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Abstract 
 

Sensor networks are expected to play an important role in 
hybrid protection infrastructures when combined with 
robots and human decision makers. In order to be 
effective, detection of intruders needs to be attended to, 
and a timely response needs to be made. Intruders, on the 
other hand, if they can't avoid detection may make use of 
strategies to overload attention or dilute the response. 
Such strategies are related to Denial of Service attacks in 
electronic security. This paper develops the conceptual 
framework for modeling the game between intruders and 
defenders. 

 
1. Introduction 

 
The use of sensors and actuators in surveillance 

applications goes back more than a century [14]. These 
sensors were generally bulky devices wired to a central 
control unit whose role was to collect, process, and act 
upon the data gathered by individual sensors. Wireless 
sensor network research, as we know it today, had its 
origins in the DARPA-sponsored SmartDust program 
[16]. The vision of SmartDust was to make machines with 
self-contained sensing, computing, transmitting, and 
powering capabilities so small and inexpensive that they 
could be released into the environment in massive 
numbers.  These small devices have come to be called 
motes and serve as nodes in a sensor network. 

Since building massively-deployed sensor networks is 
prohibitively expensive under current technology, in the 
past few years we have witnessed the deployment of 
small-scale sensor networks in support of a growing array 
of applications. These prototypes provide solid evidence 
of the usefulness of sensor networks and suggest that the 
future will be populated by pervasive sensor networks, 
that will redefine the way we live and work [1, 6, 7, 11, 
12]. It is, thus, expected that in the near future, in addition 
to the existing implementations, a myriad of other 
applications, including battlefield command and control, 
disaster management and emergency response, will 
involve sensor networks as a key mission-critical 
component.   

Current sensor networks, however, are for the most 
part modeled after conventional computing networks 
under centralized control and involve a small number of 
sensors usually deployed as the lowest layer in a multi-
layer hybrid network. In critical applications the 
underlying sensor network is usually augmented by a 
second layer consisting of (mobile) robots monitored by 
human beings or, perhaps, by a combination of humans 
and robots. For, in spite of phenomenal advances in 
robotics, human intelligence is more capable of 
interpreting situations than machine intelligence. Besides, 
human experts are better at evaluating the broad context 
of the event at hand and are held responsible for their 
actions – thus, they ultimately will want to participate in 
crucial decisions. 

We can imagine a sensor network of motes, small 
motion detectors, metal detectors, pressure detectors, 
vibration detectors, and the like, deployed around a 
valuable asset, say an electrical transformer. These motes 
may have the mission of detecting human intruders. 
While sensors do quite well in detecting motion and other 
characteristics, including weight and the presence of 
metallic objects, they may not do so well in differentiating 
animals from humans; or, they may not do so well in 
differentiating the friendly mechanic coming to maintain 
the device from the unfriendly saboteur.  

Even if sensors were able to accurately classify 
intruders, we would probably want a human to decide 
what to do in response, as such a decision might depend 
on the available resources, the time to deploy them, the 
value of the defended object, and the political 
environment of the surrounding community.  

In situations related to security in which sensor 
networks are used, it makes sense to discuss human-
sensor network interaction the same way we discuss 
human-robot interaction. Indeed, if we expand our 
transformer example to include a deployable robotic 
guard, we are then clearly concerned with human-robot 
interaction.  

In a previous paper, we discussed the use of perimeter 
defenses [16]. We pointed out that an axial model might 
be sometimes better than a perimeter model. We 
developed heuristics based on security as a Quality of 
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Service (QoS) parameter, as other authors have done [9]. 
However, we did not consider the nature of human 
attention, or the nature of a response. Such considerations 
are generally absent from the sensor network literature, 
and they shouldn't be. 

We consider how human attention can be modeled in 
relation to a sensor network, as reflected through the 
allocation of function between humans and sensors. First, 
we will conceptually discuss security in relation to sensor 
networks and humans. Then, we will develop a physical 
scheme for detection. Following this, we will discuss the 
human role in handling the false positives that will be part 
of any detection system.  

