )
8 ( ontray ? s ? t )
9 ( wait ing ? c ?p )

10 ( no−gluten−sandwich ? s )
11 ( a t ? t ?p ) )
12 : e f f e c t ( and
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13 ( not ( ontray ? s ? t ) )
14 ( served ? c )
15 ( not ( wait ing ? c ?p ) ) ) )

• (serve-sandwich ?s - sandwich ?c - child ?t - tray ?p - place): Serve a sandwich
containing gluten to a child.

1 ( : a c t i o n serve−sandwich
2 :parameters ( ? s − sandwich
3 ? c − c h i l d
4 ? t − t ray
5 ?p − place )
6 :precondit ion ( and
7 ( not−al lergic−gluten ? c )
8 ( ontray ? s ? t )
9 ( wait ing ? c ?p )

10 ( a t ? t ?p ) )
11 : e f f e c t ( and
12 ( not ( ontray ? s ? t ) )
13 ( served ? c )
14 ( not ( wait ing ? c ?p ) ) ) )

• (move-tray ?t - tray ?p1 - place ?p2 - place): Move the tray from ?p1 to ?p2.

1 ( : a c t i o n move−tray
2 :parameters ( ? t − t ray
3 ?p1 ?p2 − place )
4 :precondit ion ( and
5 ( a t ? t ?p1 ) )
6 : e f f e c t ( and
7 ( not ( a t ? t ?p1 ) )
8 ( a t ? t ?p2 ) ) )

Methods

• (serve-0 ?c - child ?s - sandwich ?p2 - place ?t - tray ?b - bread-portion ?cont -
content-portion ?kitchen - place): Prepare and serve a gluten free sandwich
to an allergic child.

1 ( :method serve−0
2 :parameters ( ? c − c h i l d
3 ? s − sandwich
4 ?p2 − place
5 ? t − t ray
6 ?b − bread−portion
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7 ? cont − content−portion
8 ? ki tchen − place )
9 : t a s k ( serve ? c )

10 :precondit ion ( and
11 ( a l l e r g i c−g l u t e n ? c )
12 ( not−exist ? s )
13 ( wait ing ? c ?p2 )
14 ( no−gluten−bread ?b )
15 ( no−gluten−content ? cont ) )
16 :ordered−subtasks ( and
17 ( make−sandwich−no−gluten ? s ?b ? cont )
18 ( put−on−tray ? s ? t ? k i tchen )
19 ( move−tray ? t ? k i tchen ?p2 )
20 ( serve−sandwich−no−gluten ? s ? c ? t ?p2 )
21 ( move−tray ? t ?p2 ? ki tchen ) ) )

• (serve-1 ?c - child ?s - sandwich ?p2 - place ?t - tray ?b - bread-portion ?cont
- content-portion ?kitchen - place): Prepare and serve a sandwich to a non-
allergic child.

1 ( :method serve−1
2 :parameters ( ? c − c h i l d
3 ? s − sandwich
4 ?p2 − place
5 ? t − t ray
6 ?b − bread−portion
7 ? cont − content−portion
8 ? ki tchen − place )
9 : t a s k ( serve ? c )

10 :precondit ion ( and
11 ( not−al lergic−gluten ? c )
12 ( not−exist ? s )
13 ( wait ing ? c ?p2 )
14 ( not ( no−gluten−bread ?b ) )
15 ( not ( no−gluten−content ? cont ) ) )
16 :ordered−subtasks ( and
17 ( make−sandwich ? s ?b ? cont )
18 ( put−on−tray ? s ? t ? k i tchen )
19 ( move−tray ? t ? k i tchen ?p2 )
20 ( serve−sandwich ? s ? c ? t ?p2 )
21 ( move−tray ? t ?p2 ? ki tchen ) ) )
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C.4.5 Transport

Description A transport domain where each vehicle can transport some
packages depending on its capacity and moving has a cost depending on the
length of the road

Predicates

• (road ?l1 - location ?l2 - location): There are a road between ?l1 and ?l2.

• (at ?x - locatable ?l - location): ?x is at ?l.

• (in ?p - package ?v - vehicle): ?p is in ?v.

• (capacity ?v - vehicle ?n - capacity-number): The capacity of ?v is ?n.

