Global Inequalities in the Production of Artificial Intelligence: A Four-Country Study on Data Work - INRIA - Institut National de Recherche en Informatique et en Automatique
Nothing Special   »   [go: up one dir, main page]

Chapitre D'ouvrage Année : 2025
Global Inequalities in the Production of Artificial Intelligence: A Four-Country Study on Data Work
1 NOS - Numérique, Organisation et Société (Télécom Paris 19 Place Marguerite Perey 91120 PALAISEAU. Anciennement: SID: Sociologie, Information-Communication Design - France)
"> NOS - Numérique, Organisation et Société
2 SES - Département Sciences Economiques et Sociales (Télécom Paris 19 Place Marguerite Perey 91120 PALAISEAU - France)
"> SES - Département Sciences Economiques et Sociales
3 CNRS - Centre National de la Recherche Scientifique (France)
"> CNRS - Centre National de la Recherche Scientifique
4 ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique (5, avenue Henry Le Chatelier 91120 PALAISEAU - France)
"> ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique
5 CREST - Centre de Recherche en Économie et Statistique (5 Avenue Henry Le Chatelier, 91120 Palaiseau - France) "> CREST - Centre de Recherche en Économie et Statistique
6 LaborIA INRIA (France) "> LaborIA INRIA
7 Universidade do Estado de Minas Gerais = Minas Gerais State University (Cidade Administrativa Presidente Tancredo Neves Rodovia Papa João Paulo II, 4143 Ed. Minas - 8º andar Belo Horizonte - MG - Brésil) "> Universidade do Estado de Minas Gerais = Minas Gerais State University
8 UEM - Universidade Estadual de Maringá [Brasil] = State University of Maringá [Brazil] = Université d'État de Maringá [Brésil] (Av. Colombo, 5.790 Jd. Universitário Maringá - Paraná - CEP 87020-900 - Brésil) "> UEM - Universidade Estadual de Maringá [Brasil] = State University of Maringá [Brazil] = Université d'État de Maringá [Brésil]

Résumé

Labor plays a major, albeit largely unrecognized role in the development of artificial intelligence. Machine learning algorithms are predicated on data-intensive processes that rely on humans to execute repetitive and difficult-to-automate, but no less essential, tasks such as labeling images, sorting items in lists, recording voice samples, and transcribing audio files. Online platforms and networks of subcontractors recruit data workers to execute such tasks in the shadow of AI production, often in lower-income countries with long-standing traditions of informality and lessregulated labor markets. This study unveils the resulting complexities by comparing the working conditions and the profiles of data workers in Venezuela, Brazil, Madagascar, and as an example of a richer country, France. By leveraging original data collected over the years 2018-2023 via a mixed-method design, we highlight how the cross-country supply chains that link data workers to core AI production sites are reminiscent of colonial relationships, maintain historical economic dependencies, and generate inequalities that compound with those inherited from the past. The results also point to the importance of less-researched, non-English speaking countries to understand key features of the production of AI solutions at planetary scale.

Fichier principal
Vignette du fichier
Casilli et al_HDL Chapter 31092023.pdf (576.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04742532 , version 1 (17-10-2024)
Identifiants

Citer

Antonio A. Casilli, Paola Tubaro, Maxime Cornet, Clément Le Ludec, Juana Torres-Cierpe, et al.. Global Inequalities in the Production of Artificial Intelligence: A Four-Country Study on Data Work. Jack Qiu, Shinjoung Yeo, Richard Maxwell. The Handbook of Digital Labor, Wiley Blackwell, In press, ISBN10: 1119981808. ⟨hal-04742532⟩
10 Consultations
16 Téléchargements

Altmetric

Partager

More