计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 590-594.
李婷婷1, 毕海权1, 王宏林1, 王晓亮2, 周远龙1
LI Ting-ting1, BI Hai-quan1, WANG Hong-lin1, WANG Xiao-liang2, ZHOU Yuan-long1
摘要: 中央空调系统是城市轨道交通系统车站建筑中的重点耗能设备,由于在运营初期其负荷远小于设计负荷、缺乏实时负荷值而无法根据建筑的实际负荷动态调节,导致其目前能耗较大。文中以地铁车站站厅公共区域的空调系统为研究对象,根据空调负荷计算方法,基于trnsys系统仿真平台建立负荷计算模型。按照正交试验方法设计的试验方案,采用仿真模拟的方法对显著影响地铁车站站厅空调能耗的因素进行了研究。基于影响因素的显著性大小排序和BP神经网络理论建立了空调负荷预测模型。以预测负荷值与实际负荷值误差最小作为目标函数,采用仿真模拟实验数据作为训练样本对模型进行训练。训练过程较为稳定,未出现明显震荡(R2=0.99956),预测负荷与模拟负荷的均方根误差变异系数较小(3.6%)。在客流变化、天气变化的情况下对模型进行验证,最大相对误差分别为9.8257%和11.675%。验证结果表明,模型预测精度较高,具有较好的泛化能力,能有效预测地铁车站站厅公共区域空调负荷,可为地铁车站空调控制系统提供依据。
中图分类号:
[1]GB50157-2013 地铁设计规范[M].北京:中国建筑工业出版社,2014.<br /> [2]魏渊诚.上海轨交车站机电设备的智能节能控制研究[J].消防界(电子版),2017(9):121-126.<br /> [3]尹奎超,由世俊.对天津地铁站空调运行控制温度的探讨[J].山东建筑大学学报,2008,23(5):466-470.<br /> [4]梁星,张九根,陈大鹏.变水量系统Smith-模糊PID复合控制方法[J].暖通空调,2018,48(8):101-106.<br /> [5]ZAKULA T,ARMSTRONG P R,NORFORD L.Modeling environment for model predictive control of buildings[J].Energy &Buildings,2014,85:549-559.<br /> [6]唐敏.基于负荷预测的地铁通风空调系统节能优化方案[J].都市快轨交通,2008,21(4):74-78.<br /> [7]MCCULLOCH W S,PITTS W.A logical calculus of the ideas immanent in nervous activity.1943.[J].Bulletin of Mathematical Biology,1990,52(1/2):99-115.<br /> [8]李浩.基于史密斯预估补偿的变风量空调系统性能优化研究[D].西安:西安建筑科技大学,2016.<br /> [9]BASHEER I A,HAJMEER M.Artificial neural networks:fundamentals,computing,design,and application[J].Journal of Microbiological Methods,2000,43(1):3-31.<br /> [10]BEN-NAKHI A E,MAHMOUD M A.Cooling load prediction for buildings using general regression neural networks[J].Energy Conversion & Management,2004,45(13):2127-2141<br /> [11]NETO A H,FIORELLI F A S.Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption[J].Energy & Buildings,2008,40(12):2169-2176.<br /> [12]KANG I,LEE K H,LEE J H,et al.Artificial Neural Network-Based Control of a Variable Refrigerant Flow System in the Cooling Season[J].Energy,2018,11:1643.<br /> [13]LI K,SU H,CHU J.Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system:A comparative study[J].Energy & Buildings,2011,43(10):2893-2899.<br /> [14]蔡自兴.人工智能控制[M].北京:化学工业出版社,2005.<br /> [15]张伟捷,吴金顺,魏一然,等.基于正交试验法的建筑冷负荷影响因素分析[J].暖通空调,2006,36(11):77-80.<br /> [16]王凯.北京地铁客流特征分析[J].Management Sciences & Engineering,2014,3(1):51-56.<br /> [17]全国咨询工程师(投资)职业资格考试参考教材编写委员会.项目决策分析与评价[M].北京:中国计划出版社,2016:440-445[18]赵丹,张九根.基于神经网络预测控制的VAV系统优化控制研究[J].电气应用,2016(12):62-65.<br /> [19]宋扬.基于人流密度的北京地铁车站节点设计调查研究[D].北京:北京交通大学,2015. |
[1] | 刘宝宝, 杨菁菁, 陶露, 王贺应. 基于DE-LSTM模型的教育统计数据预测研究 Study on Prediction of Educational Statistical Data Based on DE-LSTM Model 计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120 |