• (capacity-predecessor ?n0 - capacity-number ?n1 - capacity-number): ?n1 = ?n0
- 1.

Compound Tasks

• (deliver ?p - package ?l - location): Deliver ?p at ?l.

• (get-to ?v - vehicle ?l - location): Go to location ?l with ?v.

• (load ?v - vehicle ?l - location ?p - package): Load ?p in ?v at ?l.

• (unload ?v - vehicle ?l - location ?p - package): Unload ?p from ?v at ?l.

Primitive Tasks

• (drive ?v - vehicle ?l1 - location ?l2 - location): ?v goes to ?l2 from ?l1. A road
connecting ?l1 to ?l2 is required.

1 ( : a c t i o n drive
2 :parameters ( ? v − v e h i c l e
3 ? l 1 ? l 2 − l o c a t i o n )
4 :precondit ion ( and
5 ( a t ?v ? l 1 )
6 ( road ? l 1 ? l 2 ) )
7 : e f f e c t ( and
8 ( not ( a t ?v ? l 1 ) )
9 ( a t ?v ? l 2 ) ) )

• (pick-up ?v - vehicle ?l - location ?p - package ?s1 - capacity-number ?s2 -
capacity-number): Pick ?p in ?v.
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1 ( : a c t i o n pick−up
2 :parameters ( ? v − v e h i c l e
3 ? l − l o c a t i o n
4 ?p − package
5 ? s1 ? s2 − capacity−number )
6 :precondit ion ( and
7 ( a t ?v ? l )
8 ( a t ?p ? l )
9 ( capacity−predecessor ? s1 ? s2 )

10 ( c a p a c i t y ?v ? s2 ) )
11 : e f f e c t ( and
12 ( not ( a t ?p ? l ) )
13 ( in ?p ?v )
14 ( c a p a c i t y ?v ? s1 )
15 ( not ( c a p a c i t y ?v ? s2 ) ) ) )

• (drop ?v - vehicle ?l - location ?p - package ?s1 - capacity-number ?s2 - capacity-
number): Drop ?p from ?v.

1 ( : a c t i o n drop
2 :parameters ( ? v − v e h i c l e
3 ? l − l o c a t i o n
4 ?p − package
5 ? s1 ? s2 − capacity−number )
6 :precondit ion ( and
7 ( a t ?v ? l )
8 ( in ?p ?v )
9 ( capacity−predecessor ? s1 ? s2 )

10 ( c a p a c i t y ?v ? s1 ) )
11 : e f f e c t ( and
12 ( not ( in ?p ?v ) )
13 ( a t ?p ? l )
14 ( c a p a c i t y ?v ? s2 )
15 ( not ( c a p a c i t y ?v ? s1 ) ) ) )

Methods

• (deliver-0 ?l1 - location ?l2 - location ?p - package ?v - vehicle): Deliver ?p to
a given location. ?v goes to the location of ?p, picks ?p, goes to the final
location and drops ?p.

1 ( :method load−0
2 :parameters ( ? l 1 ? l 2 − l o c a t i o n
3 ?p − package
4 ?v − v e h i c l e )
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5 : t a s k ( d e l i v e r ?p ? l 2 )
6 :precondit ion
7 :ordered−subtasks ( and
8 ( get−to ?v ? l 1 )
9 ( load ?v ? l 1 ?p )

10 ( get−to ?v ? l 2 )
11 ( unload ?v ? l 2 ?p ) ) )

• (load-0 ?l - location ?p - package ?s1 - capacity-number ?s2 - capacity-number ?v
- vehicle): Load ?p in ?v.

1 ( :method load−0
2 :parameters ( ? l − l o c a t i o n
3 ?p − package
4 ? s1 ? s2 − capacity−number
5 ?v − v e h i c l e )
6 : t a s k ( load ?v ? l ?p )
7 :precondit ion
8 :ordered−subtasks ( pick−up ?v ? l ?p ? s1 ? s2 ) )

• (unload-0 ?l - location ?p - package ?s1 - capacity-number ?s2 - capacity-number
?v - vehicle): Unload ?p in ?v.

