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Abstract

Although it is well known that cross correlation can be
efficiently implemented in the transform domain, the nor-
malized form of cross correlation preferred for feature
matching applications does not have a simple frequency
domain expression. Normalized cross correlation has
been computed in the spatial domain for this reason. This
short paper shows that unnormalized cross correlation
can be efficiently normalized using precomputing inte-
grals of the image and image? over the search window.

1 Introduction

The correlation between two signals (cross correlation) is
a standard approach to feature detection [6, 7] as well as
a component of more sophisticated techniques (e.g. [3]).
Textbook presentations of correlation describe the convo-
lution theorem and the attendant possibility of efficiently
computing correlation in the frequency domain using the
fast Fourier transform. Unfortunately the normalized
form of correlation (correlation coefficient) preferred in
template matching does not have a correspondingly sim-
ple and efficient frequency domain expression. For this
reason normalized cross-correlation has been computed
in the spatial domain (e.g., [7], p. 585). Due to the com-
putational cost of spatial domain convolution, several in-
exact but fast spatial domain matching methods have also
been developed [2]. This paper describes a recently in-
troduced algorithm [10] for obtaining normalized cross
correlation from transform domain convolution. The new
algorithm in some cases provides an order of magnitude
speedup over spatial domain computation of normalized
cross correlation (Section 5).

Since we are presenting a version of a familiar and
widely used algorithm no attempt will be made to sur-
vey the literature on selection of features, whitening,
fast convolution techniques, extensions, alternate tech-
niques, or applications. The literature on these topics can
be approached through introductory texts and handbooks
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[16, 7, 13] and recent papers such as [1, 19]. Neverthe-
less, due to the variety of feature tracking schemes that
have been advocated it may be necessary to establish that
normalized cross-correlation remains a viable choice for
some if not all applications. This is done in section 3.

In order to make the paper self contained, section 2 de-
scribes normalized cross-correlation and section 4 briefly
reviews transform domain and other fast convolution ap-
proaches and the phase correlation technique. These sec-
tions can be skipped by most readers. Section 5 describes
how normalized cross-correlation can be obtained from a
transform domain computation of correlation. Section 6
presents performance results.

2 Template Matching by Cross
Correlation

The use of cross-correlation for template matching is mo-
tivated by the distance measure (squared Euclidean dis-
tance)
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(where f is the image and the sum is over z, y under the
window containing the feature ¢ positioned at u, v). In
the expansion of d?
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S f2(w, y) is approximately constant then the remaining
cross-correlation term
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is a measure of the similarity between the image and the
feature.

There are several disadvantages to using (1) for template
matching:



o If the image energy > f?(x, y) varies with position,
matching using (1) can fail. For example, the corre-
lation between the feature and an exactly matching
region in the image may be less than the correlation
between the feature and a bright spot.

e The range of ¢(u, v) is dependent on the size of the
feature.

e Eg. (1) is not invariant to changes in image ampli-
tude such as those caused by changing lighting con-
ditions across the image sequence.

The correlation coefficient overcomes these difficulties
by normalizing the image and feature vectors to unit
length, yielding a cosine-like correlation coefficient
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where ¢ is the mean of the feature and fu,v is the mean of
f(z,y) in the region under the feature. We refer to (2) as
normalized cross-correlation.

3 Feature Tracking Approaches
and Issues

It is clear that normalized cross-correlation (NCC) is not
the ideal approach to feature tracking since it is not invari-
ant with respect to imaging scale, rotation, and perspec-
tive distortions. These limitations have been addressed in
various schemes including some that incorporate NCC as
a component. This paper does not advocate the choice
of NCC over alternate approaches. Rather, the following
discussion will point out some of the issues involved in
various approaches to feature tracking, and will conclude
that NCC is a reasonable choice for some applications.

SSDA. The basis of the sequential similarity detection al-
gorithm (SSDA) [2] is the observation that full precision
is only needed near the maximum of the cross-correlation
function, while reduced precision can be used elsewhere.
The authors of [2] describe several ways of implementing
‘reduced precision’. An SSDA implementation of cross-
correlation proceeds by computing the summation in (1)
in random order and uses the partial computation as a
Monte Carlo estimate of whether the particular match lo-
cation will be near a maximum of the correlation surface.
The computation at a particular location is terminated be-
fore completing the sum if the estimate suggests that the
location corresponds to a poor match.

