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Quantum Hash function and its 
application to privacy amplification 
in quantum key distribution, 
pseudo-random number generation 
and image encryption
Yu-Guang Yang1,2,3,4, Peng Xu1, Rui Yang1, Yi-Hua Zhou1 & Wei-Min Shi1

Quantum information and quantum computation have achieved a huge success during the last years. In 
this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly 
modifying quantum walks, a famous quantum computation model. It is found that quantum Hash 
function can act as a hash function for the privacy amplification process of quantum key distribution 
systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-
random number generation due to its inherent chaotic dynamics. Further we discuss the application 
of quantum Hash function to image encryption and propose a novel image encryption algorithm. 
Numerical simulations and performance comparisons show that quantum Hash function is eligible 
for privacy amplification in quantum key distribution, pseudo-random number generation and image 
encryption in terms of various hash tests and randomness tests. It extends the scope of application of 
quantum computation and quantum information.

With the rapid development of quantum communication, quantum key distribution (QKD) is the most mature 
branch of quantum communication. The goal of QKD is to create an absolutely secure key between two commu-
nicating parties. QKD generally contains three steps: (1) raw key sifting, (2) error reconciliation, and (3) privacy 
amplification. As an important step of QKD, the privacy amplification process is implemented by adopting uni-
versal hash functions1. However, these hash functions are generally constructed based on mathematics complex-
ity and thus they are computationally secure. Because the fundamental principles of quantum mechanics ensure 
lots of quantum cryptographic protocols2–4 with unconditional security, this stimulates us to consider the privacy 
amplification problem in the context of quantum information, and intend to get a more secure solution to the 
privacy amplification process.

In this paper, we construct a quantum Hash function (QHF) by subtly modifying the quantum walks (QW) 
model5–13 and it can be used for the privacy amplification process of QKD systems with higher security by means 
of the physical principles of quantum mechanics. As a byproduct, QHF can also be used for pseudo-random 
number generation due to its inherent chaotic dynamics and further we propose a novel QHF-based image 
encryption algorithm. Numerical simulations and performance comparisons show that QHF is eligible as a hash 
function for privacy amplification in QKD, pseudo-random number generation and image encryption in terms 
of various hash tests and randomness tests.

Compared to the QW-based algorithm14, the novelty of the present QHF-based scheme lies in that the con-
structed QHF can be not only used for pseudo-random number generation and further image encryption, but 
also used for the privacy amplification process of QKD systems with higher security. It extends the scope of appli-
cation of quantum computation and quantum information.
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Results
The construction of QHF.  QHF can be constructed by subtly modifying QW. QW has two models: discrete 
QW and continuous QW5. The basic discrete QW includes two quantum systems: walker and coin. The state of 
the walker-coin system is denoted by a vector in the Hilbert space = ⊗H H Ht p c, where the subscripts p and c 
stand for the walker and the coin, respectively. The motion of the walk is conditioned by the coin state via a con-
ditional shift operator

∑= ( + , , + − , , ),
( )

Ŝ x x x x1 0 0 1 1 1
1x

where the summation symbol denotes the sum over all possible positions. The evolution of the total quantum 
system can be implemented by repeating the global unitary operator
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where Î  is the identity operator and C is the coin operator applied on the coin state. Hence the final state ψ t
 after 

t steps is expressed by
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and the probability of locating the walker at position x after t steps is
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where ψ initial
 is the initial state of the total quantum system.

In a discrete-time QW, the coin operator is fixed. The resulting probability distribution relies on only the initial 
coin state and the step number. Suppose the coin operator at each step depends on a binary string, i.e., message, 
and accordingly a QHF is constructed, similar to that in Ref.15. The input of the constructed QHF is a binary 
string, i.e., message and the resulting probability distribution is used as the output hash value. The coin state is the 
control parameter so the constructed QHF is a keyed one. The nth bit of the message controls the nth step of the 
walk. Here we introduce two coin operators, i.e., the Grover operator C0

16 and the coin operator C1
17 in equa-

tion (5) and equation (6) respectively. The message bit “0” denotes C0 and “1” for C1.

=







−
−
−
−






,

( )

C 1
2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 5

0

=







− −
− −
− −






.

( )

C 1
2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 6

1

The construction process of the QHF is as follows:

(1)	 Select the parameters (n, (α, β, χ, δ)) and the message with arbitrary length.
(2)	 Run the one-dimensional two-particle discrete-time QW on a circle under the control of the message and 

generate the output hash value, i.e., the probability distribution. Here α, β, χ, δ are the amplitudes of the ini-
tial coin state υ τ α β χ δ, = ( + + + )00 01 10 11 . n is the node number of a circle.

(3)	 Multiply all values in the resulting probability distribution by 108 modulo 256 to form a binary string as a 
secret key K, i.e., the hash value.

The hash property of the proposed QHF.  In this section, we performed several hash tests to evaluate the 
performance of the proposed QHF. The message can be randomly chosen as shown in Supplemental materials.

Statistical distribution of hash value.  Based on the principles of quantum mechanics, the security of 
the QHF can be proved partly by the uniform distribution of the hash value. The plots of the ASCII codes of the 
message and its hash value are shown in Supplementary Fig. S1 online. Supplementary Fig. S1(a) demonstrates 
that the ASCII code of the message is located within a small range, but in Supplementary Fig. S1(b), the hash value 
of the message in hexadecimal format is scattered uniformly.