[2] | 徐佳楠, 张天瑞, 赵伟博, 贾泽轩. 面向供应链风险评估的改进BP小波神经网络研究 Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment 计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049 |
[3] | 朱旭辉, 沈国娇, 夏平凡, 倪志伟. 基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用 Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction 计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088 |
[4] | 夏静, 马中, 戴新发, 胡哲琨. 基于BP神经网络的智能云效能模型 Efficiency Model of Intelligent Cloud Based on BP Neural Network 计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140 |
[5] | 郭福民, 张华, 胡瑢华, 宋岩. 一种基于表面肌电信号的腕部肌力估计方法研究 Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals 计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021 |
[6] | 程铁军, 王曼. 基于变权组合的突发事件网络舆情趋势预测 Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination 计算机科学, 2021, 48(6A): 190-195. https://doi.org/10.11896/jsjkx.200600094 |
[7] | 石琳姗, 马创, 杨云, 靳敏. 基于SSC-BP神经网络的异常检测算法 Anomaly Detection Algorithm Based on SSC-BP Neural Network 计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086 |
[8] | 周俊, 尹悦, 夏斌. 基于LSTM神经网络的声发射信号识别研究 Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network 计算机科学, 2021, 48(11A): 319-326. https://doi.org/10.11896/jsjkx.210700034 |
[9] | 焦东来, 王浩翔, 吕海洋, 徐轲. 基于手机传感器轨迹的路面地物检测方法 Road Surface Object Detection from Mobile Phone Based Sensor Trajectories 计算机科学, 2021, 48(11A): 283-289. https://doi.org/10.11896/jsjkx.210200145 |
[10] | 庄世杰, 於志勇, 郭文忠, 黄昉菀. 基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用 Short Term Load Forecasting via Zoneout-based Multi-time Scale Recurrent Neural Network 计算机科学, 2020, 47(9): 105-109. https://doi.org/10.11896/jsjkx.190800030 |
[11] | 诸珺文. 基于改进BP神经网络的SQL注入识别 SQL InJection Recognition Based on Improved BP Neural Network 计算机科学, 2020, 47(6A): 352-359. https://doi.org/10.11896/JsJkx.191200054 |
[12] | 周立鹏, 孟利民, 周磊, 蒋维, 董建平. 基于BP神经网络的摔倒检测算法 Fall Detection Algorithm Based on BP Neural Network 计算机科学, 2020, 47(6A): 242-246. https://doi.org/10.11896/JsJkx.191000077 |
[13] | 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋. 基于sEMG的改进SVM+BP肌力预测分层算法 Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG 计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143 |
[14] | 陈燕文,李坤,韩焱,王燕平. 基于MFCC和常数Q变换的乐器音符识别 Musical Note Recognition of Musical Instruments Based on MFCC and Constant Q Transform 计算机科学, 2020, 47(3): 149-155. https://doi.org/10.11896/jsjkx.190100224 |
[15] | 刘晓彤,王伟,李泽禹,沈思婉,姜小明. 基于改进BP神经网络的尿液中红白细胞识别算法 Recognition Algorithm of Red and White Cells in Urine Based on Improved BP Neural Network 计算机科学, 2020, 47(2): 102-105. https://doi.org/10.11896/jsjkx.191100195 |
|