The SSDA algorithm is simple and provides a signifi-
cant speedup over spatial domain cross-correlation. It
has the disadvantage that it does not guarantee finding
the maximum of the correlation surface. SSDA performs
well when the correlation surface has shallow slopes and
broad maxima. While this condition is probably satisfied
in many applications, it is evident that images containing
arrays of objects (pebbles, bricks, other textures) can gen-
erate multiple narrow extrema in the correlation surface
and thus mislead an SSDA approach. A secondary disad-
vantage of SSDA is that it has parameters that need to de-
termined (the number of terms used to form an estimate
of the correlation coefficient, and the early termination
threshold on this estimate).

Gradient Descent Search. If it is assumed that feature
translation between adjacent frames is small then the
translation (and parameters of an affine warp in [19]) can
be obtained by gradient descent [12]. Successful gradi-
ent descent search requires that the interframe translation
be less than the radius of the basin surrounding the min-
imum of the matching error surface. This condition may
be satisfied in many applications. Images sequences from
hand-held cameras can violate this requirement, however:
small rotations of the camera can cause large object trans-
lations. Small or (as with SSDA) textured templates re-
sult in matching error surfaces with narrow extrema and
thus constrain the range of interframe translation that can
be successfully tracked. Another drawback of gradient
descent techniques is that the search is inherently serial,
whereas NCC permits parallel implementation.

Snakes. Snakes (active contour models) have the disad-
vantage that they cannot track objects that do not have a
definable contour. Some “objects” do not have a clearly
defined boundary (whether due to intrinsic fuzzyness or
due to lighting conditions), but nevertheless have a char-
acteristic distribution of color that may be trackable via
cross-correlation. Active contour models address a more
general problem than that of simple template matching
in that they provide a representation of the deformed
contour over time. Cross-correlation can track objects
that deform over time, but with obvious and significant
qualifications that will not be discussed here. Cross-
correlation can also easily track a feature that moves by a
significant fraction of its own size across frames, whereas
this amount of translation could put a snake outside of its
basin of convergence.

Wavelets and other multi-resolution schemes.  Al-
though the existence of a useful convolution theorem
for wavelets is still a matter of discussion (e.g., [11];
in some schemes wavelet convolution is in fact imple-
mented using the Fourier convolution theorem), efficient
feature tracking can be implemented with wavelets and




other multi-resolution representations using a coarse-to-
fine multi-resolution search. Multi-resolution techniques
require, however, that the images contain sufficient low
frequency information to guide the initial stages of the
search. As discussed in section 6, ideal features are some-
times unavailable and one must resort to poorly defined
“features” that may have little low-frequency informa-
tion, such as a configuration of small spots on an oth-
erwise uniform surface.

Each of the approaches discussed above has been advo-
cated by various authors, but there are fewer compar-
isons between approaches. Reference [19] derives an op-
timal feature tracking scheme within the gradient search
framework, but the limitations of this framework are not
addressed. An empirical study of five template match-
ing algorithms in the presence of various image distor-
tions [4] found that NCC provides the best performance
in all image categories, although one of the cheaper algo-
rithms performs nearly as well for some types of distor-
tion. A general hierarchical framework for motion track-
ing is discussed in [1]. A correlation based matching ap-
proach is selected though gradient approaches are also
considered.

Despite the age of the NCC algorithm and the existence
of more recent techniques that address its various short-
comings, it is probably fair to say that a suitable replace-
ment has not been universally recognized. NCC makes
few requirements on the image sequence and has no pa-
rameters to be searched by the user. NCC can be used ‘as
is’ to provide simple feature tracking, or it can be used
as a component of a more sophisticated (possibly multi-
resolution) matching scheme that may address scale and
rotation invariance, feature updating, and other issues.
The choice of the correlation coefficient over alternative
matching criteria such as the sum of absolute differences
has also been justified as maximum-likelihood estimation
[18]. We acknowledge NCC as a default choice in many
applications where feature tracking is not in itself a sub-
ject of study, as well as an occasional building block in
vision and pattern recognition research (e.g. [3]). A fast
algorithm is therefore of interest.

4 Transform Domain Computation

Consider the numerator in (2) and assume that we have
images f'(z,y) = f(z,y) — fuo andt'(z,y) = t(z,y)—
t in which the mean value has already been removed:
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For a search window of size M2 and a feature of size N2
(3) requires approximately N2(M — N + 1)? additions

and N?(M — N + 1) multiplications.

Eqg. (3) is a convolution of the image with the reversed
feature t'(—x, —y) and can be computed by
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where F is the Fourier transform. The complex conju-
gate accomplishes reversal of the feature via the Fourier
transform property F f*(—z) = F*(w).

