4 ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique (5, avenue Henry Le Chatelier 91120 PALAISEAU - France)
4 ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique (5, avenue Henry Le Chatelier 91120 PALAISEAU - France)
5 CREST - Centre de Recherche en Économie et Statistique (5 Avenue Henry Le Chatelier, 91120 Palaiseau - France)
- ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (Campus de Ker-Lann Rue Blaise Pascal BP 37203 35172 BRUZ cedex - France)
- X - École polytechnique (Route de Saclay, 91128 Palaiseau Cedex - France)
- IP Paris - Institut Polytechnique de Paris (Route de Saclay, 91120 Palaiseau Cedex, France - France)
- ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique (5, avenue Henry Le Chatelier 91120 PALAISEAU - France)
- CNRS - Centre National de la Recherche Scientifique : UMR9194 (France)
6 LaborIA INRIA (France) "> LaborIA INRIA
7 Universidade do Estado de Minas Gerais = Minas Gerais State University (Cidade Administrativa Presidente Tancredo Neves Rodovia Papa João Paulo II, 4143 Ed. Minas - 8º andar Belo Horizonte - MG - Brésil) "> Universidade do Estado de Minas Gerais = Minas Gerais State University
8 UEM - Universidade Estadual de Maringá [Brasil] = State University of Maringá [Brazil] = Université d'État de Maringá [Brésil] (Av. Colombo, 5.790 Jd. Universitário Maringá - Paraná - CEP 87020-900 - Brésil) "> UEM - Universidade Estadual de Maringá [Brasil] = State University of Maringá [Brazil] = Université d'État de Maringá [Brésil]
Résumé
Labor plays a major, albeit largely unrecognized role in the development of artificial intelligence. Machine learning algorithms are predicated on data-intensive processes that rely on humans to execute repetitive and difficult-to-automate, but no less essential, tasks such as labeling images, sorting items in lists, recording voice samples, and transcribing audio files. Online platforms and networks of subcontractors recruit data workers to execute such tasks in the shadow of AI production, often in lower-income countries with long-standing traditions of informality and lessregulated labor markets. This study unveils the resulting complexities by comparing the working conditions and the profiles of data workers in Venezuela, Brazil, Madagascar, and as an example of a richer country, France. By leveraging original data collected over the years 2018-2023 via a mixed-method design, we highlight how the cross-country supply chains that link data workers to core AI production sites are reminiscent of colonial relationships, maintain historical economic dependencies, and generate inequalities that compound with those inherited from the past. The results also point to the importance of less-researched, non-English speaking countries to understand key features of the production of AI solutions at planetary scale.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Antonio Casilli : Connectez-vous pour contacter le contributeur
https://hal.science/hal-04742532
Soumis le : jeudi 17 octobre 2024-22:59:34
Dernière modification le : mardi 22 octobre 2024-03:15:38
Dates et versions
- HAL Id : hal-04742532 , version 1
- ARXIV : 2410.14230