1 ( :method unload−0
2 :parameters ( ? l − l o c a t i o n
3 ?p − package
4 ? s1 ? s2 − capacity−number
5 ?v − v e h i c l e )
6 : t a s k ( load ?v ? l ?p )
7 :precondit ion
8 :ordered−subtasks ( pick−up ?v ? l ?p ? s1 ? s2 ) )

• (get-to-0 ?l - location ?v - vehicle): ?v is already at ?l.

1 ( :method get−to−0
2 :parameters ( ? l − l o c a t i o n ?v − v e h i c l e )
3 : t a s k ( get−to ?v ? l )
4 :precondit ion ( a t ?v ? l )
5 :ordered−subtasks )

• (get-to-1 ?l1 - location ?l2 - location ?v - vehicle): ?v goes to a location ?l1
connected to ?l2, and moves from ?l1 to ?l2.

1 ( :method get−to−1
2 :parameters ( ? l 1 ? l 2 − l o c a t i o n
3 ?v − v e h i c l e )
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4 : t a s k ( get−to ?v ? l 2 )
5 :precondit ion
6 :ordered−subtasks ( and
7 ( get−to ?v ? l 1 )
8 ( dr ive ?v ? l 1 ? 2 ) ) )
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D.1 Introduction

Le domaine de l’intelligence artificielle (IA) vise à développer des agents
autonomes capables de percevoir, d’apprendre et d’agir sans aucune
intervention humaine pour accomplir des tâches complexes. Comme l’indique
(Russell and Norvig, 2021), un agent autonome est un système intelligent
qui peut décider de ce qu’il faut faire pour réaliser une tâche. Un agent
autonome perçoit son environnement, planifie les meilleures actions possibles et
les exécute. Pour planifier les meilleures actions, l’agent autonome doit donc être
capable de prendre des décisions. Il existe plusieurs approches permettant aux
agents autonomes de prendre des décisions. L’une d’entre elles est la planification
automatique (Fikes and Nilsson, 1971; Ghallab et al., 2004).

D.1.1 Planification automatique

L’objectif de la planification est la résolution de problèmes de planification. La
description d’un problème de planification se fait de manière déclarative. La
déclaration d’un problème de planification est composée de : (1) l’état initial
de l’environnement, (2) un but et (3) l’ensemble des actions qui peuvent
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Figure D.1: Résolution d’un problème de planification

être exécutées par l’agent autonome pour atteindre le but spécifié. Pour
résoudre le problème de planification, l’agent autonome recherche une séquence
d’actions, appelée plan, permettant d’atteindre l’état but à partir de l’état
initial. La résolution des problèmes de planification est basée sur des modèles
descriptifs des actions. Ils décrivent quel état ou ensemble d’états possibles peut
résulter de l’exécution d’une action. Plus précisément, les modèles d’actions sont
généralement utilisés pour décrire les actions. Les modèles d’actions définissent
les actions en termes de pré-conditions et d’effets. Les pré-conditions expriment
les propriétés de l’environnement qui doivent être satisfaites pour exécuter
l’action et les effets expriment les conséquences de l’exécution de l’action sur
l’environnement. En pratique, les modèles d’actions sont encodés manuellement
à l’aide d’un langage déclaratif tel que le PDDL (Planning Domain Description
Language) (Ghallab et al., 1998). Enfin, la Figure D.1 donne l’architecture
traditionnelle pour résoudre un problème de planification : un solveur, appelé
planificateur, prend en entrée l’état initial, l’état but et le modèle d’actions et
retourne le plan solution.

La manière classique de représenter des modèles d’actions est la
modélisation STRIPS (STanford Research Institute Problem Solver) (Fikes and
Nilsson, 1971). Les pré-conditions, les effets et les états initiaux et buts sont
représentés sous la forme d’un ensemble de propositions logiques décrivant
l’environnement. La modélisation STRIPS se repose sur plusieurs hypothèses
restrictives :

• L’environnement est déterministe et entièrement observable. L’agent
autonome connaît à tout moment l’état dans lequel il se trouve et peut donc
prédire l’état dans lequel il se trouvera après l’exécution d’une action.

• Le but est spécifié en utilisant un ensemble de propriétés, c’est-à-dire des
propositions logiques, que l’état final atteint par l’agent autonome doit
satisfaire.

