Computer Science ›› 2018, Vol. 45 ›› Issue (8): 17-21.doi: 10.11896/j.issn.1002-137X.2018.08.004
• ChinaMM 2017 • Previous Articles Next Articles
LI Yun-bo1, TANG Si-qi1, ZHOU Xing-yu2, PAN Zhi-song1
CLC Number:
[1]LIN S F,CHEN J Y,CHAO H X.Estimation of number of people in crowded scenes using perspective transformation[J].IEEE Transactions on Systems,Man & Cybernetics Part A Systems & Humans,2001,31(6):645-654. [2]DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]∥IEEE Computer Society Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2005:886-893. [3]WANG M,WANG X.Automatic adaptation of a generic pedestrian detector to a specific traffic scene[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2011:3401-3408. [4]GE W,COLLINS R T.Marked point processes for crowd-coun-ting[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2009(CVPR 2009).IEEE,2009:2913-2920. [5]IDREES H,SOOMRO K,SHAH M.Detecting Humans inDense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning[M].IEEE Computer Society,2015. [6]LIN Z,DAVIS L S.Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,32(4):604-618. [7]LEMPITSKY V S,ZISSERMAN A.Learning To Count Objects in Images[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc.,2010:1324-1332. [8]ZHANG C,LI H,WANG X,et al.Cross-scene crowd counting via deep convolutional neural networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2015:833-841. [9]WANG C,ZHANG H,YANG L,et al.Deep People Counting in Extremely Dense Crowds[C]∥ACM International Conference on Multimedia.ACM,2015:1299-1302. [10]BOOMINATHAN L,KRUTHIVENTI S S S,BABU R V.CrowdNet:A Deep Convolutional Network for Dense Crowd Counting[C]∥Proceedings of ACM Conference on Multimedia (ACMMM) - 2016.2016:640-644. [11]ZHANG Y,ZHOU D,CHEN S,et al.Single-Image CrowdCounting via Multi-Column Convolutional Neural Network[C]∥Computer Vision and Pattern Recognition.IEEE,2016:589-597. [12]HAN S,POOL J,TRAN J,et al.Learning both Weights and Connections for Efficient Neural Networks[C]∥NIPS 2015.2015:1135-1143. [13]HAN S,LIU X,MAO H,et al.EIE:Efficient Inference Engine on Compressed Deep Neural Network[C]∥ACM/IEEE International Symposium on Computer Architecture.IEEE,2016:243-254. [14]HAN S,MAO H,DALLY W J.Deep Compression:Compressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[J].Fiber,2015,56(4):3-7. [15]LIN M,CHEN Q,YAN S.Network In Network[C]∥International Conference on Learning Representations.2013. [16]NAIR V,HINTON G E.Rectified linear units improve restric-ted boltzmann machines[C]∥International Conference on International Conference on Machine Learning.Omnipress,2010:807-814. [17]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Ima-ge Recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778. [18]RODRIGUEZ M,LAPTEV I,SIVIC J,et al.Density-aware person detection and tracking in crowds[C]∥International Confe-rence on Computer Vision.IEEE Computer Society,2011:2423-2430. [19]IDREES H,SALEEMI I,SEIBERT C,et al.Multi-source Multi-scale Counting in Extremely Dense Crowd Images[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2013:2547-2554. [20]OÑORO-RUBIO D,LÓPEZ-SASTRE R J.Towards Perspec-tive-Free Object Counting with Deep Learning[C]∥European Conference on Computer Vision.Springer,Cham,2016:615-629. |
[1] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[2] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[3] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[4] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[5] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[6] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[7] | LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131. |
[8] | XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141. |
[9] | YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260. |
[10] | YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352. |
[11] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[12] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[13] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[14] | CHEN Yong-ping, ZHU Jian-qing, XIE Yi, WU Han-xiao, ZENG Huan-qiang. Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss [J]. Computer Science, 2022, 49(6A): 424-428. |
[15] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
|