 
2. Conceptualizing security 

 
2.1 The nature of the problem 

 
In this section we develop a vocabulary for sensor 

security. As with any human-machine symbiosis, much of 
our concerns will be over the allocation of function [3]. 
For, it is clear we would like the sensor network to do as 
much as possible with as little human supervision and 
direct intervention as possible. 

So, we might imagine the ideal network would be 
capable of automatically detecting an intruder with no 
errors. Since there would be no errors, the sensor network 
could also automatically block or restrain the intruder 
until humans could intervene.  

The problem, of course, is that there will be false 
positives: classifiers are seldom perfect. And the 
inadvertent restraint of bystanders is not popular. 

Even short of automatic restraint, automatic perception 
is difficult. Part of the difficulty of designing a fully 
automated intruder detection system is that the sensor 
network will have to perform most (if not all) of the 
aggregation and fusion of the raw sensory data collected. 
While this task is, in theory, well understood, the sensors 
need external supervision at least initially. Indeed, a 
sensor network has considerable learning capabilities, 
often times referred to as “wisdom of the crowd” [14]. 
However, in order for the sensor network to reach its full 
capabilities it needs to be trained (supervised learning). At 
the moment this supervision comes in the form of remote 
experts interacting (e.g., by satellite) with the sensor 
network. Such is the case in most NASA missions where 
the sensory data collected, say, on Mars, is fused and 
interpreted in the mission control room here on Earth.   

In addition, certain tasks, such as recognition and 
response strategy, can be performed better by humans, if 
they can focus their attention. Notice that the allocation of 
function here will have a different slant than that in, say, 
emergency response. For, in a security situation two 
entities are opposing each other: the defender and the 

intruder, an instantiation of an adversary. Since both the 
intruder and the defender are capable of intentional 
behavior, the conflict can be modeled as a game. The 
intruder seeks to penetrate a sensor network. We will 
simplify the intruder’s goal to be one of reaching the 
center of the defended territory, where there is something 
of value. The defender tries primarily to prevent such an 
intrusion, and, secondarily, to capture any intruder so as 
to prevent recurrent attacks.  

A moderately sophisticated adversary may engage in a 
Denial-of-Service (DoS) attack, flooding the network with 
bogus intrusion events in order to trigger a massive 
number of alarms that human responders cannot attend to. 
This is likely to have one of two possible effects: (1) 
either the humans will come to think that the sensor 
network does not function properly, and will perhaps 
disconnect it, or (2) they may decide that the sensor 
network does function properly but is over-reacting, in 
which case they will tend to ignore subsequent alarms. In 
addition, the DoS attack can serve the purpose of allowing 
a potential adversary to test the network in order to 
unearth the allocation strategies of the network, to aid in 
planning a future intrusion.  

 
 
2.2 Perimeter and access security 
 

Many have discussed the distinction between perimeter 
and access security, e.g., [10]. While perimeter security 
seeks to isolate, access security needs to let people pass. 
So, for example, museums use access security. Pure 
perimeter security is relatively rare; even when we fence 
off an area, someone needs to get inside, and so we add a 
door, which leads us to practice access security.  

Access security leads to tradeoffs between false 
positives and false negatives. We might not want to let 
any intruder get in, and therefore may bias toward 
searching everyone. When this doesn't work, we may bias 
the opposite way, searching nobody.  

Intrusion is particularly difficult to defend against in 
access control situations. As intrusion is by its nature rare, 
we sometimes over-react to detection events, even though 
by prior probabilities, we should be less alarmed. One 
study, in analyzing the prior probabilities, identified the 
false positives as the limiting factor in computer intrusion 
detection systems [2]. (While computer intrusion is 
distinct from physical intrusion, there are interesting 
analogies, as sensor systems have both a physical and a 
network characteristic.) From our perspective, the false 
positive is an issue for two related reasons.  

First, human intervention is usually called for when an 
intrusion is detected. Therefore, attention will be 
distracted by too many false positives. If there are a large 
number of false positives over a sustained period of time, 
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then the alarms tend to be ignored. We witness such a 
phenomenon in every day life when car alarms go off and 
excite no one into action.  