• L’environnement est statique. Seules les actions exécutées par l’agent
autonome modifient l’état de l’environnent. L’agent autonome est seul et
l’environnent n’a pas de dynamique interne.

• L’exécution des actions est atomique. Les actions n’ont pas de durée, les
effets sont appliqués instantanément et la concurrence entre les actions
n’est pas prise en compte.
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• Les pré-conditions et les effets sont des ensembles de propositions
logiques.

Plusieurs extensions de la modélisation STRIPS ont été proposées pour
relâcher certaines hypothèses. Par exemple, les problèmes de planification
temporelle (Fox and Long, 2003) permettent de modéliser des actions qui
peuvent être exécutées simultanément. Cela peut être utile pour des robots
à bras multiples qui peuvent manipuler plusieurs objets simultanément. Un
autre exemple est celui des problèmes de planification HTN (Erol et al., 1994)
qui déclarent des tâches plutôt que des actions. Il existe deux types de
tâches. Les tâches primitives, similaires aux actions classiques, et les tâches
complexes. Les tâches complexes sont des tâches qui, lors de la résolution du
problème de planification, sont décomposées en sous-tâches (primitives et/ou
complexes). Un autre exemple est celui des problèmes de planification ADL
(Pednault, 1994) qui permettent de modéliser des pré-conditions et des effets
plus complexes avec des quantificateurs logiques, des effets conditionnels (les
effets s’appliquent lorsque certaines conditions sont satisfaites), etc. Un dernier
exemple est celui des problèmes de planification multi-agents (Brenner, 2003)
qui permettent de représenter des problèmes de planification où plusieurs
agents autonomes interagissent pour atteindre un but. Cela peut être utile si
nous avons plusieurs robots qui interagissent afin d’atteindre un objectif.

Plus nous relâchons des hypothèses de la modélisation STRIPS, plus les
modèles d’actions sont difficiles à concevoir "à la main". D’un autre coté,
plusieurs outils basés sur la planification automatique ont été développés,
nous pouvons citer par exemple l’aérospatial (Fisher et al., 2000; Backes et al.,
2004; Bresina et al., 2005), les véhicules autonomes (Urmson and Whittaker,
2008), la logistique (Cross and Walker, 1994), la robotique (Dvorak et al., 2014;
Lallement et al., 2018; Liang et al., 2022), l’industrie (Hoffmann et al., 2009),
la cybersécurité (Edelkamp et al., 2009). Les hypothèses de la modélisation
STRIPS étant trop restrictives pour ces applications, nous avons donc besoins
relâcher certaines d’entre elles ce qui rend la conception de ces modèles d’actions
plus difficile. Dans cette thèse, nous nous intéressons aux outils permettant de
faciliter l’acquisition de ces modèles d’actions.

D.1.2 Revue de littérature

Des outils d’ingénierie des connaissances facilitant l’écriture de modèles
d’actions ont été développés. Ces outils permettent de vérifier les erreurs
de syntaxe, de visualiser le modèle, etc. Cependant, ces outils nécessitent
une grande expertise en planification automatique et des connaissances en
génie logiciel. Des approches d’apprentissage automatique ont également été
proposées pour générer automatiquement des modèles d’actions (Arora et al.,
2018a; Celorrio et al., 2012; Jilani et al., 2014). Généralement, les approches
d’apprentissage automatique sont utilisées pour des applications déjà existantes
: soit pour automatiser des processus, comme un processus industriel par
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exemple, soit pour bénéficier de la flexibilité de la planification automatique,
pour faciliter la maintenance de ces applications par exemple. Ces approches
prennent en entrée un jeu de données d’apprentissage et apprennent un
modèle d’actions. Un jeu de données d’apprentissage est une collection de
données permettant d’apprendre un modèle. Dans le contexte de la planification
automatique, les jeux de données d’apprentissage sont généralement des
exemples d’exécutions d’agents autonomes. Ces approches sont prometteuses et
certaines d’entre elles réduisent l’effort humain (Zhuo et al., 2010a) nécessaire à
l’acquisition des modèles d’actions. Cependant, ces approches ne sont pas assez
efficaces pour être utilisées dans des applications réelles.

