Nothing Special   »   [go: up one dir, main page]

SlideShare a Scribd company logo
BEAM DEFLECTION FORMULAE
BEAM TYPE               SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x                            MAXIMUM DEFLECTION
      1. Cantilever Beam – Concentrated load P at the free end


                                      Pl 2                                      Px 2                                             Pl 3
                                 θ=                                        y=        ( 3l − x )                        δ max =
                                      2 EI                                      6 EI                                             3EI

       2. Cantilever Beam – Concentrated load P at any point
                                                                    Px 2
                                                                 y=      ( 3a − x ) for 0 < x < a
                                    Pa 2                            6 EI                                                  Pa 2
                                 θ=                                                                            δ max    =      ( 3l − a )
                                    2 EI                            Pa 2                                                  6 EI
                                                                 y=      ( 3x − a ) for a < x < l
                                                                    6 EI
       3. Cantilever Beam – Uniformly distributed load ω (N/m)


                                      ωl 3                                  ωx 2                                                 ωl 4
                                 θ=
                                      6 EI
                                                                      y=
                                                                           24 EI
                                                                                 ( x 2 + 6l 2 − 4lx )                  δ max =
                                                                                                                                 8 EI

       4. Cantilever Beam – Uniformly varying load: Maximum intensity ωo (N/m)


                                      ωol 3                          ωo x 2                                                      ωo l 4
                                θ=
                                      24 EI
                                                               y=
                                                                    120lEI
                                                                            (10l 3 − 10l 2 x + 5lx2 − x3 )         δ max =
                                                                                                                                 30 EI

       5. Cantilever Beam – Couple moment M at the free end


                                       Ml                                            Mx 2                                        Ml 2
                                 θ=                                             y=                                     δ max =
                                       EI                                            2 EI                                        2 EI
BEAM DEFLECTION FORMULAS

BEAM TYPE                 SLOPE AT ENDS            DEFLECTION AT ANY SECTION IN TERMS OF x                    MAXIMUM AND CENTER
                                                                                                                  DEFLECTION
      6. Beam Simply Supported at Ends – Concentrated load P at the center

                                       Pl 2                      Px ⎛ 3l 2       ⎞             l                                       Pl 3
                            θ1 = θ2 =                        y=       ⎜    − x 2 ⎟ for 0 < x <                            δ max =
                                      16 EI                     12 EI ⎝ 4        ⎠             2                                      48 EI

      7. Beam Simply Supported at Ends – Concentrated load P at any point

                                Pb(l 2 − b 2 )              y=
                                                                Pbx 2
                                                                     ( l − x2 − b2 ) for 0 < x < a                Pb ( l 2 − b 2 )
                                                                                                                                     32

                           θ1 =
                                  6lEI
                                                               6lEI                                     δ max =
                                                                                                                     9 3 lEI
                                                                                                                                          at x =   (l   2
                                                                                                                                                            − b2 ) 3
                                                               Pb ⎡ l                             3⎤
                                                                   ⎢ b ( x − a ) + (l − b ) x − x ⎥
                                                                                3
                                Pab(2l − b)                y=                        2    2

                           θ2 =
                                   6lEI
                                                              6lEI ⎣                               ⎦    δ=
                                                                                                              Pb
                                                                                                             48 EI
                                                                                                                   ( 3l 2 − 4b2 ) at the center, if a > b
                                                                                       for a < x < l
      8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m)


                                         ωl 3                             ωx 3                                                         5ωl 4
                            θ1 = θ2 =
                                        24 EI
                                                                    y=
                                                                         24 EI
                                                                               ( l − 2lx2 + x3 )                          δmax =
                                                                                                                                      384 EI

      9. Beam Simply Supported at Ends – Couple moment M at the right end
                                                                                                                             Ml 2         l
                                    Ml                                                                            δmax =           at x =
                               θ1 =                                                                                         9 3 EI         3
                                    6 EI                                      Mlx ⎛ x 2 ⎞
                                                                         y=        ⎜1 − ⎟
                                     Ml                                       6 EI ⎝ l 2 ⎠                              Ml 2
                               θ2 =                                                                               δ=         at the center
                                    3EI                                                                                16 EI

