1. The document provides formulas for calculating slope, deflection, and maximum deflection for various beam types under different loading conditions. It gives the equations for cantilever beams with concentrated loads, uniformly distributed loads, and varying loads. It also provides the equations for simply supported beams with these different load types and with couple moments applied. The equations relate the beam properties like length, load location, and intensity to the resulting slope and deflection values.
1 of 2
Downloaded 753 times
More Related Content
Beam Deflection Formulae
1. BEAM DEFLECTION FORMULAE
BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM DEFLECTION
1. Cantilever Beam – Concentrated load P at the free end
Pl 2 Px 2 Pl 3
θ= y= ( 3l − x ) δ max =
2 EI 6 EI 3EI
2. Cantilever Beam – Concentrated load P at any point
Px 2
y= ( 3a − x ) for 0 < x < a
Pa 2 6 EI Pa 2
θ= δ max = ( 3l − a )
2 EI Pa 2 6 EI
y= ( 3x − a ) for a < x < l
6 EI
3. Cantilever Beam – Uniformly distributed load ω (N/m)
ωl 3 ωx 2 ωl 4
θ=
6 EI
y=
24 EI
( x 2 + 6l 2 − 4lx ) δ max =
8 EI
4. Cantilever Beam – Uniformly varying load: Maximum intensity ωo (N/m)
ωol 3 ωo x 2 ωo l 4
θ=
24 EI
y=
120lEI
(10l 3 − 10l 2 x + 5lx2 − x3 ) δ max =
30 EI
5. Cantilever Beam – Couple moment M at the free end
Ml Mx 2 Ml 2
θ= y= δ max =
EI 2 EI 2 EI
2. BEAM DEFLECTION FORMULAS
BEAM TYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER
DEFLECTION
6. Beam Simply Supported at Ends – Concentrated load P at the center
Pl 2 Px ⎛ 3l 2 ⎞ l Pl 3
θ1 = θ2 = y= ⎜ − x 2 ⎟ for 0 < x < δ max =
16 EI 12 EI ⎝ 4 ⎠ 2 48 EI
7. Beam Simply Supported at Ends – Concentrated load P at any point
Pb(l 2 − b 2 ) y=
Pbx 2
( l − x2 − b2 ) for 0 < x < a Pb ( l 2 − b 2 )
32
θ1 =
6lEI
6lEI δ max =
9 3 lEI
at x = (l 2
− b2 ) 3
Pb ⎡ l 3⎤
⎢ b ( x − a ) + (l − b ) x − x ⎥
3
Pab(2l − b) y= 2 2
θ2 =
6lEI
6lEI ⎣ ⎦ δ=
Pb
48 EI
( 3l 2 − 4b2 ) at the center, if a > b
for a < x < l
8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m)
ωl 3 ωx 3 5ωl 4
θ1 = θ2 =
24 EI
y=
24 EI
( l − 2lx2 + x3 ) δmax =
384 EI
9. Beam Simply Supported at Ends – Couple moment M at the right end
Ml 2 l
Ml δmax = at x =
θ1 = 9 3 EI 3
6 EI Mlx ⎛ x 2 ⎞
y= ⎜1 − ⎟
Ml 6 EI ⎝ l 2 ⎠ Ml 2
θ2 = δ= at the center
3EI 16 EI
10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ωo (N/m)
7ωol 3 ωo l 4
θ1 = δ max = 0.00652 at x = 0.519 l
ωo x
360 EI
ω l3
y=
360lEI
( 7l 4 − 10l 2 x 2 + 3x4 ) ωol 4
EI
θ2 = o δ = 0.00651 at the center
45 EI EI