Sensitivity of hash value to message.  C1, C2, C3 and C4 represent the message, and the message with 
tiny modifications respectively. The results listed below show the high sensitivity to the message and the tiny 
changes.

Condition 1: The original message;
Condition 2: Change the 8th bit from 0 to 1;
Condition 3: Delete the last bit of the message;
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Condition 4: Insert a bit in front of the 100th bit.
The corresponding 128-bit hash value in the hexadecimal format is given by:
Condition 1: 8AE72983687E9AD1B6FCA54546AE7799;
Condition 2: 3BD58DB7B86827AE6323E6E496A634A8;
Condition 3: E9678E1EA9180A8EE01AA008EB46E989;
Condition 4: E9277B78B3D62DEB77839DB9E90F210D.
The plots of the hash values are shown respectively in Supplementary Fig. S2 online and it is clearly indicated 

that any tiny modification to the message or the key will cause a substantial change in the final hash value.

Statistical analysis of diffusion and confusion.  The diffusion and confusion tests are performed as 
follows:

(1)	 Select a message and generate the corresponding hash value.
(2)	 Change one bit of the message randomly and generate a new hash value.
(3)	 Compare the two hash values and count the changed bits called Bi.
(4)	 Repeat steps (1) to (3) N times.

The corresponding distribution and the histogram of Bi are shown respectively in Supplementary Figs S3(a) 
and S3(b) online, where N =  10,000.
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Next the diffusion and confusion tests are performed with N =  1024, 2048, 10,000, respectively, as shown in 
Table 1. We concluded from the tests that the mean changed bit number B and the mean changed probability P are 
close to the ideal value 64 and 50% respectively. Δ B and Δ P are very little, so that it demonstrates the stability of 
diffusion and confusion. The excellent statistical effect ensures that it is impossible to forge plaintext-cipher pairs 
given known plaintext-cipher pairs.

Collision analysis.  It is hard to provide a mathematical proof on the capability of collision resistance of cha-
otic hash functions. Thus, we performed the following test for collision resistance:

(1)	 Select an original message randomly and generate the corresponding hash value in ASCII format.
(2)	 Choose a bit in the message randomly and change its value.
(3)	 Generate a new hash value.
(4)	 Compare these two hash values and count the number of ASCII characters with the same value at the same 

location.

Moreover, the absolute difference of the two hash values, i.e., d, and the theoretical number of ω with different 
values through N independent tests, i.e., WN (ω) can be computed according to the following formulas:
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N = 1024 N = 2048 N = 10,000 Mean

B 63.5654 63.5864 64.2894 63.8137

P(%) 49.6605 49.6769 50.2261 49.8545

Δ B 5.4616 5.5841 5.6686 5.6314

Δ P 4.3881 4.3626 4.4286 4.3931

Bmin 45 44 43 44

Bmax 81 83 89 84.3333

Table 1.   The static number of changed bit Bi. The mean changed bit number B and the mean changed 
probability P are very close to the ideal value 64 bit and 50% respectively. Δ B and Δ P are very little, so that it 
demonstrates the stability of diffusion and confusion. The excellent statistical effect ensures that it is impossible 
to forge plaintext-cipher text pairs given several known plaintext-cipher text pairs.
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where ei and e’i are the ith entries of the original and new hash values, respectively. The function t(·) converts the 
entries to their equivalent decimal value. We run this test N =  10, 000 times, and listed the maximum, minimum, 
and mean of d in Supplementary Table 1 online respectively. In equation (8), ω =  0, 1, …, s. The experimental 
values of WN (ω) in the proposed scheme are: WN (0) =  9367, WN (1) =  617, WN (2) =  16, and WN (ω) =  0 for ω =  3, 
4, …, 16 respectively. The distribution of the number of ASCII characters with the same value at the same location 
in the hash value is displayed in Fig. 1.

Uniform distribution on hash space.  In order to check the distribution capacity in hash space, similar 
to that in ref. 18, we generated two hash values according to the method described in previous subsection and 
then counted the number of the changed bits at each location. The minimum, maximum and mean of changed bit 
numbers are 4072, 5689 and 4973.5, respectively for N =  10,000. The statistical results for N =  10,000 are shown 
in Supplementary Fig. S4 online. The mean of the changed bit number 4973.5 is very close to the ideal value 5000, 
which accounts for half of the test times. It can be concluded that the hash value is distributed uniformly in the 
hash space as all the changed bit numbers are around the ideal value. Obviously, this demonstrates the resistance 
against statistical attack.

Resistance to birthday attack.  Similar to collision resistance, the birthday attack is mainly aimed to find 
two messages with identical hash values with less than 2n/2 trials (n is the size of hash value). According to the 
current computing power, the size of hash value should be greater than 128 to ensure the birthday attack com-
plexity is greater than 264. In our proposed hash scheme, the length of hash value is 128-bit and it can be easily 
extended to 256-bit or 512-bit. So the attack difficulty is at least 264, which is huge enough to resist brute force 
attack and birthday attack. Also in the proposed algorithm, in order to analyze the security, several tests including 
the SP800-22 test and the collision tests were applied. Therefore, the results of the tests, the size of the hash value, 
and the collision resistance of the proposed algorithm suggest that the birthday attack is almost impossible and 
that the proposed algorithm is resistant against this type of attack.

