
Theory-driven Logical ScalingConceptual Information Systems meet Description LogicsSusanne Prediger, Gerd StummeTechnische Universit�at Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,D{64289 Darmstadt; fprediger, stummeg@mathematik.tu-darmstadt.de1 IntroductionConceptual Information Systems ([8]) have been devel-oped for conceptual data analysis and are based on themathematical theory of Formal Concept Analysis ([4]).A Conceptual Information System provides a front-endfor a (relational) database. It uses conceptual hierarchiesto unfold the conceptual structure of the data and to sup-port on-line navigation through the data. By so-calledconceptual scales ([3]), the relevant information can beextracted from the database and stored in a table withan object-attribute-relation (called formal context) fromwhich one can derive a conceptual hierarchy (called con-cept lattice) for the actual part of the data. As far asthey are needed in this paper, the basics of ConceptualInformation Systems and conceptual scales are providedin Section 2.For a conceptual scale, there is always a trade-o� be-tween its size and its soundness with respect to futureupdates of the database. There are two approachesof designing conceptual scales: data-driven design andtheory-driven design.In theory-driven design, knowledge about the applica-tion domain is used to exclude impossible combinationsof attributes. This keeps the conceptual scales small {and their concept lattices easier to interpret. Theory-driven design is only applicable if there is enough knowl-edge about which types of objects may occur in thedatabase. If this information is missing, the diagramsmay become unnecessarily large.The second approach is called data-driven design. Ifthere is no (or only few) knowledge available, the scalesare designed to �t the actual data only, and not to con-form to all possible updates of the database. If an updateviolates the structure of the scale, the user is warned, andthe scale has to be redesigned. Hence, data-driven designis not applicable if the database is frequently updated.In [5] a more general approach than conceptual scalingis presented: (data-driven) logical scaling. Instead of us-ing conceptual scales, it uses the terminology of a formallanguage like Description Logic for extracting informa-tion. Logical scaling is shortly recalled in Section 2.While data-driven logical scaling has the advantage ofa more powerful language for de�ning scales, it has thesame drawbacks as data-driven design of ordinary con-

ceptual scales. In Section 3, we introduce theory-drivenlogical scaling which combines both e�orts. It deter-mines typical objects and excludes all combinations ofattributes which cannot occur because of the semanticsof the applied Description Logic.Theory-driven logical scaling combines three ideas:the use of a terminology for scaling ([5]), the applica-tion of Attribute Exploration ([2]) { a knowledge acqui-sition tool { for bridging the gap between data-drivenand theory-driven design of conceptual scales ([7]), andthe utilization of a subsumption algorithm of Descrip-tion Logics as an `expert' for Attribute Exploration ([1]).Theory-driven logical scaling can be used to set up aConceptual Information System even when the databaseis only partially given in the beginning.2 Conceptual Information Systemsand Data-Driven Logical ScalingDe�nition. A (formal) context is a triple K :=(G;M; I) where G and M are sets and I is a relationbetween G and M . The elements of G andM are calledobjects and attributes, respectively, and (g;m) 2 I isread \object g has attribute m".A (formal) concept is a pair (A;B) with A � G andB �M such that A and B are maximal with A�B � I.The set A is called the extent and the set B the intent ofthe concept. The concept lattice of K (denoted byB(K))is the set of all its concepts together with the hierarchicalsubconcept{superconcept{relation(A;B) � (C;D) :() A � C (() B � D) :Figure 1 shows a formal context. It has four personsas objects, which are described by six attributes. In theline diagram of its concept lattice the name of an objectg is always attached to the circle representing the small-est concept with g in its extent; dually, the name of anattribute m is always attached to the circle representingthe largest concept with m in its intent. This allows usto read the context relation from the diagram becausean object g has an attribute m if and only if there is
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Mr. Smith