Tout d’abord, la plupart de ces approches d’apprentissage apprennent des
modèles d’actions STRIPS, et comme nous l’avons vu précédemment, les
modèles d’actions STRIPS sont basés sur des hypothèses trop restrictives pour
être utilisées dans des applications réelles. Ensuite, l’acquisition des jeux de
données d’apprentissage est un processus difficile et coûteux. En effet, il faut
générer les exemples, les exécuter, stocker les résultats de l’exécution. De plus,
certaines approches nécessitent également d’analyser ces exemples pour en
extraire une représentation symbolique. Il existe principalement deux types de
jeux de données : (1) les traces de plans et (2) les marches aléatoires. La plupart
des approches d’apprentissage utilisent des traces d’exécution ayant résolues
un problème comme données d’apprentissage ((Yang et al., 2007; Aineto et al.,
2019; Segura-Muros et al., 2018; Kucera and Barták, 2018)) et quelques approches
utilisent des traces d’exécution générées aléatoirement ((Rodrigues et al., 2010a;
Mourão et al., 2012)).

Les traces de plans sont des traces d’exécution d’une séquence d’actions
ayant accompli une tâche donnée. Par exemple, pour un véhicule autonome,
une trace de plan sera la séquence d’actions permettant au véhicule de se
rendre de Grenoble à Lyon. Le principal problème avec ce type de traces
est qu’elles sont biaisées par la tâche à réaliser, et si nous avons trop peu
de données, il y a un risque de sur-apprentissage. Par exemple, pour notre
véhicule autonome, si notre jeu de données d’apprentissage ne contient que
des trajets où les deux villes sont reliées par une autoroute, il est possible que
le modèle d’actions appris ne puisse pas être utilisé pour des trajets reliant
deux villes qui ne sont pas reliées par une autoroute. Pour limiter le risque
de sur-apprentissage, nous avons donc besoin d’un grand nombre de traces
d’exécution acquises à partir d’une grande variété de tâches. Cependant, comme
nous l’avons mentionné précédemment, l’acquisition de ces traces est difficile
et coûteuse. Les marches aléatoires sont des séquences d’actions générées
aléatoirement. L’avantage de ce type de trace est qu’elle n’est pas biaisée par une
tâche. En générant aléatoirement des séquences, nous pouvons couvrir un grand
nombre d’exemples d’exécution tout en limitant le risque de sur-apprentissage.
De plus, les marches aléatoires permettent d’acquérir des séquences d’actions
infaisables, c’est-à-dire des séquences d’actions où une ou plusieurs actions ne
sont pas réalisables. De plus, généralement en plus des séquences d’actions, les
traces d’exécution contiennent des observations : c’est-à-dire les différents états
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de l’environnement observés lors de l’exécution des séquences d’actions. Ces
états sont des ensembles de propositions logiques décrivant l’environnement.
En pratique, obtenir des observations complètes et sans bruit est une tâche
difficile et généralement les observations seront partielles et bruitées. Un état
observé partiel est un état dans lequel les valeurs de certaines propositions
sont inconnues. De même, un état observé bruité est un état où les valeurs
de certaines propositions sont erronées. Cependant, la majorité des approches
d’apprentissage ne sont capables de traiter que des observations complètes ou
partielles et non bruitées (Wang, 1995; Yang et al., 2007; Aineto et al., 2019). De
plus, même si certaines approches ((Mourão et al., 2012; Segura-Muros et al.,
2018; Rodrigues et al., 2010a)) sont capables d’apprendre à partir d’observations
partielles et bruyantes, peu d’approches sont capables de gérer des niveaux très
élevés comme on peut en rencontrer dans les applications du monde réel. Enfin,
les approches d’apprentissage ne sont généralement pas capables d’apprendre
des modèles d’actions utilisables par les planificateurs. Une étape de relecture
par un expert en planification est généralement nécessaire.

Dans cette thèse, nous soutenons que, pour être efficace, une approche
d’apprentissage doit aborder le triple problématique suivante :

1. Sortie: Comme nous l’avons mentionné plus haut, la planification STRIPS
est trop restrictive pour les applications du monde réel. Nous devons donc
proposer des approches apprenant des modèles d’actions moins restrictifs.

2. Entrée: L’acquisition de l’ensemble de données d’apprentissage doit être
peu coûteuse et nécessiter peu d’efforts humains.

