Computer Science ›› 2019, Vol. 46 ›› Issue (11): 272-276.doi: 10.11896/jsjkx.180901630
• Graphics ,Image & Pattern Recognition • Previous Articles Next Articles
HAN Jia-lin1, WANG Qi-qi1, YANG Guo-wei1, CHEN Jun2, WANG Yi-zhong1
CLC Number:
[1]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:580-587. [2]GIRSHICK R.Fast R-CNN[C]∥Proceedings of the IEEE Conference on International Conference on Computer Vision.Boston:IEEE,2015:1440-1448. [3]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [4]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2016:779-788. [5]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]∥Proceedings of European Conference on Computer Vision.Amsterdam:Springer International Publishing,2016:21-37. [6]HAN S,POOL J,TRAN J,et al.Learning both weights andconnections for efficient neural networks[M]∥Neural Information Processing Systems.Morgan Kaufmann Publishers Inc,2015:1135-1143. [7]HAN S,POOL J,DALLY W J,et al.Deep Compression:compressing deep neuralnetworks with pruning,trained quantization and huffman coding[C]∥Proceedings of Conference on Learning Representations.San Juan:IEEE,2016:233-242. [8]MOHAMMAD R,VICENTE O,JOSEPH R,et al.XOR-Net:ImageNet Classification Using Binary Convolutional Neural Networks[C]∥Proceedings of European Conference on Computer Vision.Amsterdam:ECCV,2016:525-542. [9]MATTHIEU C,ITAY H,DANIEL S,et al.Binarized NeuralNetworks:Training Neural Networks with Weights and Activations Constrained to +1 or -1[EB/OL].https://arxiv.org/abs/1704.04861.pdf. [10]GEOFFREY H,ORIOL V,JEFF D,et al.Distilling the knowledge in a Neural Network[C]∥Proceedings of Conference on Advances in Neural Infermation Processing Systems.Montreal:IEEE,2014:2644-2652. [11]BHARAT BHUSAN S,VINEETH N.B.Deep Model Compression:Distilling Knowledge from Noisy Teachers[EB/OL].https://arxiv.org/abs/1610.09650.pdf. [12]MAX J,ANDREA V,ANDREW Z,et al.Speeding up Convolutional Neural Networks with Low Rank Expansions[J].Computer Science,2014,4(4):1-7. [13]VIKAS S,TARA N S,SANJIV K,et al.Structured Transforms for Small-Footprint Deep Learning[EB/OL].https://arxiv.org/abs/1510.01722.pdf. [14]WEN W,WU C,WANG Y,et al.Learning structured sparsity in deep neural networks[M]∥Advances in Neural Information Processing Systems.Berlin:Springer,2016:2074-2082. [15]LIU Z,SHEN Z,HUANG G,et al.Learning efficient convolutional networks through network slimming[C]∥Proceedings of the IEEE International Conference on Computer Vision(ICCV).IEEE,2017:2755-2763. [16]HE Y,ZHANG X,SUN J,et al.Channel pruning for accelerating very deep neural networks [EB/OL].https://arxiv.org/abs/1707.06168.pdf. [17]IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[C]∥Proceedings of International Conference on Learning Representations.San Juan:ICLR,2016. [18]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications [EB/OL].https://arxiv.org/abs/1704.04861.pdf. [19]ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices [EB/OL].https:// arxiv.org/abs/1707.01083.pdf. [20]EVERINGHAM M,VAN G L,WILLIAMS C K I,et al.Thepascal visual object classes (voc) challenge[J].International journal of computer vision,2010,88(2):303-338. [21]HANSON S J,PRATT L Y.Comparing biases for minimal network construction with back-propagation[M]∥Neural Information Processing Systems.Morgan Kaufmann Publishers Inc,1989:177-185. [22]CUN Y L,DENKER J S,SOLLA S A,et al.Optimal brain damage[C]∥Neural Information Processing Systems.Morgan Kaufmann Publishers Inc,1990:598-605. [23]HASSIBI B,STORK D G.Second Order derivatives for network pruning:optimal brain surgeon[C]∥Neural Information Processing Systems.Morgan Kaufmann Publishers Inc,1992:164-171. [24]HAN Y F,JIANG T H,MA Y P,et al.Compression of deep neural networks [J].Application Research of Computers,2018,35(10):2894-2897.(in Chinese) 韩云飞,蒋同海,马玉鹏,等.深度神经网络的压缩研究[J].计算机应用研究,2018,35(10):2894-2897. [25]焦李成.深度学习、优化与识别[M].北京:清华大学出版社,2017:104. |
[1] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[2] | CHEN Zhi-wen, WANG Kun, ZHOU Guang-yun, WANG Xu, ZHANG Xiao-dan, ZHU Hu-ming. SAR Image Change Detection Method Based on Capsule Network with Weight Pruning [J]. Computer Science, 2021, 48(7): 190-198. |
[3] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[4] | SUN Yan-li, YE Jiong-yao. Convolutional Neural Networks Compression Based on Pruning and Quantization [J]. Computer Science, 2020, 47(8): 261-266. |
[5] | XIAO Rui, JIANG Jia-qi, ZHANG Yun-chun. Study on Semantic Topology and Supervised Word Sense Disambiguation of Polysemous Words [J]. Computer Science, 2019, 46(11A): 13-18. |
[6] | LIU Jin-shuo and ZHANG Zhi. Sentiment Analysis on Food Safety News Using Joint Deep Neural Network Model [J]. Computer Science, 2016, 43(12): 277-280. |
|