The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.