3. Performance: Le modèle d’actions appris doit être correct. Un modèle
d’actions est correct s’il peut être utilisé par les planificateurs pour
résoudre des problèmes de planification sans nécessiter une étape de
relecture. De plus, même avec des entrées ne nécessitant pas beaucoup
d’efforts humains, l’acquisition de l’ensemble de données d’apprentissage
est difficile et coûteuse. L’approche d’apprentissage doit nécessiter peu
de données pour apprendre le modèle d’actions. Enfin, l’approche
d’apprentissage doit être robuste aux observations partielles et bruitées,
c’est-à-dire que l’approche d’apprentissage doit apprendre des modèles
d’actions corrects même avec un niveau élevé de partialité et de bruit dans
les observations.

Dans cette thèse, nous nous attaquons au défi de recherche suivant : Comment
apprendre automatiquement des modèles d’actions à partir d’observations partielles et
bruitées ?

D.2 Contribution

Cette thèse contribue au domaine de la planification automatique, et plus
particulièrement au domaine de l’acquisition de modèles d’actions.
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Figure D.2: Aperçu de l’approche AMLSI

Dans cette thèse, nous proposons AMLSI (Action Model Learning with
State machine Interaction), une approche d’apprentissage pour l’acquisition
de modèles d’actions. La figure D.2 donne un aperçu de cette approche.
L’idée centrale de l’approche AMLSI est d’interagir avec l’environnement
dans lequel l’agent autonome devra résoudre des problèmes de planification
pour apprendre le modèle d’actions : AMSLI teste différentes actions, observe
l’évolution de l’environnement lorsque ces actions sont exécutées et apprend le
modèle d’actions à partir de ses observations. Cette approche est divisée en deux
phases :

Phase de requêtes AMLSI teste des séquences d’actions faisables et infaisables
dans l’environnement et perçoit des observations. Ces observations peuvent
être partielles et/ou bruitées. L’approche AMLSI teste à la fois les séquences
d’actions faisables et infaisables car les séquences d’actions infaisables
permettent de minimiser le nombre d’actions (faisables) à exécuter dans
l’environnement et donc de minimiser le coût d’acquisition des données
d’apprentissage. De plus, les séquences d’actions seront générées de manière
aléatoire afin d’éviter le problème de sur-apprentissage. Cette phase prend
en entrée l’ensemble des actions que l’agent autonome peut exécuter et
l’ensemble des propositions observables décrivant l’environnement. Cette phase
de requêtes permet à AMLSI de construire un jeu de données d’apprentissage
qui sera ensuite utilisé comme entrée de la phase d’apprentissage.
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Phase d’apprentissage C’est durant cette phase qu’AMLSI apprend le modèle
d’actions. Pour apprendre le modèle d’actions, AMLSI va s’appuyer sur
l’induction grammatical régulière. Comme mentionné dans le chapitre 4, les
problèmes de planification sont liés à des machines à états et ces machines à
états sont équivalentes à des grammaires régulières. De plus, comme mentionné
dans le chapitre 3, l’induction grammatical régulière est un problème bien défini
(Gold, 1967; De La Higuera, 2010), et de nombreux algorithmes ont été proposés
pour le résoudre comme, par exemple l’algorithme RPNI (Oncina and Garcia,
1992).

• Apprentissage STRIPS : Dans un premier temps, nous montrons
dans le chapitre 4 que notre approche est capable d’apprendre des
modèles d’actions STRIPS corrects. L’idée centrale de notre approche est
d’apprendre la machine à états reliée au problème de planification en
utilisant des algorithmes d’induction grammatical régulière puis d’induire
le modèle d’actions à partir de cette machine à états. De plus, comme
les problèmes de planification sont déclarés à l’aide d’un domaine de
planification, l’approche AMLSI représente le modèle d’actions STRIPS
sous la forme d’un domaine de planification PDDL. Nous montrons
expérimentalement que l’approche AMLSI apprend des modèles d’actions
précis même avec un niveau élevé de partialité et/ou de bruit dans les
observations. De plus, comme l’approche AMLSI utilise à la fois des
séquences d’actions faisables et infaisables, elle nécessite peu de données
d’apprentissage pour apprendre des modèles d’actions précis. Enfin, nous
montrons que l’approche AMLSI est plus performante que les approches
de l’état de l’art.