Speed analysis.  Our proposed hash algorithm does not need to pad bits. The time required to generate a 
hash value is closely related to the length of the message. The algorithm is simulated in MATLAB on a PC with 
Intel(R) Core(TM) i3-2370M CPU 2.40 GHz 2 GB RAM running on Windows 7 professional OS. The average 
speed of our algorithm is 0.2 Mbit/s. Although the speed of the proposed algorithm is lower than the traditional 
hash functions such as SHA-1 and MD519, it is acceptable for practical use. At the same time, the algorithm is so 
flexible since the length of hash value can be 128, 256, or 512 bits. Moreover, because of the excellent properties of 
quantum parallel computing, the speed of the proposed algorithm will increase exponentially in the quantum 
computing environment. For example, finding the prime factorization of an n-bit integer is thought to require 
(Θ( ))/ /n nexp log1 3 2 3  operations using the best classical algorithm. In contrast, a quantum algorithm can accom-

plish the same task using Θ( )n n nlog loglog2  operations20. That is, a quantum computer can factor a number 
exponentially faster than the best known classical algorithms.

Figure 1.  Distribution of the number of positions where the ASCII characters are identical in the 128-bit 
hash values generated for test, where N = 10,000. (see text in the section entitled Results).
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Flexibility.  Our hash scheme is based on the QW model. Although the proposed hash function is constructed 
as a keyed one, we can also regard it as an unkeyed one if the initial parameters of the coin state of QHF act as the 
constants. Besides we can also get a 256-bit or 512-bit hash function with a slight change in the original version, 
similar to refs 21,22.

Resistance to meet-in-the-middle attack.  The meet-in-the-middle attack is valid for the block cipher 
encryption mode. Block cipher mode allows the use of a cipher key for encrypting more than one block of data. 
In contrast, in our proposed algorithm, we use just the nonlinear quantum map to construct the hash function, so 
the attack is useless for the proposed algorithm.

Resistance to forgery attack.  Most of the parallel hash function algorithms have a mixing section in their 
structure which usually uses the XOR operation for preventing forgery attack. Unfortunately, some of these algo-
rithms are broken by such an attack23,24. In the proposed algorithm, the state evolution of the total quantum sys-
tem can be implemented by repeating the sequence of the coin flipping operator and the conditional shift operator 
step by step according to the message(so-called discrete time). That is, the nth bit of the message controls the nth 
step of the walk, i.e., applying the Grover operator C0

16 or the coin operator C1
17 on the coin state. This leads to 

high complexity in mixture and can resist forgery attack in any section of the proposed algorithm.

Security analyses of the QHF-based pseudo-random number generator (PRNG).  QHF can 
also be used for pseudo-random number generation due to its inherent chaotic dynamics. To analyze the 
pseudo-randomness of the QHF-based PRNG, we analyzed its statistical properties and some quantifiers were 
proposed. The quantifiers are mainly classified into two classes: (i) quantifiers based on information theory25–27, 
(ii) quantifiers based on recurrence plots28,29.

Statistical complexity measure.  Complexity is a measure of off-equilibrium ‘order’. Statistical complexity 
measures (SCM) were proposed as quantifiers of the degree of physical structure in a signal25,30,31. Based on the 
method of Ref. 32, we analyzed the statistical complexity of the QHF-based PRNG. The intensive SCM (CJ[P]) 
can be considered as a quantity that characterizes the probability distribution P associated with the time series 
generated by the dynamical system32. It quantifies not only randomness but also the presence of correlational 
structures31,32. The measure of statistical complexity CJ[P] is defined as32:

= , ⋅ , ( )C P Q P P H P[ ] [ ] [ ] 10J J e S

where the normalized entropic measure = /H P S P S[ ] [ ]S max is associated with the probability distribution P, 
with =S S P[ ]emax  ( ≤ ≤ )H0 1S  for the equilibrium distribution Pe and S is the Shannon entropy. The disequilib-
rium QJ is defined in terms of the Jensen-Shannon divergence26,32 by

, = ( + )/ − / − / , ( )Q P P Q S P P S P S P[ ] { [ 2] [ ] 2 [ ] 2} 11J e e e0

with Q0 being the normalization constant ( ≤ ≤ )Q0 1J . Thus, the disequilibrium QJ is an intensive quantity. 
Following the methodology proposed by Bandt and Pompe33, the comparisons between our proposal and the 
QW-based PRNG14 in terms of the normalized entropy HS and the intensive statistical complexity CJ as functions 
of the number of 8 bits and 16 bits-words are shown in Figs 2 and 3 respectively. When the number of words of the 
analyzed sequence increases, the statistical complexity and the normalized entropy tend to 0 and 1 respectively. It 

Figure 2.  Comparisons in terms of Normalized Shannon entropy HS. The black and red curves denote 
the Normalized Shannon entropy HS for the number of 8 bits and 16 bits-words respectively in our proposal, 
while the blue and green curves represent the Normalized Shannon entropy of the QW-based scheme14 for the 
number of 8 bits and 16 bits-words respectively. (see text in the section entitled Results).
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is shown that given the same words, our scheme has better statistical complexity and normalized entropy than the 
QW-based PRNG14.

