Nothing Special   »   [go: up one dir, main page]

A novel extended kernel recursive least squares algorithm

Neural Netw. 2012 Aug:32:349-57. doi: 10.1016/j.neunet.2011.12.006. Epub 2011 Dec 29.

Abstract

In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden state is estimated using the Kalman filter. The measurement model used in hidden state estimation is learned by the kernel recursive least squares algorithm (KRLS) in reproducing kernel Hilbert space (RKHS). The novel algorithm has more flexible state and noise models. We apply this algorithm to vehicle tracking and the nonlinear Rayleigh fading channel tracking, and compare the tracking performances with other existing algorithms.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Least-Squares Analysis*
  • Linear Models
  • Motor Vehicles
  • Neural Networks, Computer*
  • Nonlinear Dynamics
  • Normal Distribution
  • Support Vector Machine