Grasp stability in the human hand has been resolved by means of an intricate network of mechanoreceptors integrating numerous cues about mechanical events, through an ontogenetic grasp practice. An engineered prosthetic interface introduces considerable perturbation risks in grasping, calling for feedback modalities that address the underlying slip phenomenon. In this study, we propose an enhanced slip feedback modality, with potential for myoelectric-based prosthetic applications, that relays information regarding slip events, particularly slip occurrence and slip speed. The proposed feedback modality, implemented using electrotactile stimulation, was evaluated in psychophysical studies of slip control in a simplified setup. The obtained results were compared with vision and a binary slip feedback that transmits on-off information about slip detection. The slip control efficiency of the slip speed display is comparable to that obtained with vision feedback, and it clearly outperforms the efficiency of the on-off slip modality in such tasks. These results suggest that the proposed tactile feedback is a promising sensory method for the restoration of stable grasp in prosthetic applications.