Nothing Special   »   [go: up one dir, main page]

Activity-dependent dendritic spine neck changes are correlated with synaptic strength

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2895-904. doi: 10.1073/pnas.1321869111. Epub 2014 Jun 30.

Abstract

Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons.

Keywords: STDP; basal dendrites; neocortex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Dendrites / physiology*
  • Female
  • Humans
  • Male
  • Mice
  • Neck*
  • Pyramidal Cells / cytology
  • Pyramidal Cells / physiology*
  • Spine / cytology
  • Spine / physiology*
  • Synapses / physiology*
  • Synaptic Transmission / physiology*