      10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ωo (N/m)
                                  7ωol 3                                                                                        ωo l 4
                              θ1 =                                                                        δ max = 0.00652              at x = 0.519 l
                                                                     ωo x
                                  360 EI
                                   ω l3
                                                               y=
                                                                    360lEI
                                                                           ( 7l 4 − 10l 2 x 2 + 3x4 )                      ωol 4
                                                                                                                                 EI
                              θ2 = o                                                                      δ = 0.00651            at the center
                                   45 EI                                                                                    EI

More Related Content

Beam Deflection Formulae

  • 1. BEAM DEFLECTION FORMULAE BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM DEFLECTION 1. Cantilever Beam – Concentrated load P at the free end Pl 2 Px 2 Pl 3 θ= y= ( 3l − x ) δ max = 2 EI 6 EI 3EI 2. Cantilever Beam – Concentrated load P at any point Px 2 y= ( 3a − x ) for 0 < x < a Pa 2 6 EI Pa 2 θ= δ max = ( 3l − a ) 2 EI Pa 2 6 EI y= ( 3x − a ) for a < x < l 6 EI 3. Cantilever Beam – Uniformly distributed load ω (N/m) ωl 3 ωx 2 ωl 4 θ= 6 EI y= 24 EI ( x 2 + 6l 2 − 4lx ) δ max = 8 EI 4. Cantilever Beam – Uniformly varying load: Maximum intensity ωo (N/m) ωol 3 ωo x 2 ωo l 4 θ= 24 EI y= 120lEI (10l 3 − 10l 2 x + 5lx2 − x3 ) δ max = 30 EI 5. Cantilever Beam – Couple moment M at the free end Ml Mx 2 Ml 2 θ= y= δ max = EI 2 EI 2 EI
  • 2. BEAM DEFLECTION FORMULAS BEAM TYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER DEFLECTION 6. Beam Simply Supported at Ends – Concentrated load P at the center Pl 2 Px ⎛ 3l 2 ⎞ l Pl 3 θ1 = θ2 = y= ⎜ − x 2 ⎟ for 0 < x < δ max = 16 EI 12 EI ⎝ 4 ⎠ 2 48 EI 7. Beam Simply Supported at Ends – Concentrated load P at any point Pb(l 2 − b 2 ) y= Pbx 2 ( l − x2 − b2 ) for 0 < x < a Pb ( l 2 − b 2 ) 32 θ1 = 6lEI 6lEI δ max = 9 3 lEI at x = (l 2 − b2 ) 3 Pb ⎡ l 3⎤ ⎢ b ( x − a ) + (l − b ) x − x ⎥ 3 Pab(2l − b) y= 2 2 θ2 = 6lEI 6lEI ⎣ ⎦ δ= Pb 48 EI ( 3l 2 − 4b2 ) at the center, if a > b for a < x < l 8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m) ωl 3 ωx 3 5ωl 4 θ1 = θ2 = 24 EI y= 24 EI ( l − 2lx2 + x3 ) δmax = 384 EI 9. Beam Simply Supported at Ends – Couple moment M at the right end Ml 2 l Ml δmax = at x = θ1 = 9 3 EI 3 6 EI Mlx ⎛ x 2 ⎞ y= ⎜1 − ⎟ Ml 6 EI ⎝ l 2 ⎠ Ml 2 θ2 = δ= at the center 3EI 16 EI 10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ωo (N/m) 7ωol 3 ωo l 4 θ1 = δ max = 0.00652 at x = 0.519 l ωo x 360 EI ω l3 y= 360lEI ( 7l 4 − 10l 2 x 2 + 3x4 ) ωol 4 EI θ2 = o δ = 0.00651 at the center 45 EI EI