• Apprentissage incrémental : Ensuite, nous présentons dans le chapitre 5
IncrAMLSI, une extension incrémentale de l’approche AMLSI. Proposer
une approche incrémentale permet de répondre à deux besoins. Tout
d’abord, l’acquisition de données est un processus long, les données
d’apprentissage deviennent disponibles progressivement, et sont difficiles
et coûteuses à obtenir. Il est donc important de pouvoir mettre à jour les
modèles d’actions appris en fonction des nouvelles données entrantes sans
recommencer le processus d’apprentissage depuis le début. Aussi, il est
important de savoir quand arrêter l’apprentissage, c’est-à-dire avoir un
critère d’arrêts, pour savoir quand arrêter le processus d’acquisition des
données et donc minimiser le coût de ce processus.

• Apprentissage temporelle : Ensuite, nous présentons dans le chapitre 6
TempAMLSI, une approche apprenant des modèles d’actions temporels.
Plusieurs planificateurs (Fox and Long, 2002a; Halsey et al., 2004; Celorrio
et al., 2015; Furelos Blanco et al., 2018) résolvent des problèmes de
planification temporels en traduisant les problèmes temporels vers en
problèmes STRIPS. TempAMLSI réutilise cette idée pour l’apprentissage
de modèle : TempAMLSI apprend un modèle STRIPS en utilisant
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l’approche AMLSI puis traduit le modèle STRIPS en un modèle temporel.
Nous montrons dans ce chapitre que TempAMLSI apprend des modèles
contenant différentes formes de concurrences tel que les enveloppes (Coles
et al., 2009).

• Apprentissage HTN : Enfin, nous présentons dans le chapitre 7
HierAMLSI, une approche apprenant des modèles de tâches HTN. Comme
pour TempAMLSI, HierAMLSI est basé sur l’approche AMLSI et utilise
l’apprentissage STRIPS pour apprendre des modèles moins restrictifs.
Nous montrons dans ce chapitre que HierAMLSI est capable d’apprendre
le modèle de tâches primitives, le modèle de tâches complexes et les deux
à la fois.

D.3 Perspectives

Nous allons maintenant voir les différentes perspectives possibles pour nos
travaux.

D.3.1 Extension de l’approche AMLSI

Une première perspective consiste à étendre l’approche AMLSI.
La principale limite de l’approche AMLSI est l’expressivité des modèles

d’actions appris. Bien que l’approche AMLSI apprenne des modèles moins
restrictifs que les modèles STRIPS, les pré-conditions et les effets des actions
sont STRIPS, c’est-à-dire que les pré-conditions et les effets sont des ensembles
de propositions logiques. Cependant, il est possible d’avoir des pré-conditions et
des effets plus complexes, comme la modélisation ADL par exemple. Au cours de
cette thèse, nous avons testé une extension d’AMLSI pour les modèles d’actions
ADL. Cependant, cette extension n’a pas été capable d’apprendre des modèles
d’actions corrects lorsque les observations étaient bruitées et/ou partielles.
De plus, l’approche AMLSI n’apprend pas les aspects numériques. En effet,
certaines modélisations permettent de prendre en compte des caractéristiques
numériques tel que les effets probabilistes (Younes and Littman, 2004; Sanner,
2010), les fonctions numériques (Fox and Long, 2003, 2002b, 2006). Une première
perspective pour notre approche serait de l’étendre pour répondre à ces
limitations.