Implementations of the FFT algorithm generally require
that f/ and ¢’ be extended with zeros to a common
power of two. The complexity of the transform compu-
tation (3) is then 12M2log, M real multiplications and
18M?log, M real additions/subtractions.  When M is
much larger than N the complexity of the direct ‘spa-
tial” computation (3) is approximately N2M?2 multipli-
cations/additions, and the direct method is faster than the
transform method. The transform method becomes rela-
tively more efficient as IV approaches M and with larger
M,N.

4.1 Fast Convolution

There are several well known “fast” convolution algo-
rithms that do not use transform domain computation
[13]. These approaches fall into two categories: algo-
rithms that trade multiplications for additional additions,
and approaches that find a lower point on the O(N?)
characteristic of (one-dimensional) convolution by em-
bedding sections of a one-dimensional convolution into
separate dimensions of a smaller multidimensional con-
volution. While faster than direct convolution these al-
gorithms are nevertheless slower than transform domain
convolution at moderate sizes [13] and in any case they
do not address computation of the denominator of (2).

4.2 PhaseCorrédation

Because (4) can be efficiently computed in the transform
domain, several transform domain methods of approxi-
mating the image energy normalization in (2) have been
developed. Variation in the image energy under the tem-
plate can be reduced by high-pass filtering the image be-
fore cross-correlation. This filtering can be conveniently
added to the frequency domain processing, but selection
of the cutoff frequency is problematic—a low cutoff may
leave significant image energy variations, whereas a high
cutoff may remove information useful to the match.

A more robust approach is phase correlation [9]. In
this approach the transform coefficients are normalized
to unit magnitude prior to computing correlation in the
frequency domain. Thus, the correlation is based only
on phase information and is insensitive to changes in




image intensity. Although experience has shown this
approach to be successful, it has the drawback that all
transform components are weighted equally, whereas one
might expect that insignificant components should be
given less weight. In principle one should select the spec-
tral pre-filtering so as to maximize the expected correla-
tion signal-to-noise ratio given the expected second order
moments of the signal and signal noise. This approach is
discussed in [16] and is similar to the classical matched
filtering random signal processing technique. With typi-
cal (p ~ 0.95) image correlation the best pre-filtering is
approximately Laplacian rather than a pure whitening.

5 Normalizing

Examining again the numerator of (2), we note that the
mean of the feature can be precomputed, leaving
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Since ¢’ has zero mean and thus zero sum the term
Suw 2t (x —u,y — v) is also zero, so the numerator of
the normalized cross-correlation can be computed using

(4).

Examining the denominator of (2), the length of the fea-
ture vector can be precomputed in approximately 3N2
operations (small compared to the cost of the cross-
correlation), and in fact the feature can be pre-normalized
to length one.
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The problematic quantities are those in the expression
Do ylf(@y)— fu.w)?. The image mean and local (RMS)
energy must be computed at each u, v, i.e. at (M — N +
1)? locations, resulting in almost 3N 2 (M — N +1)? oper-
ations (counting add, subtract, multiply as one operation
each). This computation is more than is required for the
direct computation of (3) and it may considerably out-
weight the computation indicated by (4) when the trans-
form method is applicable. A more efficient means of
computing the image mean and energy under the feature
is desired.

These quantities can be efficiently computed from tables
containing the integral (running sum) of the image and
image square over the search area, i.e.,

s(u,v) = f(u,v)+s(u—1,v)+s(u,v—1)—s(u—1,v-1)
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with s(u,v) = s%(u,v) = 0 when either u,v < 0. The
energy of the image under the feature positioned at w, v

is then
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and similarly for the image sum under the feature.

The problematic quantity >, [f(z,y) — fu.v)? can now
be computed with very few operations since it expands
into an expression involving only the image sum and sum
squared under the feature. The construction of the ta-
bles requires approximately 3M/2 operations, which is
less than the cost of computing the numerator by (4) and
considerably less than the 3N2(M — N + 1) required to
compute Y-, [f(x,y) — fu.n]) ateach u, v.

This technique of computing a definite sum from a pre-
computed running sum has been independently used in
a number of fields; a computer graphics application is
developed in [5]. If the search for the maximum of the
correlation surface is done in a systematic row-scan or-
der it is possible to combine the table construction and
reference through state variables and so avoid explicitly
storing the table. When implemented on a general pur-
pose computer the size of the table is not a major consid-
eration, however, and flexibility in searching the correla-
tion surface can be advantageous. Note that the s(u,v)
and s2(u,v) expressions are marginally stable, meaning
that their z-transform H(z) = 1/(1 — 2z~ 1) (one dimen-
sional version here) has a pole at z = 1, whereas stabil-
ity requires poles to be strictly inside the unit circle [14].
The computation should thus use large integer rather than
floating point arithmetic.

