Mdm2 binding protein (MTBP) has been implicated in cell-cycle arrest and the Mdm2/p53 tumor suppressor pathway through its interaction with Mdm2. To determine the function of MTBP in tumorigenesis and its potential role in the Mdm2/p53 pathway, we crossed Mtbp-deficient mice to Emu-myc transgenic mice, in which overexpression of the oncogene c-Myc induces B-cell lymphomas primarily through inactivation of the Mdm2/p53 pathway. We report that Myc-induced B-cell lymphoma development in Mtbp heterozygous mice was profoundly delayed. Surprisingly, reduced levels of Mtbp did not lead to an increase in B-cell apoptosis or affect Mdm2. Instead, an Mtbp deficiency inhibited Myc-induced proliferation and the upregulation of Myc target genes necessary for cell growth. Consistent with a role in proliferation, Mtbp expression was induced by Myc and other factors that promote cell-cycle progression and was elevated in lymphomas from humans and mice. Therefore, Mtbp functioned independent of Mdm2 and was a limiting factor for the proliferative and transforming functions of Myc. Thus, Mtbp is a previously unrecognized regulator of Myc-induced tumorigenesis.