Second, an intruder can take advantage of false 
positives. For example, as already pointed out, the 
intruder can do something which will flood the network. 
The defender will initially be distracted chasing down 
false positives, and eventually will cease to respond to 
any alarm, allowing the intruder through. 

We note that there is a hard physical reality to multiple 
attacks; given any kind of defender, human or automated, 
a large enough attack will overwhelm the defender. 
Therefore, a protection network will have a certain 
capacity, as in QoS – more resource may provide defense 
against larger teams of intruders. 

The problem is also one of human attention. As the 
number of attacks increase, attention is split, and 
eventually fatigued. In addition, unaided human cognition 
will tend to over-estimate the likelihood of an intrusion 
given an alarm; this tendency can be exploited by 
intruders, who may attempt a DoS attack on the sensor 
network. 

Ideally, a DoS attack should be recognized as just that 
and both attention and response resources held back until 
an intruder is identified with more certainty. Sometimes 
delay in responding might be the better course of action. 

Later, we will look at how this decision to hold back 
might be made.  In any case, human response to an alarm 
does not scale – humans are prone to fatigue and unless a 
large team of responders is available, cannot attend to or 
confront concerted attacks. This state of affairs makes it 
imperative to enlist the help of a hybrid system composed 
by a reliable sensor network apt to filter out the vast 
majority of false positives and that cannot be easily fooled 
into a false negative (i.e., failing to report an intrusion 
when one occurs).  The topic of building adaptive sensor 
networks in support of reliable intrusion detection will be 
further discussed in Section 3.  

 
3. Building adaptive sensor configurations 

 
In this section, we focus on the construction of the 

hardware of sensor configurations, in preparation for a 
discussion in Section 4 of the human component of the 
sensor system.  

 
3.1 A layered response architecture 

 
One of the key advantages of a sensor network is it 

functional versatility. Indeed, while the sensors once 
deployed do not move, functionality can migrate freely in 
the resulting network. In particular, individual sensors can 
be activated or deactivated, placed in high alert or in 
stand-by mode. By selectively activating groups of 

sensors several defensive configurations can be obtained 
as shown below.  

Consider a sensor deployment around a central asset 
and refer to Figure 1. Each sensor has a sensing range 
(often denoted by a disk centered at the sensor) and a 
transmission range (not shown). The sensors self-organize 
into a wireless sensor network as detailed in [16, 20, 22-
24]. In this work we assume a virtual infrastructure 
grafted on top of the set of sensors, compatible with the 
ideas discussed in [16, 17]. At deployment time the 
sensors are inactive (in the sequel, blue sensors are 
inactive, red ones are active). 

 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 

Figure 1. The original deployment

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Randomized activation of outermost 
corona 

 
To begin, following a randomized scheme where the 

sensors become active with a pre-determined probability 
p, the sensors close to the outer boundary of the 
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deployment area (outermost corona, in the terminology of 
[16]) become active as illustrated in Figure 2. 

The intention is to set up a reliable early-warning 
system (EWS, for short) that can alert the defender of 
incipient intrusion events. The activation probability p of 
individual sensors can be determined accordingly. We 
refer the reader to Subsection 3.2 for the technical details 
related to computing p. There is an obvious tradeoff here:  
the higher the activation probability, the more sensors will 
be awake per time unit, the better and more reliable the 
EWS, the shorter the time to certainty, but also the higher 
the number of potential false positives. In practice, the 
activation probability will be set as a function of other 
components of the EWS (clearly, no EWS should rely on 
a single technology). 

Now assume that the EWS is alerting the defender to 
the possibility of intrusion: in other words, one or more of 
the sensors in the EWS have detected a possible intruder 
that has penetrated the guarded area. Notice that there is 
no immediate response from the part of the defender. 
However, at this moment, a further set of sensors are 
activated. For example an axial configuration may be set 
up as discussed in [16]. Such an axial configuration is 
featured in Figure 3, where there are eight axes each at an 
angle of 45o from its neighbors. It is worth noting that the 
axes are set up by a simple broadcast message from the 
sink. Namely, all the sensors in a small wedge about the 
desired axes are activated. The directions of the axes are 
also communicated by the sink. The sensors in the 
respective wedges will activate themselves. Of course, 
this is predicated on the sensors being aware of the 
angular distance from the sink. We refer the reader to [16] 
where this issue is discussed further. 
 

