We introduce a type of Fresnel zone plate (FZP) in which its phase is shifted radially outward. This FZP can easily and precisely turn an incident plane wave into an annular beam at its focal plane. High efficiency and flexibility are the advantages of generating doughnut beams by this method. By performing direct calculations and using Bessel function properties, it is shown that a radially shifted zone plate produces annulus focus. Furthermore, by simulating the modified phase structure, in addition to demonstrating the formation of a ring-shaped focus, we also showed that its radius merely depends on the amount of the shift. We also showed that the width of the annulus is a function of focal length. Simulation results were thoroughly examined by experiments. Finally, it is clearly revealed that at a certain distance from the focal plane along the beam propagation, an annular beam is transformed into a Bessel beam, and a focal line is formed.