With the rapid development of the Internet of Things (IoT), it becomes challenging to ensure its security. Identity authentication and integrity verification can be achieved by secure hash functions and digital signature algorithms for IoT applications. In order to solve the issues of bandwidth limitation and computational efficiency of secure communication in IoT applications, an aggregate signature scheme based on multi- trapdoor hash function is proposed in this paper. Firstly, to prevent key exposition, based on the elliptic curve discrete logarithm problem (ECDLP), we constructed a double trapdoor hash function (DTH) and proved its reliability. Secondly, the multi-trapdoor hash function (MTH) based on DTH is presented. Finally, an MTH-based aggregate signature scheme (MTH-AS) with constant signature length is proposed. Based on the assumption of ECDLP, the proposed scheme is proven unforgeable against adaptive chosen message attacks with the Forking Lemma. Different from the most signature schemes with bilinear mapping, the proposed scheme has higher computational efficiency and shorter aggregate signature length. Moreover, it is independent of the number of signers. Security analysis and performance evaluation has revealed that the proposed scheme is an ideal solution for secure IoT applications with limited computing power, storage capacity, or limited bandwidth, such as wireless sensor networks, vehicular ad hoc networks, or healthcare sensor networks.
Keywords: Internet of Things (IoT); aggregate signature; elliptic curve discrete logarithm; random oracle model; trapdoor hash function.