Nothing Special   »   [go: up one dir, main page]

Consistency-based respiratory motion estimation in rotational angiography

Med Phys. 2017 Sep;44(9):e113-e124. doi: 10.1002/mp.12021.

Abstract

Purpose: Rotational coronary angiography enables 3D reconstruction but suffers from intra-scan cardiac and respiratory motion. While gating handles cardiac motion, respiratory motion requires compensation. State-of-the-art algorithms rely on 3D-2D registration that depends on initial reconstructions of sufficient quality. We propose a compensation method that is applied directly in projection domain. It overcomes the need for reconstruction and thus complements the state-of-the-art.

Methods: Virtual single-frame background subtraction based on vessel segmentation and spectral deconvolution yields non-truncated images of the contrasted lumen. This allows motion compensation based on data consistency conditions. We compensate craniocaudal shifts by optimizing epipolar consistency to (a) devise an image-based surrogate for cardiac motion and (b) compensate for respiratory motion. We validate our approach in two numerical phantom studies and three clinical cases.

Results: Correlation of the image-based surrogate for cardiac motion with the ECG-based ground truth was excellent yielding a Pearson correlation of 0.93 ± 0.04. Considering motion compensation, the target error measure decreased by 98% and 69%, respectively, for the phantom experiments while for the clinical cases the same figure of merit improved by 46 ± 21%.

Conclusions: The proposed method is entirely image-based and accurately estimates craniocaudal shifts due to respiration and cardiac contraction. Future work will investigate experimental trajectories and possibilities for simplification of the single-frame subtraction pipeline.

Keywords: cone-beam CT; inpainting; motion correction; vessel segmentation.

MeSH terms

  • Algorithms
  • Artifacts
  • Coronary Angiography*
  • Humans
  • Imaging, Three-Dimensional*
  • Motion
  • Movement*
  • Phantoms, Imaging