 
 
 
 
 
 
 
 
 
 
 
 
    
 
  
 
 
As pointed out in [16] the axial defensive system is of 

assistance in determining whether or not an intrusion has 
taken place and to pinpoint its location.  We refer the 

interested reader to [16] for an analytical derivation of the 
detection probability afforded by an axial defensive 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 4. Setting up circular perimeters

In some cases the defender may choose to forgo the 
setup of an axial defensive system preferring a circular 
perimeter system instead as illustrated in Figure 4. The 
details are as follows. Imagine the deployment area 
partitioned into concentric disks of decreasing radii 
centered at the sink.  These disks partition the deployment 
areas into coronas which will play an important role in 
our discussions of intervention and restraint in later 
sections of the paper. The task of setting up the coronas 
and the wedges (determined by the axis system above) is 
referred to as training. We refer the reader to [17, 23] for 
efficient training protocols. 

With training in place, the sensors around the 
boundaries of the coronas can be activated by a simple 
broadcast message form the sink. Importantly, in order to 
save energy individual sensors that qualify for being 
activated do so with a certain probability that depends on 
the perceived level of danger.  

 
3.2 Computing the activation probability 

 
The main goal of this subsection is to provide a closed 

form for the probability with which a sensor needs to be 
activated in order to obtain a circular defensive perimeter. 
For this purpose, assume that the sensors were deployed 
uniformly at random in the coverage area with density ρ.  Figure 3. Setting up an axial  system

Consider a corona of width d bounded by the disks of 
radii R-d and R, and refer to Figure 5. We begin by 
determining a virtual circle Γ, shown in dotted lines in 
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Figure 5, that corresponds to the expected distance of a 
sensor to the sink. 

 
 
 
 

Figure 5. Illustrating r(Γ) 
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It is easy to see that the expected radius of Γ is 
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Next, notice that the number N of sensors deployed in 
the corona is given by 

                   
                  [ ]dRdN −= 2ρπ . 
 
In an expected sense, we may think of these N sensors 

as being deployed on the circle Γ itself. Now, assuming 
that the sensing radius of a sensor is s, the minimum 
number of active sensors needed to cover the 
circumference of  Γ is   2 ( ) ( ) .

2
r r
s s

π πΓ Γ
=  

 
It follows that the probability p with which a sensor in the 
given corona is activated is 

                     
)2(
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r
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−
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=
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=
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Now, replacing the value of r(Γ) obtained in (1) we obtain 
the desired closed form for p. Specifically, we can write 
 

                     
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−
−

−= 22
)(1

3
2

dR
dRR

d
p

ρ
.                    (2) 

 
3.3 Making detection watertight 

 
The activation probability derived in (2) is in some 

sense very optimistic: it assumed that the sensing areas 
are nicely lined up “shoulder to shoulder” making it 
impossible for the intruder to sneak by undetected.  In 
other words it provides a probabilistic detection that is 
good on the average. The randomness of the process 
makes things different in practice. To understand the 
problem refer to Figure 6 where the circumference of Γ 
has been partitioned into segments of size s (the detection 
radius). Assume, further, that only the sensors featured in 
Figure 6 have been activated. Visual inspection shows 
that there is a gap in the coverage through which an 
intruder gets in undetected. 