Recurrence plots.  Recurrence is a fundamental property of dynamical systems, which can be exploited to 
characterize the system’s behavior in phase space. In 1987, Eckmann et al. introduced a powerful tool for visu-
alization and analysis of recurrences called recurrence plot (RP)28. RP is a two-dimensional representation in 
which both axes are time ones. The recurrence of a state appearing at two given times ti, tj is pictured in the 
two-dimensional graph by means of a black dot.

To visualize the recurrences of states of a dynamical system, the RP of a trajectory ∈�� Rxi
d can be formally 

expressed by the matrix

ε ε( ) = Θ( − − ), , = , , , ( ),
� � �‖ ‖R x x i j N1 12i j i j

where N is the number of measured points 
→
x i, ε is a threshold distance, Θ(⋅) is the Heaviside function (i.e. 

Θ( ) =x 0, if x <  0, and Θ( ) =x 1 otherwise) and ⋅‖ ‖ is a norm.
RPs for various values of the message exhibit visually the recurrences of the QHF-based PRNG (Supplementary 

Fig. S5 online). We used an embedding dimension m =  2 and the delay τ  =  1. The threshold distance ε is set to 
be 10% of the mean phase space radius σ . It is shown that the QHF-based PRNG with different messages causes a 
rather homogeneous RP with numerous single points and s	 ome short, diagonal or vertical lines.

Because the visual impact produced by the RP is insufficient to demonstrate the quality of the QHF-based 
PRNG because of the ‘small-scale’ structures29, several measures of complexity which quantify the small scale struc-
tures in RPs, have been proposed34–36 and are known as recurrence quantification analysis (RQA). In this paper, 
these measures based on the recurrence point density and the diagonal and vertical line structures are considered.

Measures based on the recurrence density.  The simplest measure of the RQA is the recurrence rate 
(RR)

∑ε ε( ) = ( ),
( ), =

,RR
N

R1
13i j

N

i j2
1

which is a measure of the density of recurrence points in the RP. Furthermore, in the limit N →  ∞, RR is the proba-
bility that a state recurs to its ε-neighbourhood in phase space. For PRNGs, the ideal value would be RR =  0. But in 
practice, in order that the quantifier may make sense, a larger ε should be adopted to avoid the situation in which 
no points are found in the recurrence plot. It is shown that the value of the RR ranges from 0.00595 to 0.00662 for 
different messages (see Supplementary Fig. S6 online). It exhibits the good randomness of the QHF-based PRNG.

Measures based on diagonal lines.  The measures are related to the histogram ε( , )P l  of the diagonal line 
lengths l, given by

∑ ∏ε ε ε ε( , ) = ( − ( ))( − ( )) ( ).
( ), =

− , − + , +
=

−

+ , +P l R R R1 1
14i j

N

i j i l j l
k

l

i k j k
1

1 1
0

1

Figure 3.  Comparisons in terms of intensive statistical complexity measure CJ respectively. The black and 
red curves denote the intensive statistical complexity measure CJ for the number of 8 bits and 16 bits-words 
respectively in our proposal, while the blue and green curves represent the intensive statistical complexity 
measure CJ of the QW-based scheme14 for the number of 8 bits and 16 bits-words respectively. (see text in the 
section entitled Results).
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Supplementary Fig. S7 online shows the histogram of the diagonal line lengths of the RP in Supplementary 
Fig. S5 online with the parameter message =  50. It is shown that the diagonal line lengths are mainly very short 
exhibiting the good randomness.

Processes with uncorrelated or weakly correlated behaviors cause none or very short diagonals, whereas deter-
ministic processes cause longer diagonals and less single, isolated recurrence points. Therefore, the ratio of recur-
rence points that form diagonal structures (of at least length lmin) to all recurrence points

ε

ε
=
∑ ( , )

∑ ( , )
,

( )
=

=

DET
lP l

lP l 15
l l
N

l
N

1

min

is introduced as a measure for determinism (or predictability) of the system. The threshold lmin excludes the diag-
onal lines which are formed by the tangential motion of the phase space trajectory.

A diagonal line of length l means that a segment of the trajectory is rather close during l time steps to another 
segment of the trajectory at a different time; thus these lines are related to the divergence of the trajectory seg-
ments. The average diagonal line length

ε

ε
=
∑ ( , )

∑ ( , )
,

( )

=

=

L
lP l

P l 16
l l
N

l l
N

min

min

is the average time that two segments of the trajectory are close to each other, and can be interpreted as the mean 
prediction time.

Another RQA measure considers the length Lmax of the longest diagonal line found in the RP,

= ( ), ( )=L lmax { } 17i i
N

max 1
l

where ε= ∑ ( , )=N P ll l lmin
 is the total number of diagonal lines. These measures are related to the exponential 

divergence of the phase space trajectory. The faster the trajectory segments diverge, the shorter the diagonal lines 
are.