Comme mentionné dans le chapitre 2), les problèmes de planification moins
restrictifs que les problèmes STRIPS sont plus complexes à résoudre. Des
techniques basées sur l’apprentissage automatique ont été proposées pour
faciliter la résolution de ces problèmes, comme les macro-actions : (Dawson
and Siklóssy, 1977; Korf, 1985; Botea et al., 2005; Castellanos-Paez et al., 2018),
la planification généralisée (Minton, 2012; Borrajo and Veloso, 1997; de la Rosa
et al., 2007, 2008) et l’apprentissage d’heuristique (De La Rosa et al., 2009; Yoon
et al., 2006). L’objectif de ces méthodes est d’apprendre des macro-actions ou
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des heuristiques facilitant la résolution de problèmes de planification à partir de
traces d’exécution. Par exemple, les macro-actions sont des actions composées
de plusieurs actions. Par exemple, pour Blocksworld, nous pourrions avoir la
macro action pick-up-stack composée des actions pick-up et stack. Pour apprendre
ces macros, les approches prennent généralement en entrée un ensemble de
plans de solution et renvoient les macros qui ont souvent été observées. Une
perspective possible serait de réutiliser l’idée centrale d’AMLSI pour apprendre
ces macros et heuristiques : apprendre la machine d’état liée au problème de
planification en utilisant des algorithmes d’induction de grammaire et induire
à partir de cette machine d’état ces macros et heuristiques. Plus généralement,
nous pourrions étendre l’approche AMLSI afin de pouvoir à la fois apprendre
des modèles d’actions et apprendre à résoudre efficacement les problèmes de
planification en utilisant les modèles d’actions appris.

D.3.2 Applications

Comme nous l’avons vu précédemment, le principal intérêt des approches
apprenant des modèles d’actions est de faciliter l’acquisition de ces modèles
afin de les utiliser dans des applications réelles tel que l’aérospatial (Fisher et al.,
2000; Backes et al., 2004; Bresina et al., 2005), les véhicules autonomes (Urmson
and Whittaker, 2008), la logistique (Cross and Walker, 1994), la robotique
(Dvorak et al., 2014; Lallement et al., 2018; Liang et al., 2022), l’industrie
(Hoffmann et al., 2009), la cybersécurité (Edelkamp et al., 2009). Une perspective
directe pour notre travail serait donc d’utiliser l’approche AMLSI pour faciliter
l’acquisition de ces modèles d’actions.

Une deuxième application serait de profiter de l’aspect interactif de
l’approche AMLSI pour faciliter le développement d’outils utilisant des
interactions avec l’utilisateur comme par exemple la programmation de robots,
et plus précisément, la programmation par démonstration de robots (Billard
et al., 2008). La programmation par démonstration est une technique de
programmation qui permet à l’utilisateur d’enseigner de nouvelles compétences
à un robot en montrant des démonstrations de ces différentes compétences.
AMLSI peut être adapté à ce contexte pour apprendre des modèles d’actions.
Comme nous l’avons vu précédemment, la première étape de l’approche
AMLSI est une phase de requêtes. Dans le contexte de la programmation par
démonstration, cette phase de requêtes pourrait être l’interaction entre le robot
et l’utilisateur : le robot pourrait demander à l’utilisateur quelles sont les actions
ou les tâches faisables et infaisables. Dans ce contexte, les démonstrations
seraient l’exécution des séquences d’actions générées.

Enfin, dans cette thèse, nous avons tiré profit du fait que les problèmes
de planification sont équivalents à des grammaires pour apprendre des
modèles d’actions. De plus, nous avons vu dans le chapitre 3 que l’induction
grammaticale a plusieurs applications (Adriaans and van Zaanen, 2004; Dupont
et al., 2008; Boström, 1996; Boström, 1998; Cruz-Alcázar and Vidal, 1998; Bex
et al., 2006; Cruz-Alcázar and Vidal, 2008; Stein et al., 2006; Bréhélin et al.,
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2001; Raffelt and Steffen, 2006; Berg et al., 2006). Une dernière application
pourrait donc consister à utiliser AMLSI dans ces contextes applicatifs où une
représentation sous forme de modèles d’actions peut présenter des avantages.
Par exemple, dans le domaine de la modélisation comportementale des
systèmes, des algorithmes d’induction grammatical sont utilisés pour induire
le comportement d’un système, d’un logiciel, d’un processus industriel, etc. Le
comportement de ces systèmes est représenté sous la forme de grammaires et
peut ensuite être analysé pour les automatiser (Dupont et al., 2008), détecter
des intrusions (Su and Wassermann, 2006; Godefroid et al., 2008) etc. Dans ce
contexte, AMLSI pourrait être utilisé pour apprendre des modèles d’actions
représentant le comportement de ces systèmes. L’avantage serait d’avoir une
représentation plus compacte et plus lisible de ces systèmes. De plus, les
modèles d’actions appris pourraient être utilisés directement pour automatiser
ces systèmes, détecter les intrusions, etc.
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