s s s s s s s

Figure 6. Filling the detection gaps 

Thus, if detection with high probability is desired then 
a larger number of stations have to be active and, 
consequently, the activation probability has to increase.  
The insight as to how to proceed is suggested by Figure 6. 
Perceiving the segments of size s as bins and the activated 
sensors as balls, we are in the presence of a classic balls-
and-bins problem. This particular instance of the problem 
asks for the least number of balls that have to be thrown 
into the bins in such a way that no bins are unoccupied. 
The reader should have no difficulty to confirm if all the 
bins are occupied then the detection is guaranteed. It turns 
out that this problem is also known as the Coupon 
Collector’s Problem [22 (Theorem 8.2)], after a frivolous 
application in which each cereal box contains one coupon. 
Given that there are k different coupons and that the 
coupons have been placed uniformly at random, one per 
cereal box, how many cereal boxes does a housewife need 
to buy before she has all the k coupon varieties. It turns 
out that the answer is k ln k where ln stands for the natural 
logarithm. 

In our case the number of coupons is  

                       
s
rk )(2 Γ

=
π

. 

 
And, consequently, the number of active sensors 

should be 
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. 

 
With the new activation probability (that, at the risk of 

some overload, we also denote by p) can be written as 
 

                    
[ ]dRd

s
r

s
r

p
−
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ρ

π

.               

 
 

4. Focusing human attention 
 

4.1 The geometry of attention 
 
Once a sensor network has detected a possible 

intrusion event, the next issue becomes the differentiation 
of real intruders from false positives.  

The typical and natural way is to send a human being 
out to investigate. This has many advantages, as a person 
can look at the potential intruder, and sometimes 
recognize instinctively if the person is a threat or not. If 
the person is a threat, then the defender can attempt a 
capture. However, in an environment with many false 
positives, this technique does not make sense.  

It is clear that the longer one waits, the more 
information one gets, and the more certain one can be 
about whether or not an alarm is associated with an 
intruder. For example, approaches using temporal 
Bayesian nets will feed previous states to the current state, 
which in turn should adjust the probabilities of an entity 
being an intruder [29]. We can say that P(I|A) (the 
conditional probability of an intruder existing given an 
alarm) for a real intruder will become higher over time, 
and the false positives P(B|A) (the conditional probability 
of a bystander having triggered an alarm) will go down 
over time. In the language of signal detection theory, the 
receiver operating characteristics for classification will 
get better the more time we allow. 

However, there is a tradeoff. For, there are other times 
that are important to consider in the network. One is the 
time to intervention. This is the amount of time it would 
take to both make the decision to intercept a possible 
intruder and actually accomplish the intervention. From 
the intruder's perspective, there is the intruder's time to the 
target, in this set of scenarios the time to reach the center.  

It is useful to imagine a time to certainty. If the 
probability of an intruder is above a certain point, then we 
will consider that entity an intruder at that instant and, at 
least, move to physically intercept. This concept is 
discussed in more depth in the next subsection.  

 

 
 

Figure 7. Detection is the first step; the intruder 
will continue to move while the defender 

achieves certainty, and moves to intervene. 
 
This is shown in Figure 7. Integrating the time 

measures together, we can say that a defender wishes that 
the following always holds: 

 
time to detection + time to intervene <  
 intruder's time to target 

 
In other words, the intruder needs to be seen before it is 

too late. However, this may not be sufficient, for in 
situations where there are many false positives, we 
probably can't deploy intervention resources to attend to 
every alarm; what we want is the following:  

 
time to certainty + time to intervene  
<  intruder's time to target 

 
This is a harder constraint, as time to certainty > time 

to detect. Detection has to happen early enough so that 
certainty of detection can follow while still allowing time 
for intervention.  

The previous discussion in section 3 on the density of 
sensors assumes a greater importance as we contemplate 
this diagram. If we assume the defender is centrally 
located, and moves at the same speed as the intruder, then 
we can see that between the time that the defender is sure 
there is an intruder and the time of intervention, the 
intruder can halve the distance to a target.  

In order to provide a greater spatial buffer, the 
detection corona needs to be pushed back; as this pushes 
back, the number of sensors needed in the network 
increases quadratically in the newly added corona width. 
This is a QoS tradeoff – we can buy more time to attend 
and respond by extending the sensor network; however 
the quadratic increase in sensors means this will 
eventually become infeasible.  
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4.2 Time to certainty 
 
While the word certainty connotes an absolute, it is 

clear in many decision making situations we rarely 
achieve full certainty. Instead, we pick a probability 
threshold and decide to act when we exceed the threshold. 
Time to certainty is the time to cross this threshold.  