The measure entropy refers to the Shannon entropy of the probability ε( ) = ( , )/p l P l N l to find a diagonal 
line of exactly length l in the RP, where ε= ∑ ( , )≥N P ll l lmin

 is the total number of diagonal lines.

∑= − ( ) ( ).
( )=

ENTR p l p lln
18l l

N

min

ENTR reflects the complexity of the RP in respect of the diagonal lines, e.g. for uncorrelated noise the value of 
ENTR is rather small, indicating its low complexity, as shown in Supplementary Fig. S8 online.

Measures based on vertical lines.  The total number of the vertical lines of the length v in the RP is then 
given by the histogram

∑ ∏ε ε ε( ) = ( − ( ))( − ( )) ( ).
( ), =

, , +
=

−

, +P v R R R1 1
19i j

N

i j i j v
k
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1

Supplementary Fig. S9 online shows the histogram of vertical line lengths of the RP in Supplementary Fig. S5 
with the parameter message =  50. It is shown that the vertical line lengths are mainly very short exhibiting the 
good randomness.

Analogous to the definition of the determinism in equation (15), the ratio between the recurrence points 
forming the vertical structures and the entire set of recurrence points can be computed,

=
∑ ( )

∑ ( )
.

( )
=

=

LAM
vP v

vP v 20
v v
N

v
N

1

min

The computation of LAM is realized for those v that exceed a minimal length vmin in order to decrease the 
influence of the tangential motion. LAM will decrease if the RP consists of more single recurrence points than 
vertical structures.

The average length of vertical structures is given by

=
∑ ( )

∑ ( )
,

( )

=

=

TT
vP v

P v 21
v v
N

v v
N

min

min

and is called trapping time. TT estimates the mean time that the system will abide at a specific state or how long 
the state will be trapped.

Finally, the maximal length of the vertical lines in the RP

= ( ), ( )=V vmax { } 22l l
N

max 1
v

can be defined, analogously to the standard measure Lmax (Nv is the absolute number of vertical lines).
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Figures 4–6 give some selected RQA measures for different values of the message and demonstrates the good 
statistical properties of the QHF-based PRNG.

Degree of non-periodicity.  In order to study the non-periodicity in the QHF-based PRNG, the scale index 
analysis (SIA) is carried out which is introduced by Benìtez et al.37. The SIA method is often used as a framework 
to enhance the general performance of cryptosystems in designing new chaos-based cryptosystems and PRNGs. 
For example, recently Akhshani et al. proposed a new scheme for generating good PRNGs based on quantum 
logistic map38. They used the SIA technique to assess the degree of non-periodicity of the chaotic sequences 
of the quantum map. The SIA technique is based on the continuous wavelet transform (CWT) and the wavelet 
multi-resolution analysis39. To study the non-periodicity of the QHF-based PRNG40, we assumed that the key 
sequence f generated by QHF is compactly supported and is defined over a finite time interval T =  [a, b]. The 
CWT of f at time u and scale s is defined as39:

∫ψ ψ( , ) = , = ( ) ( ) , ( ),
−∞

+∞

,
⁎Wf u s f f t t dt: 23u s u s

and it provides the frequency component (or details) of f corresponding to the scale s and time location t. 
Supplementary Fig. S10 online shows the time frequency decomposition of f in the time-frequency plane which 
provided by the wavelet transform given in equation (23).

The wavelet transform given in equation (23), provides a time frequency decomposition of f in the 
time-frequency plane.

The scalogram of f is defined as follows:

∫ζ ( ) = ( , ) =


 ( , )



 , ( )−∞

+∞
s Wf u s Wf u s du:

24
2

2

where ζ ( )s  is the energy of the CWT of f at scale s. The scalogram is a useful tool for studying a signal, since it 
allows the detection of its most representative scales or frequencies37,40. The innerscalogram of f at a scale s can be 
defined by:

∫ζ ( ) = ( , ) =





( , )




,

( )( ) ( )

( )
s Wf u s Wf u s du:

25
inner

J s c s

d s 2
2

where ( ) = ( ), ( ) ⊆J s c s d s T[ ]  is the maximal subinterval in T for which the support of ψ ,u s is included in T for 
all ∈ ( )u J s . As the length of J(s) depends on the scale s, the values of the inner scalogram at different scales cannot 
be compared. Therefore, the inner scalogram should be normalized as follows37:

ζ
ζ

( ) =
( )

( ( ) − ( ))
.

( )
s

s

d s c s 26

inner
inner

1
2

Supplementary Fig. S11 online shows that the normalized inner scalogram can be a valuable tool for detecting 
the non-periodicity of the signals, where a signal with details at every scale is non-periodic.

The scale index of f in the scale interval [s0, s1] can be defined by:

ζ
ζ

=
( )
( )

,
( )

i
s
s

:
27scale

min

max

where smax is the smallest scale such that ζ ζ( ) ≤ ( )s smax  for all ∈ ,s s s[ ]0 1 , and smin the smallest scale such that 
ζ ζ( ) ≤ ( )s smin  for all ∈ ,s s s[ ]max 1 . The scale index will be zero or close to zero for periodic sequences and close 
to one for highly non-periodic sequences37.