Mrs. Miller

Miss Cooper

Mr. DavisFigure 1: A formal context about wine drinkers and a line diagram of its concept latticean ascending path from the circle labeled by g to thecircle labeled by m. The extent of a concept consists ofall objects whose labels are below in the diagram, andthe intent consists of all attributes attached to conceptsabove in the hierarchy.For example, the concept labeled by Mr. Smith andred wine drinker has fMr. Smith, Miss Cooper, Mr. Davisgas extent, and fred wine drinker, wine drinker, persong asintent. In the diagram, one can for instance see thatthe two attributes Bordeaux drinker and red Bordeauxdrinker generate the same concept. This indicates thatamong the four persons there is no-one drinking whiteBordeaux. (�)A Conceptual Information System consists of a many-valued context and a set of conceptual scales. A many-valued context may not only have crosses (i. e., yes/no)as entries, but values of attributes pairs. It can be seenas a table of a relational database with the column con-taining the objects being a primary key.De�nition. A many-valued context is a tuple K :=(G;M; (Wm)m2M ; I) where G is a set of objects,M a setof attributes, each Wm a set of possible values for the at-tribute m 2M , and I � G�f(m;w) j m 2M;w 2Wmga relation with (g;m;w1) 2 I; (g;m;w2) 2 I ) w1 = w2.(g;m;w) 2 I is read \object g has value w for attributem".A conceptual scale is a one-valued context which hasas objects possible values of the database attributes. It isused to extract the relevant information from the many-valued context such that a concept lattice can be gener-ated. The choice of the attributes of the scale is purpose-oriented and re
ects the understanding of an expert ofthe domain.De�nition. A conceptual scale for a subset B � Mof attributes is a (one-valued) formal context SB :=(GB;MB ; IB) with GB ��m2BWm. The realized scaleSB(K) is de�ned bySB(K) := (G;MB; J) with (g; n) 2 Jif and only if there exists w = (wm)m2B 2 GB with(g;m;w) 2 I, for m 2 B, and (w; n) 2 IB .

The idea is to replace the attribute values in Wm whichare often too speci�c by binary, more general attributeswhich are provided in MB . For an example, see below.In implemented Conceptual Information Systems, themany-valued context is realized as a table in a relationaldatabase. The set GB of a conceptual scale SB is thenreplaced by corresponding SQL statements. In the real-ized scale, the objects of the conceptual scale (i. e. thevalues of the database attributes) are replaced by thecorresponding objects of the many-valued context.drinksPerson WineMr. Smith Casa SolarMrs. Miller StaehleMiss Cooper FigeacMr. Davis FigeacMr. Davis Casa Solar Winesredwine whitewine Bordeaux PriceFigeac � � 49,90Staehle � 14,90Casa Solar � 5,95Figure 2: Data Base Wines and ClientsFigure 2 shows a small database of a (�ctive) wineretailer. For this introductory example, we consider onlythe table wines as many-valued context K. The diagramin Figure 3 shows the realized scale SfPriceg(K). Thechosen attributes re
ect the view of the analyst aboutprices. It divides the price range in four (non-disjoint!)categories: below 5 DM (by the attribute very cheap),
cheap

Casa Solar

expensive

Staehle

Figeac

very expensivevery cheapFigure 3: The realized scale for the price



wine drinker := person u 9 drinks.(red wine t white wine)red wine drinker := person u 9 drinks.red winewhite wine drinker := person u 9 drinks.white wineBordeaux drinker := person u 9 drinks.Bordeauxred Bordeaux drinker := person u 9 drinks.(red wine u Bordeaux)Figure 4: TerminologyWine drinkersbelow 10 DM (cheap), above 10 DM (expensive), above 20DM (very expensive). The objects of the correspondingconceptual scale are all possible prices. In the realizedscale, each price is replaced by those objects which havethis price.The design of this scale is theory-driven. It re
ectsthe understanding that a wine is either cheap or expen-sive, that each very cheap wine is also cheap, and thateach very expensive wine is also expensive. This under-standing excludes ten out of 16 possible combinations ofthe attributes as concept intents. With the current data,the concept labeled by very cheap is not realized. Thatmeans that, at the moment, there are no wines in thedatabase which are very cheap. Data-driven design ofthe scale would have omitted this concept, but might notbe consistent with future updates of the database. Hencedata-driven design corresponds to the Closed World As-sumption, while theory-driven design corresponds to theOpen World Assumption.With `traditional' conceptual scaling, the contextshown in Figure 1 cannot be obtained as a realized scaleof the given database. In the sequel, we show how it canbe obtained by data-driven logical scaling. Its theory-driven counterpart is introduced in Section 3.In [5], we presented (data-driven) logical scaling asan alternative method that allows a more explicit andmore powerful description of the attributes which areintroduced for the scaling process. The basic idea oflogical scaling consists of using a formal language likeDescription Logic to de�ne a terminology with attributes(called concepts (!) in DL) out of the attributes andrelations of di�erent tables of the database.In the terminology (TBox), a set of attributes is de-�ned by terms of the Description Logic like it is donein Fig. 4. The formal context in Fig. 1 is the realizedscale that we can derive from the database (ABox) inFig. 2 with the terminology in Fig. 4. Its objects are thepersons, its attributes are the attributes de�ned in theterminology, and the relation I is given by the semanticsof the formal language: an object g is in relation withan attribute m if g satis�es the term de�ning m. (For aformal de�nition, refer to [5].)If the conceptual scale is supposed to conform to up-dates of the database, for example to the introduction ofa white Bordeaux drinker (see (�)), a larger conceptualscale must be created. This is done by theory-drivenscaling.