6 Performance

The performance of this algorithm will be discussed in
the context of special effects image processing. The
integration of synthetic and processed images into spe-
cial effects sequences often requires accurate tracking
of sequence movement and features. The use of auto-
mated feature tracking in special effects was pioneered
in movies such as Cliffhanger, Forest Gump, and Speed.
Recently cross-correlation based feature trackers have
been introduced in commercial image compositing sys-
tems such as Flame/Flint [20], Matador, Advance [21],
and After Effects [22].

The algorithm described in this paper was developed for
the movie Forest Gump (1994), and has been used in a
number of subsequent projects. Special effects sequences
in that movie included the replacement of various moving
elements and the addition of a contemporary actor into




search window(s) length direct NCC | fast NCC
168 x 86 896 frames | 15 hours 1.7 hours
115 x 200,150 x 150 490 frames | 14.3 hours | 57 minutes

Table 1: Two tracking sequences from Forest Gump were re-timed using both direct
and fast NCC algorithms using identical features and search windows on a 100 Mhz
R4000 processor. These times include a 162 sub-pixel search [17] at the location
of the best whole-pixel match. The sub-pixel search was computed using Eqg. (2)
(direct convolution) in all cases.

feature size  search window(s) | Flint fast NCC
402 1102 1 min. 40 seconds | 16 seconds (subpixel=1)
402 11072 n/a 21 seconds (subpixel=8)

Table 2: Measured tracking times on a short sequence using the commercial Flint
system and the algorithm described in the text. These are wall-clock times obtained
on an unloaded 200 Mhz R4400 processor with 380 megabytes of memory (no
swapping occurred). Flint settings were MATCH LUM(ONLY), FIXED REF, OVER-
SAMPLE OFF. It appears that subpixel search is only available in the more expensive
Flame system.

Figure 1. Measured relative performance of trans-
form domain versus spatial domain normalized cross-
correlation as a function of the search window size (depth
axis) and the ratio of the feature size to search window
size.

Figure 2: A tracked feature from a special effects se-
quence in the movie Forest Gump. The region is out of
focus and has noticeable film-grain noise across frames.
A small (e.g. 102 or smaller) area from this region would
not provide a usable feature. The chosen feature size is
more than 402 pixels.




historical film and video sequences. Manually picked
features from one frame of a sequence were automati-
cally tracked over the remaining frames; this information
was used as the basis for further processing.

The relative performance of our algorithm is a function
of both the search window size and the ratio of the fea-
ture size to search window size. Relative performance
increases along the window size axis (Fig. 1); a higher
resolution plot would show an additional ripple reflect-
ing the relation between the search window size and the
bounding power of two. The property that the relative
performance is greater on larger problems is desirable.
Table 1 illustrates the performance obtained in a special
effects feature tracking application. Table 2 compares
the performance of our algorithm with that of a high-end
commercial image compositing package.

Note that while a small (e.g. 102) feature size would suf-
fice in an ideal digital image, in practice much larger fea-
ture sizes and search windows are sometimes required or
preferred:

e The image sequences used in film and video are
sometimes obtained from moving cameras and may
have considerable translation between frames due to
camera shake. Due to the high resolution required to
represent digital film, even a small movement across
frames may correspond to a distance of many pixels.

e The selected features are of course constrained to the
available features in the image; distinct “features”
are not always available at preferred scales and lo-
cations.

e Many potential features in a typical digitized image
are either out of focus or blurred due to motion of
the camera or object (Fig. 2). Feature match is also
hindered by imaging noise such as film grain. Large
features are more accurate in the presence of blur
and noise.

As a result of these considerations feature sizes of 202
and larger and search windows of 502 and larger are often
employed.

The fast algorithm in some cases reduces high-resolution
feature tracking from an overnight to an over-lunch pro-
cedure. With lower (“proxy”) resolution and faster ma-
chines, semi-automated feature tracking is tolerable in an
interactive system. Certain applications in other fields
may also benefit from the algorithm described here.!

1 For example, image stabilization isacommon feature in recent con-
sumer video cameras. Although most such systems are stabilized by
inertial means, one manufacturer implemented digital stabilization and
thus presumably used someform of image tracking. The algorithm used
leaves room for improvement however: it has been criticized as being
slow and unpredictable and a product review recommended leaving it
disabled [15].
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