In Fig. 7, the SIA of the QHF-based key sequence is presented. It can be concluded that the best value of the 
scale index is up to 0.98. Thus, the key sequence in this state is highly non-periodic and it can be used for any 
PRNG purposes.

The application of the QHF-based PRNG to image encryption.  The proposed image encryption 
algorithm consists of the following major steps:

Step 1: Initialization step.  In this step we choose the parameters (n, (α, β, χ, δ)) and the message, then generate a 
random sequence S by running our proposed PRNG given by

α β χ δ= ( , ( , , , ), ). ( )S PRNG n message 28

Each value of the sequence S is a floating-point number ranging from 0 to 1.

Step 2: Encryption procedure. 

(1)	 Divide the original image I with size M ×  N into four parts with the same size and determine the encryption 
order of four image blocks according to the size of the first four values of the sequence S. For example, 
→ → →I I I I1 2 3 4 if ( , ) > ( , ) > ( , ) > ( , )P P P P1 1 1 2 1 3 1 4 . Here we take Buddha image as an example 
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(see Supplementary Fig. S12 online).
(2)	 The encryption process is a two round one (Supplementary Fig. S13 online) i.e.,

= ( , , ) → = ( , , )
→ = ( , , ) → = ( , , )

→ ′ = ( , , ) → ′ = ( , ′, )
→ ′ = ( , ′, ) → ′ = ( , ′, ) ( )

EI encrypt I I S EI encrypt I EI S
EI encrypt I EI S EI encrypt I EI S
EI encrypt EI EI S EI encrypt EI EI S
EI encrypt EI EI S EI encrypt EI EI S 29

1 1 4 2 2 1

3 3 2 4 4 3

1 1 4 2 2 1

3 3 2 4 4 3

Then we describe the encrypt function ( , , )⁎ ⁎ ⁎encrypt  by taking I2 as an example.

1.	 Sum the gray values of EI1 to produce a binary sequence V, use V as the message to generate a new random 
sequence S1 as follows.

∑=
( )= , =

= , =

,sum pixel
30i j

i M j N

i j
1 1

2 2

where pixeli,j represents the gray value of the pixel in the ith row and jth column of EI1.

α β χ δ= ( , ( , , , ), ( )), ( )S PRNG n dec bin sum2 311

where dec2bin is a function to convert the decimal to binary sequence.
2.	 Do the tensor product of S and S1 to obtain a new sequence and transform it into a two-dimensional matrix 

of size ( / ) × ( / )M N2 2 .

Figure 4.  Selected RQA measures DET, Lmax. DET and LAM change with different messages are shown in (a,b) 
respectively. (see text in the section entitled Results).

Figure 5.  Selected RQA measures L and TT. L and TT change with different messages are shown in (a,b) 
respectively. (see text in the section entitled Results).
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=


 ⊗ , ,



, ( )

P reshape S S M N
2 2 321

where ⊗ is tensor product operator.
3.	 Multiply all values in the P matrix by 108 modulo 256 to form a new matrix P′ .

= ( ( . ), ), ( )⁎P floor pmod 10 256 338

4.	 Make P′  exclusive-OR (XOR) with I2 and get

_ = ⊕ ′. ( )temp I I P 342 2

5.	 Sort the elements in P′  in ascending order, and obtain the index vector.

, = ( ), ( )sortedP index sort P[ ] 35

where sortedP is the sorted matrix and index is the index vector, i.e., = , , ,index h h h{ }MN1 2
4

.
6.	 Shuffle the elements in temp_I2 and get encrypted image block EI2 for the first round.

( ) = _ ( ), = , , , . ( )EI h temp I i i MN1 2
4 36i2 2

At last we can get the final encrypted image by executing the encrypt function as the order shown in Step 2.

Step 3: Decryption procedure.  In the decryption process, we use the secret key to determine the decryption 
order, shown as follows.

= ′ ⊗ ′ → = ′ ⊗ ′ → = ′ ⊗ ′ → = ⊗ ′

→ = ⊗ → = ⊗ → = ⊗ → = ⊗ → ( )
EI EI EI EI EI EI EI EI EI EI EI EI

I EI EI I EI EI I EI EI I I EI end 37
4 3 4 3 2 3 2 1 2 1 4 1

4 3 4 3 2 3 2 1 2 1 4 1

Here, ⊗ represents the decryption operation and it is the reverse of the encryption process.

Experimental simulations.  Experiments are performed on a laptop with Intel(R) Core(TM) i3-2370M 
CPU 2.40 GHz 2 GB RAM running on Windows 7 professional equipped with the MATLAB R2012a environment 
and the Python 2.7.8. To test our encryption method for security and robustness, we choose a group of images 
with size 512 ×  512, which were taken by Yu-Guang Yang and list them and their corresponding encrypted images 
and decrypted images in Supplementary Figs S12–S18.