There are three ways we can imagine getting to this 
threshold. 

Using passive sensors, we can wait until enough 
samples have been taken to form a trajectory signature, 
which we know from experience has a high probability of 
predicting an intruder.  

Alternatively, we can take advantage of the human 
ability to recognize. Let us assume that, in addition to 
motion sensors, we have control of visual sensors which 
can see any designated part of the guarded circle. Then 
we might achieve certainty by viewing the potential 
intruder through the camera. Such visual monitoring is 
already a part of most corporate security, and in many 
cases the monitoring is remote.  

With this method, the time to certainty might involve 
the time to view the image and form an impression. If 
there are multiple intruders, then a queue will be 
established.  Each intruder will be looked at, a decision 
made, and the next one evaluated.  

This brings to mind issues discussed in the research on 
teleoperation of robots [5, 21]. There will be switching 
costs associated with moving attention from one physical 
context to another. Attention will sometimes be spread 
across a range of events, but sometimes attention will be 
totally focused on one situation. This will tend to create a 
queue of information unprocessed by humans. The time 
the information is ignored is equivalent to what Olsen and 
Goodrich called neglect time [18]. In the case 
contemplated here, the neglect of the adversary extends 
the time to certainty, and thus the time to initiate a 
response.  

There is a third path – to decide to intervene even in 
uncertain cases, so that certainty takes place at the time of 
intervention. This probably works in the case of 
uncommon and isolated intrusion detection, but may call 
for too much resource in conditions where many false 
positives are present 

There are, then, multiple paths to certainty. One is to 
wait for the network to form an impression; the longer the 
intruder moves over the sensors, the more the network 
learns. A second path is to look at the intruder, using 
human pattern recognition capabilities. A third path might 
intervene, also focusing human attention. 

Why use the later methods in preference to the 
automated method? The human may perform better in 
some situations. A human will be able to tell the 
difference between, say, an animal and a human quickly. 

In addition, we imagine a common problem in sensor 
network security may be the labeling of a friend as an 
intruder; humans will recognize members of their team.  

 
4.3 States of the system 

 

S D

M

FP

TP

I

H

A

F

Detection

Certainty

Intervention
 

 
Figure 8. The system, starting at S, moves 

through a set of states. 
 

We can now make some observations about the overall 
flow of the human-sensor network system. Figure 8 
shows the states through which a protective sensor system 
will move. After the detection state (D), the system will 
move into some form of monitoring state (M), which 
might involve human attention. The monitoring state will 
eventually transfer to a state of certainty – the alarm was 
either a false positive (FP) or a true positive (TP). If there 
is really an intruder, the intruder may flee (F). If the 
defender responds well, then the system may reach a state 
of intervention (I). However, this state is likely to take a 
lot of time; resources in the system won't be freed up for a 
while; once the intruder is safely held (H) then the system 
returns to the start state. If the defender cannot intercept 
the intruder then the intruder may succeed in taking the 
system to a state of attack (A).  

The overall capacity of the system can be measured in 
the number of simultaneous intruders the system can 
intercept for a given rate of false positives.  

The rate of false positives drives human attention. This 
is because each detection event may create a task for a 
person.  

Human attention is not fully understood; there appear 
to be multiple types of attention, and, while it is clear 
there are capacity limitations, the hardness of these 
limitations is still a topic of investigation [19, 27]. For the 
time being, we assume that there is some limit per person 
to the number of possible intruders that could be 
monitored, say, using video cameras.  

As attacks are by their nature unusual, it is fair to 
expect that the conditional probability of an intruder, 
given a detection event is low. Then, the corona distance 
from the place at which detection occurs to the place at 
which certainty occurs, presuming humans decide, will be 
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related to the number of simultaneous detections that 
occur. If, for example, 12 detections occur at the 
periphery of the network, and a human can process 2 at a 
time in a one-minute period, in a situation with 3 humans, 
the time to certainty will be 2 minutes, as a second set of 
6 false positives will queue while the first set are being 
considered. This 2 minutes can be converted to a distance 
in figure 8 by making assumptions about how fast an 
intruder can move.  
  