3 Creating Conceptual Scalesby Theory-Driven Logical ScalingFor creating a conceptual scale that is large enough forall possible updates of the database, we use AttributeExploration ([2]), a knowledge acquisition algorithm.In order to exclude impossible combinations of the at-tributes, the algorithm generates questions of the form`Is a wine drinker who is also a Bordeaux drinker and a redwine drinker always a red Bordeaux drinker?'. If the ques-tion is denied, then the user has to provide a counter-example. In [7], Attribute Exploration is used for ex-tending data-driven to theory-driven conceptual scaleswith as few interaction of the domain expert as possible.In logical scaling, the necessary expert knowledge isalready explicitly formalized in the terminology. Thatis why Attribute Exploration can be combined with asubsumption algorithm of Description Logic as `expert'([1]). This can be done with each logic that has a com-plete subsumption algorithm which generates a counter-example for each non-valid subsumption. In this paper,we use the language ALC ([6]).For answering the question mentioned above, the sub-sumption algorithm solves the equivalent question ifP :� wine drinker u Bordeaux drinker u red wine drinkeru: red Bordeaux drinkeris inconsistent with respect to the terminology in Fig-ure 4. In order to show that P is inconsistent, the sub-sumption algorithm tries to generate a counter-example.If this fails, P is consistent (and the question is a�rmed).Here the question is denied because the algorithm re-turns three new (dummy) objects as counter-example:P7, W5, and W6 with W5 having only the attribute redwine, W6 having only the attributes Bordeaux and whitewine, an the relations drinks(P7,W5) and drinks(P7,W6).The counter-example is added (temporarily, just for cre-ating the conceptual scale) to the database in Figure 2and to the context in Figure 1. Then Attribute Explo-ration generates the next open question and passes it tothe subsumption algorithm. In total, Attribute Explo-ration generates eight questions. The subsumption al-gorithm denies four of them. For the others, it providesfour counter-examples.The �nal result is a list of counter-examples which de-termines the structure of the conceptual scale. (Equiva-lently, the structure is determined by the list of a�rmedquestions.)The (theory-driven) conceptual scale is derived fromthe concept lattice of the extended context. For each
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Mrs. MillerMr. Smith

Miss Cooper

Mr. DavisFigure 5: Concept lattice of the theory-driven scaleconcept, one clause consisting of the attributes of the ter-minology is introduced which describes the intent of theconcept. For instance, P7 is replaced by red wine drinkeru Bordeaux drinker u: red Bordeaux drinker. These ob-jects are used for deriving the realized scale at runtime.The line diagram of the concept lattice of the realizedscale is shown in Figure 5. Here one can see which at-tribute combinations can principally exist according tothe terminology, and which of them are realized by theactual data. For instance one can see that the observa-tion made in Section 2 that there is no white Bordeauxdrinker (see (�)) does not hold in general, but only forthe four listed persons.If one starts the generation of the conceptual scalefrom an empty database, the same scale will arise, butin its realized scale there will be no realized concepts(beside the bottom concept). As the database grows,more and more concepts become realized. Hence, theory-driven logical scales can also be used for analyzing thedegree of completeness of the database with regard to`typical' objects of the terminology.In contrast to the terminology in Figure 4, the conceptlattice in Figure 5 visualizes the subsumption hierarchy.It combines the intensional part of a Description Logic(the TBox) with its extensional part (the ABox).We conclude with the observation that, in theory-driven logical scaling, Description Logics and FormalConcept Analysis enrich each other. From the view-point of Formal Concept Analysis, the use of a Descrip-tion Logic allows to extend the scaling process in Con-ceptual Information Systems to more complicated datastructures than just one many-valued context. Fromthe viewpoint of Description Logics, Conceptual Infor-mation Systems provide a graphical user interface whichsupports the navigation through and exploration of theknowledge captured by a Description Logic.
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