Key space analysis.  A desirable encryption scheme should have a sufficiently large key space to resist 
brute-force attacks. Here the encryption key can be represented by (n, (α, β, χ, δ), message), where n denotes the 
number of nodes in a circle. α, β, χ, δ are complex numbers and also control parameters of the coin state satisfy-
ing the normalization constraint: α β χ δ+ + + = 12 2 2 2 . Message is a binary string as an input of the 
proposed QHF, which can have an infinite length theoretically. Although there is an infinite key space theoreti-
cally, because of finite precision of digital computers, the key space actually turns out to be finite. Considering that 
the calculation precision is 10−14, the size of key space for initial conditions and control parameters would be 

Figure 6.  Selected RQA measures LAM and Vmax. Lmax and Vmax change with different messages are shown in 
(a,b) respectively. (see text in the section entitled Results).
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roughly 2325, which is large enough for any encryption purposes and is also large enough to resist all kinds of 
brute-force attacks.

Histogram analysis.  Histogram is a very important security measure for evaluating the security of an 
image encryption algorithm. The histograms of seven images and the corresponding cipher images are shown 
in Supplementary Figs S12–S18 online. It is shown that the histograms of the cipher images are nearly uniform 
and significantly different from the ones of the original images. Therefore they provide no clue for attackers in a 
statistical analysis attack.

Correlation analysis.  A desirable encryption scheme should generate the cipher image with rather low 
correlation between adjacent pixels. By randomly selecting 10000 pairs (in horizontal, vertical and diagonal 
directions respectively) of adjacent pixels from the original image and the cipher image, respectively, we test the 
correlation between adjacent pixels, and draw the correlation distribution of adjacent pixels in the Buddha image 
and its cipher image in Supplementary Fig. S21 online, respectively. It is shown that the original image has strong 
correlation, but the cipher image is quite random. The encryption scheme improves the security of the test images 
greatly.

We also calculate the correlation coefficient rxy of adjacent pixels of the original image and the cipher image 
given by

=
(( − ( ))( − ( )))

( ) ( )
,

( )
r

E x E x y E y
D x D y 38

xy

where E(x) and D(x) are the expectation and variance of variable x, respectively.
We compute the correlation coefficients of the seven images and their cipher images. From Supplementary 

Table S2 online, we can see that the average correlation coefficients of the encrypted images are 0.0010, 0.0012, 
0.0023 and they are very close to zero. The result demonstrates that our scheme is effective.

Comparison with other image encryption techniques.  Experimental results of the proposed image 
encryption scheme were compared with six typical image encryption techniques, i.e., chaos-based image encryp-
tion41, optics-based image encryption42, hash-based image encryption43, quantum image encryption44, the 
QW-based image encryption14, and the image encryption based on quantum logistic map45, respectively. From 
Supplementary Tables S3–S8 online, we can see that the images encrypted by our algorithm have lower correla-
tion compared with the six image encryption schemes14,41–45. In addition, we also compared our algorithm with 
two recently published schemes46,47 and see Supplementary Tables S9 and S10 online for details.

Differential attack analysis.  In general, two common performance measures are used to test the influence 
of a little change in the original image on the cipher image, i.e., the number of pixels change rate (NPCR) and the 
unified average changing intensity (UACI). NPCR is expressed by

=
∑ ∑ ( , )

×
× %, ( )

= =NPCR
D i j

m n
100 39

i
m

j
n

1 1

Figure 7.  The scale index of the QHF-based key sequence for different messages. It can be concluded that, 
the value of the scale index is larger than 0.7 and the best value of the scale index is up to 0.98. Thus, the key 
sequence in this state is highly non-periodic and it can be used for any PRNG purposes. (see text in the section 
entitled Results).
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where

( , ) =





( , ) = ( , )
( )

D i j c i j c i j
otherwise

0
1 40

1 2

and c1 and c2 are two cipher images with size m ×  n.
UACI is defined by

=
×







∑ ∑ ( ( , ) − ( , )) 




× %.

( )

= =UACI
m n

c i j c i j1
255

100
41

i
m

j
n

1 1 1 2

In our tests, we just put the gray value of grid (100,100) minus one in the seven images in Supplementary 
Figs S12–S18 with size 512 ×  512, respectively. From Supplementary Table S11 online, we can see that NPCR is 
99.61% and UACI is 33.46% in our algorithm which implies that it is highly sensitive to the original image and is 
robust against differential attacks. In addition, we also compared our proposal with other image encryption sche
mes41,43,45,46,47 and see Supplementary Tables S12–S17 online for details. From these tables, it is indicated that the 
proposed algorithm can resist the differential attack. The secret key in our algorithm is related to the image self. 
So it makes a good performance in this field.

Key sensitivity analysis.  First, we encrypted Buddha image with the key n =  1, [α, β, χ, δ] =  [0, 0, 0, 1], 
message =  [1, 0, 1, 0, …, 1, 0, 1, 0…], and obtained the cipher image in Supplementary Fig. S22(a). Then we 
encrypted Buddha image by making a little change of the message and got the cipher image in Supplementary 
Fig. S22(b). We also draw the differential image of Supplementary Fig. S22(a) and S22(b) in Supplementary Fig. 
S22(c). By calculation, we got that the difference (NPCR) between Supplementary Fig. S22(a) and Supplementary 
Fig. S22(b) is 99.59%(see Supplementary Tables S18 online), which implies the encryption process is quite sensi-
tive to the encryption key.