4.4 Simultaneous intrusion 

 

 
 
Figure 9. A defender in black intercepts an 

intruder. 
 

 
 

Figure 10. A defender intercepts a possible 
intruder, while another possible intruder attacks 
from the other side. The defender needs to 
double back.  

 
While we have considered multiple false positives, 

here we consider the possibility of a coordinated attack. If 
an intrusion is detected, a natural response would be to 
intercept the intruder by going to meet them, as in figure 
9. However, this may increase vulnerability to a second 
attack, as shown in figure 10. 

The geometry of the situation works in the intruder's 
favor if the intruder outnumbers the defender and can 
coordinate an attack. In addition, if the defender does not 
have a way of remotely clearing false positives, then an 
intruder may watch for a response to detection on the 
opposite side, and then move in. Even without superior 
force, an intruder can use false positives as a method to 
dilute attention and response.  

From this analysis we are led to consider how the 
network itself might play a role in response.  

 
5. In-network response 

 
Having seen the difficulties of maintaining enough 

capacity to intervene as a result of detecting intruders, we 
explore an alternative.  

Let us imagine that we have a sensor network with 
some kind of actuator capabilities that are capable of 
restricting the movement of an intruder. Such an 
architecture might be designed so that it (1) is sufficiently 
forgiving that, say, children chasing a ball that was tossed 
into the system are not harmed, and (2) ensures that any 
bona-fide intruder is restricted in some form or another 
before human response is dispatched to the scene. 

The former case can be easily handled by some form of 
an invisible fence (that should also keep out stray animals) 
involving, perhaps, ultra-sound barriers that can be 
activated as a result of the sensor network reporting an 
incipient intrusion. We note that there is a difference in 
scale between radio communications and mechanical 
movement, and, consequently, the system can be designed 
to react adaptively to the perceived velocity of the 
intruder. 

The latter case is best handled in an application-
dependent fashion that takes into account the equipment 
at hand, the value of the asset, and the local bylaws in the 
community. Indeed, it is clear that the response to 
confirmed intrusion into the physical space of an airport 
should be handled differently from intrusion into a 
museum, for example. 

In either case, the response infrastructure may be pre-
deployed as shown in Figure 11. Barriers can be set up 
that restrict an intruder into the sector determined by 
adjacent corona and adjacent wedge boundaries where the 
defender can then confront the intruder. We note that this 
method is especially useful in the case of concerted 
attacks, where a number of attackers penetrate the system 
at the same time. The idea is that the attackers coming 
from different directions are naturally segregated making 
it easy for the human response team to address them 
individually. 
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         Figure 11. Illustrating the response system 
 
Airport security police on occasion practice a similar 

tactic; when it seems as though someone has gone 
through a metal detector with a dangerous object, and the 
person evades initial search, then parts of the airport are 
quarantined.  
 

 
6. Concluding remarks 

 
This paper continues the series titled Protecting with 

sensor networks where the authors set out to evaluate 
various possibilities for using a wireless sensor network 
as the basic layer of a hybrid defensive system.  

We outlined novel a way of thinking about sensors as 
providing early warning about a possible intruder; either 
the network itself or a human monitor may want to wait to 
gain certainty about an intruder before intervening. The 
time to certainty, combined with the time to intervene 
should be faster than the time for the intruder to reach a 
target. These times can be seen in relationship to the 
physical nature of the sensor network, as more time to 
respond can be bought by increasing the extent of the 
network. An important determining factor in the network 
design is the anticipated frequency of false positives, as 
these will in general call for human attention.  

The concepts discussed in the paper may be useful to 
those involved in the design of sensor networks, as it 
suggests that the physical network and the attention of its 
operators are intertwined; the physical network is 
important, and so is the geometry of attention.  
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