Second, we encrypted Buddha image by the key n =  1, [α, β, χ, δ] =  [0, 0, 0, 1], message =  [1, 0, 0, 1, …, 1, 0, 1, 
1…], and then decrypted the resulting cipher image with the correct key (see Supplementary Fig. S22(d)) and the 
wrong key with a little change of the message =  [1, 0, 0, 1, …, 1, 1, 1, 1…] (see Supplementary Fig. S22(e)), respec-
tively. We calculated out the difference (NPCR) between Supplementary Fig. S22(d) and Fig. S22(e) is 99.61% (see 
Supplementary Tables S18 online). Therefore, the decryption process is also highly sensitive to the decryption key.

In the same way, we also calculated the NPCR of other test images from Supplementary Figs S12–S18, and 
listed the results in Supplementary Table S18 online. It is found that the results are approximately 99.60%, which 
shows that the proposed algorithm is of good key sensitivity to images.

Information entropy analysis.  The information entropy is often used to measure the randomness of the 
cipher images. The entropy H(x) of a message source m is given by

∑( ) = − ( ) ( ),
( )=

−
H X p x p xlog

42i

L

i i
0

1

2

where p(xi) represents the probability of the occurrence of symbol xi.
From Supplementary Table S19 online, we can see the average information entropy of our cipher images is 

very close to the theoretical value 8. We also compared our algorithm with the algorithm based on quantum logis-
tic map45 in terms of information entropy(Supplementary Table S20 online). This implies that the information 
leakage in the encryption process is negligible and the proposed algorithm is stable and secure against informa-
tion entropy attack.

Randomness test analysis.  Next, we used NIST SP800-22 and TestU0148 tools to test the randomness 
of the cipher images. Each test produces a P-value in [0, 1]. If the P-value is higher than a preset threshold α, 
it means that the cipher image passes the test. In our tests, we set α =  0.01 and Buddha’s cipher image with size 
1024 ×  1024. α =  0.01 implies that the cipher image can be inferred to be random with 99% probability if it passes 
the test. From Supplementary Table S21 online, we can judge that our proposed algorithm passes the NIST SP800-
22 tests.

However, when we applied the most stringent test by TestU0148 on the cipher images, surprisingly, the TestU01 
test cannot be done successfully. Maybe the coin flipping operators were not chosen properly. Therefore, the 
future work will focus on the improvement of our proposal.

Speed performance analysis.  Speed is an important factor for evaluating the performance of an image 
encryption algorithm. For the proposed image encryption algorithm, we measured the time cost in the operating 
environment: Windows 7, Matlab R2012a, Intel(R) Core(TM) i3-2370M CPU 2.40 GHz 4 GB RAM. In our algo-
rithm, the time is mainly spent on shuffling pixels, we can figure out that the time complexity of our algorithm is 

Ο( ) = ( )T n n2  and the average time cost for encrypting images of size 512 ×  512 is 0.015 seconds or so. Therefore, 
our algorithm is fast enough for practical applications.

Discussion
The main contribution of the work is to construct a hash function used for the privacy amplification process of 
QKD systems with higher security by means of the physical principles of quantum mechanics. As a byproduct, 
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QHF can also be used for pseudo-random number generation due to its inherent chaotic dynamics and further 
we propose a novel QHF-based image encryption algorithm.

The QHF is in fact constructed in the quantum context. Because the practical quantum computation device 
is unavailable, we have to do the simulations by MATLAB software on a classical computer in order to demon-
strate the performance of the constructed QHF. However, in fact the properties of quantum parallel computation 
cannot be simulated precisely on a classical computer. So both randomness and speed of the proposed scheme 
seem not acceptable for cryptographic purpose. Fortunately, with the rapid development of the field of quantum 
computation, maybe the practical quantum computer is possible in the future. When the QHF operates on a 
practical quantum computer, the computation speed will be increased exponentially because of the properties of 
quantum parallel computation.

Methods
The construction of a QHF by modifying the one-dimensional two-particle discrete-time QW 
on a circle.  A one-dimensional two-particle discrete-time QW on a circle describes the QW of two walkers 
whose motions are restricted to the circle. The operators Ŝ1 and Ŝ2 of two-particle QW on circles becomes

=










, , + , , , =
, , + − , , , =
+ , , + − , , , ≠ , . ( )

Ŝ
n when x

n n n when x n
x x x x when x n

2 0 1 0 1 1 1 1;
1 0 0 1 1 1 ;

1 0 0 1 1 1 1 43
1

Here Ŝ2 is similar to Ŝ1. The total conditional sift operator Ŝ is denoted as = ⊗^ ^ ^S S S1 2.
When the ith bit of the message is 0(1), the ith step of the walk executes with the interaction ( ) C C0 1 . For exam-

ple, if the message, m is ‘0100110’, then the final state evolves

ψ ψ= , ( )      U U U U U U U 447 0 1 1 0 0 1 0 0

where = ( ⊗ )

^ ^U S I C0 0  and = ( ⊗ )

^ ^U S I C1 1 . The initial state of the total quantum system ψ 0
 is given by

ψ = , ⊗ , . ( )x y v v 450 1 2

Here

α β χ δ, = ( + + + ), ( )v v 00 01 10 11 461 2

where α β χ δ+ + + = 12 2 2 2 .
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